Theoretical Studies of Cyanophycin Dipeptides as Inhibitors of Tyrosinases
Abstract
:1. Introduction
2. Results
2.1. Tyrosinase Structure Comparison
2.2. Molecular Docking Studies with TYR and abTYR
2.3. Molecular Docking Studies with TYRP1 and TYRP2
3. Materials and Methods
3.1. Protein System Setup
3.2. Ligand Preparation
3.3. Docking Setup
3.4. Bioinformatic Analysis of Proteins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solano, F. Melanins: Skin Pigments and Much More—Types, Structural Models, Biological Functions, and Formation Routes. New J. Sci. 2014, 2014, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Zhou, X.; McCallum, N.C.; Hu, Z.; Ni, Q.Z.; Kapoor, U.; Heil, C.M.; Cay, K.S.; Zand, T.; Mantanona, A.J.; et al. Unraveling the Structure and Function of Melanin through Synthesis. J. Am. Chem. Soc. 2021, 143, 2622–2637. [Google Scholar] [CrossRef] [PubMed]
- Solano, F. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules 2020, 25, 1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meredith, P.; Sarna, T. The Physical and Chemical Properties of Eumelanin. Pigment Cell Res. 2006, 19, 572–594. [Google Scholar] [CrossRef]
- Lapedriza, A.; Petratou, K.; Kelsh, R.N. Neural Crest Cells and Pigmentation. Neural Crest Cells Evol. Dev. Dis. 2014, Chapter 14, 287–311. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Ohtara, K.; Ito, S. Chemical Analysis of Late Stages of Pheomelanogenesis: Conversion of Dihydrobenzothiazine to a Benzothiazole Structure. Pigment Cell Melanoma Res. 2009, 22, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Boo, Y.C. Up- or Downregulation of Melanin Synthesis Using Amino Acids, Peptides, and Their Analogs. Biomedicines 2020, 8, 322. [Google Scholar] [CrossRef] [PubMed]
- Roulier, B.; Pérès, B.; Haudecoeur, R. Advances in the Design of Genuine Human Tyrosinase Inhibitors for Targeting Melanogenesis and Related Pigmentations. J. Med. Chem. 2020, 63, 13428–13443. [Google Scholar] [CrossRef] [PubMed]
- Oetting, W.S.; King, R.A. Molecular Basis of Albinism: Mutations and Polymorphisms of Pigmentation Genes Associated With Albinism. Hum. Mutat. 1999, 13, 99–115. [Google Scholar] [CrossRef]
- Noh, H.; Lee, S.J.; Jo, H.J.; Choi, H.W.; Hong, S.; Kong, K.H. Histidine Residues at the Copper-Binding Site in Human Tyrosinase Are Essential for Its Catalytic Activities. J. Enzym. Inhib. Med. Chem. 2020, 35, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Dean, D.N.; Lee, J.C. Linking Parkinson’s Disease and Melanoma: Interplay Between α-Synuclein and Pmel17 Amyloid Formation. Mov. Disord. 2021, 36, 1489–1498. [Google Scholar] [CrossRef]
- Hedges, D.M.; Yorgason, J.T.; Perez, A.W.; Schilaty, N.D.; Williams, B.M.; Watt, R.K.; Steffensen, S.C. Spontaneous Formation of Melanin from Dopamine in the Presence of Iron. Antioxidants 2020, 9, 1285. [Google Scholar] [CrossRef]
- Lai, X.; Wichers, H.J.; Soler-Lopez, M.; Dijkstra, B.W. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angew. Chem. Int. Ed. 2017, 56, 9812–9815. [Google Scholar] [CrossRef]
- Zhou, S.; Zeng, H.; Huang, J.; Lei, L.; Tong, X.; Li, S.; Zhou, Y.; Guo, H.; Khan, M.; Luo, L.; et al. Epigenetic Regulation of Melanogenesis. Ageing Res. Rev. 2021, 69, 101349. [Google Scholar] [CrossRef]
- Tsukamoto, K.; Jackson, I.J.; Urabe, K.; Montague, P.M.; Hearing, V.J. A Second Tyrosinase-Related Protein, TRP-2, Is a Melanogenic Enzyme Termed DOPAchrome Tautomerase. EMBO J. 1992, 11, 519. [Google Scholar] [CrossRef] [PubMed]
- Udono, T.; Takahashi, K.; Yasumoto, K.I.; Yoshizawa, M.; Takeda, K.; Abe, T.; Tamai, M.; Shibahara, S. Expression of Tyrosinase-Related Protein 2/DOPAchrome Tautomerase in the Retinoblastoma. Exp. Eye Res. 2001, 72, 225–234. [Google Scholar] [CrossRef]
- Chen, J.; Ye, Y.; Ran, M.; Li, Q.; Ruan, Z.; Jin, N. Inhibition of Tyrosinase by Mercury Chloride: Spectroscopic and Docking Studies. Front. Pharmacol. 2020, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.P.; Chen, Q.X.; Song, K.K.; Xie, J.J. Inhibitory Effects of Salicylic Acid Family Compounds on the Diphenolase Activity of Mushroom Tyrosinase. Food Chem. 2006, 95, 579–584. [Google Scholar] [CrossRef]
- Chen, R.; Shi, Y.; Liu, G.; Tao, Y.; Fan, Y.; Wang, X.; Li, L. Spectroscopic Studies and Molecular Docking on the Interaction of Delphinidin-3-O-Galactoside with Tyrosinase. Biotechnol. Appl. Biochem. 2021, 163, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Park, J.H.; Kim, M.H.; Seo, S.H.; Kim, H.J. Synthesis of Tyrosinase Inhibitory Kojic Acid Derivative. Arch. der Pharm. 2006, 339, 111–114. [Google Scholar] [CrossRef]
- Hariri, R.; Saeedi, M.; Akbarzadeh, T. Naturally Occurring and Synthetic Peptides: Efficient Tyrosinase Inhibitors. J. Pept. Sci. 2021, 27, e3329. [Google Scholar] [CrossRef] [PubMed]
- Hassani, S.; Haghbeen, K.; Fazli, M. Non-Specific Binding Sites Help to Explain Mixed Inhibition in Mushroom Tyrosinase Activities. Eur. J. Med. Chem. 2016, 122, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Chen, Q.X.; Wang, Q.; Song, K.K.; Qiu, L. Inhibitory Effects of Cinnamic Acid and Its Derivatives on the Diphenolase Activity of Mushroom (Agaricus Bisporus) Tyrosinase. Food Chem. 2005, 92, 707–712. [Google Scholar] [CrossRef]
- Garcia-Jimenez, A.; García-Molina, F.; Teruel-Puche, J.A.; Saura-Sanmartin, A.; Garcia-Ruiz, P.A.; Ortiz-Lopez, A.; Rodríguez-López, J.N.; Garcia-Canovas, F.; Munoz-Munoz, J. Catalysis and Inhibition of Tyrosinase in the Presence of Cinnamic Acid and Some of Its Derivatives. Int. J. Biol. Macromol. 2018, 119, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Fan, L. Understanding the Combined Effect and Inhibition Mechanism of 4-Hydroxycinnamic Acid and Ferulic Acid as Tyrosinase Inhibitors. Food Chem. 2021, 352, 129369. [Google Scholar] [CrossRef] [PubMed]
- Frommeyer, M.; Wiefel, L.; Steinbüchel, A. Features of the Biotechnologically Relevant Polyamide Family “Cyanophycins” and Their Biosynthesis in Prokaryotes and Eukaryotes. Crit. Rev. Biotechnol. 2016, 36, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Frommeyer, M.; Bergander, K.; Steinbüchel, A. Guanidination of Soluble Lysine-Rich Cyanophycin Yields a Homoarginine-Containing Polyamide. Appl. Environ. Microbiol. 2014, 80, 2381–2389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wördemann, R.; Wiefel, L.; Wendisch, V.F.; Steinbüchel, A. Incorporation of Alternative Amino Acids into Cyanophycin by Different Cyanophycin Synthetases Heterologously Expressed in Corynebacterium glutamicum. AMB Express 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Steinle, A.; Bergander, K.; Steinbüchel, A. Metabolic Engineering of Saccharomyces Cerevisiae for Production of Novel Cyanophycins with an Extended Range of Constituent Amino Acids. Appl. Environ. Microbiol. 2009, 75, 3437–3446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Li, L.; Zhou, S. Microbial Production of Cyanophycin: From Enzymes to Biopolymers. Biotechnol. Adv. 2019, 37, 107400. [Google Scholar] [CrossRef] [PubMed]
- Sallam, A.; Kast, A.; Przybilla, S.; Meiswinkel, T.; Steinbüchel, A. Biotechnological Process for Production of β-Dipeptides from Cyanophycin on a Technical Scale and Its Optimization. Appl. Environ. Microbiol. 2009, 75, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinbüchel, A.; Sallam, A. Dipeptides in Nutrition and Therapy: Cyanophycin-Derived Dipeptides as Natural Alternatives and Their Biotechnological Production. Appl. Microbiol. Biotechnol. 2010, 87, 815–828. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, H.; Zheng, Y.; Zhang, L.; Wang, X.; Luo, Z.; Tang, J.; Lin, L.; Du, Z.; Dong, C. The Effects and Mechanism of Collagen Peptide and Elastin Peptide on Skin Aging Induced by D-Galactose Combined with Ultraviolet Radiation. J. Photochem. Photobiol. B Biol. 2020, 210, 111964. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Toalá, J.E.; Hernández-Mendoza, A.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Liceaga, A.M. Potential Role of Natural Bioactive Peptides for Development of Cosmeceutical Skin Products. Peptides 2019, 122, 170170. [Google Scholar] [CrossRef] [PubMed]
- Kopperschläger, G. Effects of Specific Binding Reactions on the Partitioning Behavior of Biomaterials. In International Review of Cytology; Academic Press: Cambridge, MA, USA, 1999; Volume 192, pp. 61–97. [Google Scholar]
- Ochiai, A.; Tanaka, S.; Imai, Y.; Yoshida, H.; Kanaoka, T.; Tanaka, T.; Taniguchi, M. New Tyrosinase Inhibitory Decapeptide: Molecular Insights into the Role of Tyrosine Residues. J. Biosci. Bioeng. 2016, 121, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Rosa, G.P.; Palmeira, A.; Resende, D.I.S.P.; Almeida, I.F.; Kane-Pagès, A.; Barreto, M.C.; Sousa, E.; Pinto, M.M.M. Xanthones for Melanogenesis Inhibition: Molecular Docking and QSAR Studies to Understand Their Anti-Tyrosinase Activity. Bioorg. Med. Chem. 2021, 29, 115873. [Google Scholar] [CrossRef] [PubMed]
- Simpkin, A.J.; Rodríguez, F.S.; Mesdaghi, S.; Kryshtafovych, A.; Rigden, D.J. Evaluation of Model Refinement in CASP14. Proteins Struct. Funct. Bioinform. 2021, 89, 1852–1869. [Google Scholar] [CrossRef]
- Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; Velankar, S.; et al. Highly Accurate Protein Structure Prediction for the Human Proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef]
- Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of Computer-Aided Drug Design in Modern Drug Discovery. Arch. Pharmacal Res. 2015, 38, 1686–1701. [Google Scholar] [CrossRef]
- Song, C.M.; Lim, S.J.; Tong, J.C. Recent Advances in Computer-Aided Drug Design. Brief. Bioinform. 2009, 10, 579–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Ruiz, C.V.; Maria-Solano, M.A.; Garcia-Molina, M.D.M.; Varon, R.; Tudela, J.; Tomas, V.; Garcia-Canovas, F. Kinetic Characterization of Substrate-Analogous Inhibitors of Tyrosinase. IUBMB Life 2015, 67, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Nesterov, A.; Zhao, J.; Minter, D.; Hertel, C.; Ma, W.; Abeysinghe, P.; Hong, M.; Jia, Q. 1-(2,4-Dihydroxyphenyl)-3-(2,4-Dimethoxy-3-Methylphenyl)Propane, a Novel Tyrosinase Inhibitor With Strong Depigmenting Effects. Chem. Pharm. Bull. 2008, 56, 1292–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghani, U.; Ullah, N. New Potent Inhibitors of Tyrosinase: Novel Clues to Binding of 1,3,4-Thiadiazole-2(3H)-Thiones, 1,3,4-Oxadiazole-2(3H)-Thiones, 4-Amino-1,2,4-Triazole-5(4H)-Thiones, and Substituted Hydrazides to the Dicopper Active Site. Bioorg. Med. Chem. 2010, 18, 4042–4048. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, S.K.; Shimmon, R.G.; Conn, C.; Baker, A.T. Inhibitory Kinetics of Azachalcones and Their Oximes on Mushroom Tyrosinase: A Facile Solid-State Synthesis. Chem. Biodivers. 2016, 13, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ran, M.; Wang, M.; Liu, X.; Liu, S.; Yu, Y. Structure–Activity Relationships of Antityrosinase and Antioxidant Activities of Cinnamic Acid and Its Derivatives. Biosci. Biotechnol. Biochem. 2021, 85, 1697–1705. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and Better Reference Data for Improved All-Atom Structure Validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.R.; Silva, J.R.A.; Cardoso, É.D.T.C.; Silva, E.O.; Lameira, J.; Nascimento, J.L.M.D.; Brasil, D.D.S.B.; Alves, C.N. Combined Kinetic Studies and Computational Analysis on Kojic Acid Analogs as Tyrosinase Inhibitors. Molecules 2014, 19, 9591–9605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Channar, P.A.; Saeed, A.; Larik, F.A.; Batool, B.; Kalsoom, S.; Hasan, M.M.; Erben, M.F.; El-Seedi, H.R.; Ali, M.; Ashraf, Z. Synthesis of Aryl Pyrazole via Suzuki Coupling Reaction, in Vitro Mushroom Tyrosinase Enzyme Inhibition Assay and in Silico Comparative Molecular Docking Analysis with Kojic Acid. Bioorg. Chem. 2018, 79, 293–300. [Google Scholar] [CrossRef]
- Mann, T.; Scherner, C.; Röhm, K.-H.; Kolbe, L. Structure-Activity Relationships of Thiazolyl Resorcinols, Potent and Selective Inhibitors of Human Tyrosinase. Int. J. Mol. Sci. 2018, 19, 690. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orhan, I.E.; Deniz, F.S.S. Inhibition of Melanogenesis by Some Well-Known Polyphenolics: A Review. Curr. Pharm. Biotechnol. 2020, 22, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, G.; Türe, A.; Ercan, A.; Öncül, S.; Aytemir, M.D. Synthesis, Computational Molecular Docking Analysis and Effectiveness on Tyrosinase Inhibition of Kojic Acid Derivatives. Bioorg. Chem. 2019, 88, 102950. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Fan, M.; Liu, W.; Li, Y.; Wang, G. Design, Synthesis, Molecular Modeling, and Biological Evaluation of Novel Kojic Acid Derivatives Containing Bioactive Heterocycle Moiety as Inhibitors of Tyrosinase and Antibrowning Agents. Food Chem. 2021, 362, 130241. [Google Scholar] [CrossRef] [PubMed]
- Brasil, E.M.; Canavieira, L.M.; Cardoso, É.T.C.; Silva, E.O.; Lameira, J.; Nascimento, J.L.M.; Eifler-Lima, V.L.; Macchi, B.M.; Sriram, D.; Bernhardt, P.V.; et al. Inhibition of Tyrosinase by 4H-Chromene Analogs: Synthesis, Kinetic Studies, and Computational Analysis. Chem. Biol. Drug Des. 2017, 90, 804–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manga, P.; Sato, K.; Ye, L.; Beermann, F.; Lynn Lamoreux, M.; Orlow, S.J. Mutational Analysis of the Modulation of Tyrosinase by Tyrosinase-Related Proteins 1 and 2 in Vitro. Pigment Cell Res. 2000, 13, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Lavinda, O.; Manga, P.; Orlow, S.J.; Cardozo, T. Biophysical Compatibility of a Heterotrimeric Tyrosinase-TYRP1-TYRP2 Metalloenzyme Complex. Front. Pharmacol. 2021, 12, 602206. [Google Scholar] [CrossRef] [PubMed]
- Repository, S.-M. P14679 Homo Sapiens Tyrosinase Model. Available online: https://swissmodel.expasy.org/repository/uniprot/P14679 (accessed on 17 September 2021).
- Spritz, R.A.; Hearing, V.J. Abnormalities of Pigmentation. In Emery and Rimoin's Principles and Practice of Medical Genetics; Academic Press: Cambridge, MA, USA, 2013; pp. 1–44. [Google Scholar] [CrossRef]
- Urabe, K.; Aroca, P.; Tsukamoto, K.; Mascagna, D.; Palumbo, A.; Prota, G.; Hearing, V.J. The Inherent Cytotoxicity of Melanin Precursors: A Revision. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 1994, 1221, 272–278. [Google Scholar] [CrossRef]
- Tseng, T.-S.; Tsai, K.-C.; Chen, W.-C.; Wang, Y.-T.; Lee, Y.-C.; Lu, C.-K.; Don, M.-J.; Chang, C.-Y.; Lee, C.-H.; Lin, H.-H.; et al. Discovery of Potent Cysteine-Containing Dipeptide Inhibitors against Tyrosinase: A Comprehensive Investigation of 20 × 20 Dipeptides in Inhibiting Dopachrome Formation. J. Agric. Food Chem. 2015, 63, 6181–6188. [Google Scholar] [CrossRef] [PubMed]
- Mann, T.; Gerwat, W.; Batzer, J.; Eggers, K.; Scherner, C.; Wenck, H.; Stäb, F.; Hearing, V.J.; Röhm, K.H.; Kolbe, L. Inhibition of Human Tyrosinase Requires Molecular Motifs Distinctively Different from Mushroom Tyrosinase. J. Investig. Dermatol. 2018, 138, 1601–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Case, D.H.M.; Aktulga, K.; Belfon, I.Y.; Ben-Shalom, S.R.; Brozell, D.S.; Cerutti, T.E.; Cheatham, G.A., III; Cisneros, V.W.D.; Cruzeiro, T.A.; Darden, R.E.; et al. Amber; University of California: San Francisco, CA, USA, 2021. [Google Scholar]
- Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal Structure of Agaricus Bisporus Mushroom Tyrosinase: Identity of the Tetramer Subunits and Interaction with Tropolone. Biochemistry 2011, 50, 5477–5486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1998, 98, 5648. [Google Scholar] [CrossRef] [Green Version]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-shell Atoms and Hydrides of the First-row Elements. J. Chem. Phys. 1998, 89, 2193. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.S.; Sen, K. (Eds.) Molecular Electrostatic Potentials: Concepts and Applications; Elsevier: Amsterdam, The Netherlands, 1996; p. 665. [Google Scholar]
- Rodríguez-Guerra Pedregal, J.; Sciortino, G.; Guasp, J.; Municoy, M.; Maréchal, J.-D. GaudiMM: A Modular Multi-Objective Platform for Molecular Modeling. J. Comput. Chem. 2017, 38, 2118–2126. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Sacquin-Mora, S.; Carbone, A.; Lavery, R. Identification of Protein Interaction Partners and Protein-Protein Interaction Sites. J. Mol. Biol. 2008, 382, 1276–1289. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, P.L.; Bonvin, A.M.J.J. Are Scoring Functions in Protein−Protein Docking Ready To Predict Interactomes? Clues from a Novel Binding Affinity Benchmark. J. Proteome Res. 2010, 9, 2216–2225. [Google Scholar] [CrossRef] [Green Version]
- Lensink, M.F.; Méndez, R.; Wodak, S.J. Docking and Scoring Protein Complexes: CAPRI 3rd Edition. Proteins Struct. Funct. Bioinform. 2007, 69, 704–718. [Google Scholar] [CrossRef]
- Kastritis, P.L.; Rodrigues, J.P.G.L.M.; Folkers, G.E.; Boelens, R.; Bonvin, A.M.J.J. Proteins Feel More than They See: Fine-Tuning of Binding Affinity by Properties of the Non-Interacting Surface. J. Mol. Biol. 2014, 426, 2632–2652. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A Web Server for Predicting the Binding Affinity of Protein-Protein Complexes. Bioinformatics 2016, 32, 3676–3678. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The Protein Families Database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Castro, E.; Sigrist, C.J.A.; Gattiker, A.; Bulliard, V.; Langendijk-Genevaux, P.S.; Gasteiger, E.; Bairoch, A.; Hulo, N. ScanProsite: Detection of PROSITE Signature Matches and ProRule-Associated Functional and Structural Residues in Proteins. Nucleic Acids Res. 2006, 34, W362–W365. [Google Scholar] [CrossRef] [PubMed]
Ligand | abTYR | TYR | TYRP1 | TYRP2 |
---|---|---|---|---|
Lig1 | −5.9 | −6.0 | −5.9 | −6.0 |
Lig2 | −6.4 | −6.7 | −6.3 | −6.8 |
Lig3 | −5.4 | −5.5 | −6.1 | −5.7 |
Lig4 | −6.3 | −6.3 | −6.4 | −6.6 |
Lig5 | −5.4 | −5.3 | −5.2 | −6.0 |
Lig6 | −5.2 | −5.3 | −4.9 | −5.6 |
Lig7 | −5.7 | −5.8 | −5.7 | −6.1 |
Lig8 | −5.4 | −5.6 | −5.2 | −5.4 |
Kojic acid | −7.1 | −7.3 | −7.0 | −7.0 |
Cinnamic acid | −8.0 | −8.0 | −7.5 | −7.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzemińska, A.; Kwiatos, N.; Arenhart Soares, F.; Steinbüchel, A. Theoretical Studies of Cyanophycin Dipeptides as Inhibitors of Tyrosinases. Int. J. Mol. Sci. 2022, 23, 3335. https://doi.org/10.3390/ijms23063335
Krzemińska A, Kwiatos N, Arenhart Soares F, Steinbüchel A. Theoretical Studies of Cyanophycin Dipeptides as Inhibitors of Tyrosinases. International Journal of Molecular Sciences. 2022; 23(6):3335. https://doi.org/10.3390/ijms23063335
Chicago/Turabian StyleKrzemińska, Agnieszka, Natalia Kwiatos, Franciela Arenhart Soares, and Alexander Steinbüchel. 2022. "Theoretical Studies of Cyanophycin Dipeptides as Inhibitors of Tyrosinases" International Journal of Molecular Sciences 23, no. 6: 3335. https://doi.org/10.3390/ijms23063335
APA StyleKrzemińska, A., Kwiatos, N., Arenhart Soares, F., & Steinbüchel, A. (2022). Theoretical Studies of Cyanophycin Dipeptides as Inhibitors of Tyrosinases. International Journal of Molecular Sciences, 23(6), 3335. https://doi.org/10.3390/ijms23063335