Controlling the Phase Behavior and Reflection of Main-Chain Cholesteric Oligomers Using a Smectic Monomer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Main-Chain CLC Oligomer
2.2. CLC Oligomers Phase Behavior
2.3. Temperature Response of the Reflection Band of the Oligomers
2.4. Fabrication of a Mixture Containing Main-Chain CLC Oligomer and Chiral Dopant
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Cholesteric Main-Chain Oligomer
3.3. PVA-Functionalized Glass Substrate
3.4. Preparation of the LC Cells
3.5. Mixing of Cholesteric Main-Chain Oligomer and Chiral Dopant
3.6. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seeboth, A.; Lötzsch, D.; Ruhmann, R.; Muehling, O. Thermochromic polymers—Function by design. Chem. Rev. 2014, 114, 3037–3068. [Google Scholar] [CrossRef] [PubMed]
- Van Heeswijk, E.P.A.; Yang, L.; Grossiord, N.; Schenning, A.P.H.J. Tunable photonic materials via monitoring step-growth polymerization kinetics by structural colors. Adv. Funct. Mater. 2020, 30, 1906833. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; McConney, M.E.; Bunning, T.J. Dynamic color in stimuli-responsive cholesteric liquid crystals. J. Mater. Chem. 2010, 20, 9832–9847. [Google Scholar] [CrossRef]
- Ranjkesh, A.; Yoon, T.-H. Fabrication of a single-substrate flexible thermoresponsive cholesteric liquid-crystal film with wavelength tunability. ACS Appl. Mater. Interfaces 2019, 11, 26314–26322. [Google Scholar] [CrossRef] [PubMed]
- Choi, T.M.; Je, K.; Park, J.-G.; Lee, G.H.; Kim, S.-H. Photonic capsule sensors with built-in colloidal crystallites. Adv. Mater. 2018, 30, 1803387. [Google Scholar] [CrossRef]
- Shang, S.; Zhu, P.; Wang, H.; Li, Y.; Yang, S. Thermally responsive photonic fibers consisting of chained nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 50844–50851. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, A.; Ussembayev, Y.Y.; Bus, T.; Nys, I.; Neyts, K.; Schenning, A.P.H.J. Dual light and temperature responsive micrometer-sized structural color actuators. Small 2020, 16, 1905219. [Google Scholar] [CrossRef] [Green Version]
- Belmonte, A.; Pilz da Cunha, M.; Nickmans, K.; Schenning, A.P.H.J. Brush-Paintable, temperature and light responsive triple shape-memory photonic coatings based on micrometer-sized cholesteric liquid crystal polymer particles. Adv. Opt. Mater. 2020, 8, 2000054. [Google Scholar] [CrossRef]
- Zhang, W.; Froyen, A.A.F.; Schenning, A.P.H.J.; Zhou, G.; Debije, M.G.; de Haan, L.T. Temperature-Responsive photonic devices based on cholesteric liquid crystals. Adv. Photon. Res. 2021, 2, 2100016. [Google Scholar] [CrossRef]
- Zhang, P.; Kragt, A.J.J.; Schenning, A.P.H.J.; de Haan, L.T.; Zhou, G. An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns. J. Mater. Chem. C 2018, 6, 7184–7187. [Google Scholar] [CrossRef]
- Khandelwal, H.; van Heeswijk, E.P.A.; Schenning, A.P.H.J.; Debije, M.G. Paintable temperature-responsive cholesteric liquid crystal reflectors encapsulated on a single flexible polymer substrate. J. Mater. Chem. C 2019, 7, 7395–7398. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Mishima, K.; Matsuyama, K.; Hayashi, K.-I.; Kikuchi, H.; Kajiyama, T. Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites. Appl. Phys. Lett. 2003, 82, 2407–2409. [Google Scholar] [CrossRef]
- Oh, S.-W.; Kim, S.-H.; Yoon, T.-H. Thermal control of transmission property by phase transition in cholesteric liquid crystals. J. Mater. Chem. C 2018, 6, 6520–6525. [Google Scholar] [CrossRef]
- Bian, Z.; Li, K.; Huang, W.; Cao, H.; Yang, H.; Zhang, H. Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution. Appl. Phys. Lett. 2007, 91, 201908. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Chen, Y.; Li, C.; Hou, G.; Liu, X.; Zhang, X.; He, W.; Yang, H. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound. Chem. Commun. 2014, 50, 691–694. [Google Scholar] [CrossRef]
- Tzeng, S.Y.T.; Chen, C.N.; Tzeng, Y. Thermal tuning band gap in cholesteric liquid crystals. Liq. Cryst. 2010, 37, 1221–1224. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, H.; Song, L.; Yang, Z.; Cao, H.; Cheng, Z.; Liu, Q.; Yang, H. Electrically Controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites. Adv. Mater. 2010, 22, 468–472. [Google Scholar] [CrossRef]
- Moirangthem, M.; Stumpel, J.E.; Alp, B.; Teunissen, P.; Bastiaansen, C.W.; Schenning, A.P. Hot pen and laser writable photonic polymer films. In Proceedings of the Emerging Liquid Crystal Technologies XI, San Francisco, CA, USA, 7 March 2016; p. 97690Y. [Google Scholar]
- Yelamaggad, C.V.; Shanker, G.; Hiremath, U.S.; Krishna Prasad, S. Cholesterol-based nonsymmetric liquid crystal dimers: An overview. J. Mater. Chem. 2008, 18, 2927–2949. [Google Scholar] [CrossRef]
- Chilaya, G.S. Effect of various external factors and pretransitional phenomena on structural transformations in cholesteric liquid crystals. Crystallogr. Rep. 2000, 45, 871–886. [Google Scholar] [CrossRef]
- Dhar, R. Twisted-grain-boundary (TGB) phases: Nanostructured liquid-crystal analogue of Abrikosov vortex lattices. Phase Transit. 2006, 79, 175–199. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, Y.; Doyle, C.; Wu, S.-T. Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility. Opt. Express 2006, 14, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Kragt, A.J.J.; Zuurbier, N.C.M.; Broer, D.J.; Schenning, A.P.H.J. Temperature-responsive, multicolor-changing photonic polymers. ACS Appl. Mater. Interfaces 2019, 11, 28172–28179. [Google Scholar] [CrossRef] [PubMed]
- Ranjkesh, A.; Yoon, T.-H. Thermal and electrical wavelength tuning of Bragg reflection with ultraviolet light absorbers in polymer-stabilized cholesteric liquid crystals. J. Mater. Chem. C 2018, 6, 12377–12385. [Google Scholar] [CrossRef]
- Warner, M.; Terentjev, E.M. Liquid Crystal Elastomers; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Zhang, W.; Schenning, A.; Kragt, A.J.J.; Zhou, G.; de Haan, L.T. reversible thermochromic photonic coatings with a protective topcoat. ACS Appl. Mater. Interfaces 2021, 13, 3153–3160. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.G.; Dierking, I.; Gleeson, H.F. Cholesteric pitch divergence near smectic phase transitions. Phys. Rev. E 2010, 82, 011705. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, D.K. Temperature dependence of pitch and twist elastic constant in a cholesteric to smectic A phase transition. Liq. Cryst. 2002, 29, 1497–1501. [Google Scholar] [CrossRef]
- Yang, H.; Yamane, H.; Kikuchi, H.; Yamane, H.; Zhang, G.; Chen, X.; Tisato, K. Investigation of the electrothermo-optical effect of a smectic LCP–nematic LC–chiral dopant ternary composite system based on SA ↔ N* phase transition. J. Appl. Polym. Sci. 1999, 73, 623–631. [Google Scholar] [CrossRef]
- De Gennes, P.G. Some Remarks on the Polymorphism of Smectics. Mol. Cryst. Liq. Cryst. 1973, 21, 49–76. [Google Scholar] [CrossRef]
- Keating, P.N. A Theory of the cholesteric mesophase. Mol. Cryst. 1969, 8, 315–326. [Google Scholar] [CrossRef]
- Wu, X.; Cao, H.; Guo, R.; Li, K.; Wang, F.; Yang, H. Effect of cholesteric liquid crystalline elastomer with binaphthalene cross-linkings on thermal and optical properties of a liquid crystal that show smectic A-cholesteric phase transition. Polym. Adv. Technol. 2013, 24, 228–235. [Google Scholar] [CrossRef]
- Wu, X.; Cao, H.; Guo, R.; Li, K.; Wang, F.; Gao, Y.; Yao, W.; Zhang, L.; Chen, X.; Yang, H. Influence of Interim alkyl chain length on phase transitions and wide-band reflective behaviors of side-chain liquid crystalline elastomers with binaphthalene cross-linkings. Macromolecules 2012, 45, 5556–5566. [Google Scholar] [CrossRef]
- Natarajan, L.V.; Wofford, J.M.; Tondiglia, V.P.; Sutherland, R.L.; Koerner, H.; Vaia, R.A.; Bunning, T.J. Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material. J. Appl. Phys. 2008, 103, 093107. [Google Scholar] [CrossRef]
- Zhang, W.; Lub, J.; Schenning, A.; Zhou, G.; de Haan, L.T. Polymer stabilized cholesteric liquid crystal siloxane for temperature-responsive photonic coatings. Int. J. Mol. Sci. 2020, 21, 1803. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Kragt, S.; Schenning, A.; de Haan, L.T.; Zhou, G. Easily processable temperature-responsive infrared-reflective polymer coatings. ACS Omega 2017, 2, 3475–3482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, M.; Wang, L.; Yang, D.-k.; Yu, H.; Yang, H. Polymeric infrared reflective thin films with ultra-broad bandwidth. Liq. Cryst. 2016, 43, 750–757. [Google Scholar] [CrossRef]
- Wang, L.; Bisoyi, H.K.; Zheng, Z.; Gutierrez-Cuevas, K.G.; Singh, G.; Kumar, S.; Bunning, T.J.; Li, Q. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene. Mater. Today 2017, 20, 230–237. [Google Scholar] [CrossRef]
- van Heeswijk, E.P.A.; Meerman, T.; de Heer, J.; Grossiord, N.; Schenning, A.P.H.J. Paintable encapsulated body-temperature-responsive photonic reflectors with arbitrary shapes. ACS Appl. Polym. Mater. 2019, 1, 3407–3412. [Google Scholar] [CrossRef]
- van Heeswijk, E.P.A.; Kloos, J.J.H.; Grossiord, N.; Schenning, A.P.H.J. Humidity-gated, temperature-responsive photonic infrared reflective broadband coatings. J. Mater. Chem. A 2019, 7, 6113–6119. [Google Scholar] [CrossRef] [Green Version]
- Nagai, H.; Urayama, K. Thermal response of cholesteric liquid crystal elastomers. Phys. Rev. E 2015, 92, 022501. [Google Scholar] [CrossRef]
- Wang, J.-W.; Zhang, B.-Y. Synthesis and optical properties of cholesteric liquid-crystalline oligomers displaying reversible thermochromism. J. Appl. Polym. Sci. 2013, 130, 1321–1327. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, X.; You, Y.; Hu, X.; de Haan, L.; Zhao, W.; Zhou, G.; Yuan, D. Flexible thermal responsive infrared reflector based on cholesteric liquid crystals and polymer stabilized cholesteric liquid crystals. Opt. Express 2019, 27, 13516–13525. [Google Scholar] [CrossRef]
- Zhang, W.; Schenning, A.P.H.J.; Kragt, A.J.J.; Zhou, G.; de Haan, L.T. Thermochromic multicolored photonic coatings with light polarization- and structural color-dependent Changes. ACS Appl. Polym. Mater. 2021, 4, 537–545. [Google Scholar] [CrossRef]
- Ware, T.H.; McConney, M.E.; Wie, J.J.; Tondiglia, V.P.; White, T.J. Voxelated liquid crystal elastomers. Science 2015, 347, 982–984. [Google Scholar] [CrossRef] [Green Version]
- Kotikian, A.; Truby, R.L.; Boley, J.W.; White, T.J.; Lewis, J.A. 3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order. Adv. Mater. 2018, 30, 1706164. [Google Scholar] [CrossRef] [PubMed]
- Ware, T.H.; White, T.J. Programmed liquid crystal elastomers with tunable actuation strain. Polym. Chem. 2015, 6, 4835–4844. [Google Scholar] [CrossRef]
- Ambulo, C.P.; Burroughs, J.J.; Boothby, J.M.; Kim, H.; Shankar, M.R.; Ware, T.H. Four-dimensional Printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 2017, 9, 37332–37339. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-R.; Hwang, J.-C. The phase behaviour and optical properties of a nematic/chiral dopant liquid crystalline mixture system. Liq. Cryst. 2010, 31, 1539–1546. [Google Scholar] [CrossRef]
No. | Concentrations (mol%) | Monomer 2: (Monomer 1 + Monomer 2) (%) | Average DP | |||
---|---|---|---|---|---|---|
Monomer 1 | Monomer 2 | Butylamine 3 | Monomer 4 | |||
1 | 47.6 | 0 | 47.4 | 5.0 | 0 | 2.8 |
2 | 35.8 | 12.0 | 47.2 | 5.0 | 25.0 | 2.1 |
3 | 28.5 | 19.0 | 47.5 | 5.0 | 40.0 | 1.9 |
4 | 23.8 | 23.8 | 47.4 | 5.0 | 50.0 | 1.8 |
5 | 19.0 | 28.6 | 47.2 | 5.2 | 60.0 | 1.7 |
6 | 9.6 | 38.2 | 47.1 | 5.1 | 80.0 | 2.1 |
7 | 0 | 47.6 | 47.3 | 5.1 | 100.0 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, L.; Shi, X.; Zhou, G.; de Haan, L.T. Controlling the Phase Behavior and Reflection of Main-Chain Cholesteric Oligomers Using a Smectic Monomer. Int. J. Mol. Sci. 2022, 23, 3275. https://doi.org/10.3390/ijms23063275
Yue L, Shi X, Zhou G, de Haan LT. Controlling the Phase Behavior and Reflection of Main-Chain Cholesteric Oligomers Using a Smectic Monomer. International Journal of Molecular Sciences. 2022; 23(6):3275. https://doi.org/10.3390/ijms23063275
Chicago/Turabian StyleYue, Lansong, Xiuyi Shi, Guofu Zhou, and Laurens T. de Haan. 2022. "Controlling the Phase Behavior and Reflection of Main-Chain Cholesteric Oligomers Using a Smectic Monomer" International Journal of Molecular Sciences 23, no. 6: 3275. https://doi.org/10.3390/ijms23063275
APA StyleYue, L., Shi, X., Zhou, G., & de Haan, L. T. (2022). Controlling the Phase Behavior and Reflection of Main-Chain Cholesteric Oligomers Using a Smectic Monomer. International Journal of Molecular Sciences, 23(6), 3275. https://doi.org/10.3390/ijms23063275