MicroRNAs in Leukemias: A Clinically Annotated Compendium
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Classification of Phenotypes in miRTarBase and DISNOR
3.2. Highly Connected miRNAs and Their Roles in Leukemia
3.3. Target Genes and Their Roles in Leukemia
3.4. Biological Pathways Involved in Leukemias
3.5. Leukemia-Associated miRNAs and Target Genes and Their Roles in Other Diseases
3.6. MiRNAs Act as Both Tumor Suppressors and Oncogenes in Leukemias
3.7. The Use of miRNAs in Clinical Practice
3.8. Clinical Trials on the Topic of miRNAs in Leukemia
3.9. Study Limitations
3.10. Future Directions
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Juliusson, G.; Hough, R. Leukemia. Prog. Tumor Res. 2016, 43, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.S. Beyond midostaurin: Which are the most promising FLT3 inhibitors in AML? Best Pract. Res. Clin. Haematol. 2019, 32, 101103. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; e Silva, B.V.R.; Gao, T.; Xu, Z.; Cui, J. Dynamic and Modularized MicroRNA Regulation and Its Implication in Human Cancers. Sci. Rep. 2017, 7, 13356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef]
- Soifer, H.S.; Rossi, J.J.; Sætrom, P. MicroRNAs in Disease and Potential Therapeutic Applications. Mol. Ther. 2007, 15, 2070–2079. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Q.; Xi, T.; Zheng, L.; Li, X. MicroRNA-9 as a paradoxical but critical regulator of cancer metastasis: Implications in personalized medicine. Genes Dis. 2021, 8, 759–768. [Google Scholar] [CrossRef]
- Pardini, B.; Sabo, A.A.; Birolo, G.; Calin, G.A. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers 2019, 11, 1170. [Google Scholar] [CrossRef] [Green Version]
- Piletič, K.; Kunej, T. MicroRNA epigenetic signatures in human disease. Arch. Toxicol. 2016, 90, 2405–2419. [Google Scholar] [CrossRef]
- Ultimo, S.; Martelli, A.M.; Zauli, G.; Vitale, M.; Calin, G.A.; Neri, L.M. Roles and clinical implications of microRNAs in acute lymphoblastic leukemia. J. Cell. Physiol. 2018, 233, 5642–5654. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Wang, H.; Liang, J.; Dong, J.; Bai, H.; Jiang, G. Advances in the application of Let-7 microRNAs in the diagnosis, treatment and prognosis of leukemia (review). Oncol. Lett. 2021, 23, 1. [Google Scholar] [CrossRef] [PubMed]
- Mardani, R.; Abadi, M.H.J.N.; Motieian, M.; Taghizadeh-Boroujeni, S.; Bayat, A.; Farsinezhad, A.; Hayat, S.M.G.; Motieian, M.; Pourghadamyari, H. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J. Cell. Physiol. 2019, 234, 8465–8486. [Google Scholar] [CrossRef] [PubMed]
- Hrovatin, K.; Kunej, T. Classification of heterogeneous genetic variations of microRNA regulome in cancer. Cancer Lett. 2018, 419, 128–138. [Google Scholar] [CrossRef]
- Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; et al. Nonlinear partial differential equations and applications: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anelli, L.; Zagaria, A.; Specchia, G.; Musto, P.; Albano, F. Dysregulation of miRNA in Leukemia: Exploiting miRNA Expression Profiles as Biomarkers. Int. J. Mol. Sci. 2021, 22, 7156. [Google Scholar] [CrossRef] [PubMed]
- Banzhaf-Strathmann, J.; Edbauer, D. Good guy or bad guy: The opposing roles of microRNA 125b in cancer. Cell Commun. Signal. 2014, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zeng, G.; Jiang, Y. The Emerging Roles of miR-125b in Cancers. Cancer Manag. Res. 2020, 12, 1079–1088. [Google Scholar] [CrossRef] [Green Version]
- Bousquet, M.; Harris, M.H.; Zhou, B.; Lodish, H.F. MicroRNA miR-125b causes leukemia. Proc. Natl. Acad. Sci. USA 2010, 107, 21558–21563. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, S.G.; Kontos, C.K.; Diamantopoulos, M.A.; Bouchla, A.; Glezou, E.; Bazani, E.; Pappa, V.; Scorilas, A. MicroRNA-155-5p Overexpression in Peripheral Blood Mononuclear Cells of Chronic Lymphocytic Leukemia Patients Is a Novel, Independent Molecular Biomarker of Poor Prognosis. Dis. Markers 2017, 2017, 2046545. [Google Scholar] [CrossRef]
- Xu, L.; Leng, H.; Shi, X.; Ji, J.; Fu, J.; Leng, H. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis. Biomed. Pharmacother. 2017, 90, 524–530. [Google Scholar] [CrossRef]
- Chen, C.; Luo, F.; Liu, X.; Lu, L.; Xu, H.; Yang, Q.; Xue, J.; Shi, L.; Li, J.; Zhang, A.; et al. NF-kB-regulated exosomal miR-155 promotes the inflammation associated with arsenite carcinogenesis. Cancer Lett. 2017, 388, 21–33. [Google Scholar] [CrossRef] [PubMed]
- He, X.-H.; Zhu, W.; Yuan, P.; Jiang, S.; Li, D.; Zhang, H.-W.; Liu, M.-F. miR-155 downregulates ErbB2 and suppresses ErbB2-induced malignant transformation of breast epithelial cells. Oncogene 2016, 35, 6015–6025. [Google Scholar] [CrossRef] [PubMed]
- Bouamar, H.; Jiang, D.; Wang, L.; Lin, A.-P.; Ortega, M.; Aguiar, R.C.T. MicroRNA 155 Control of p53 Activity Is Context Dependent and Mediated by Aicda and Socs1. Mol. Cell. Biol. 2015, 35, 1329–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babar, I.A.; Cheng, C.J.; Booth, C.J.; Liang, X.; Weidhaas, J.B.; Saltzman, W.M.; Slack, F.J. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc. Natl. Acad. Sci. USA 2012, 109, E1695–E1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.; Fang, X.; Zhang, H.; Wang, X.; Li, M.; Jiang, W.; Tian, F.; Zhu, L.; Bian, Z. Triptolide inhibits the growth of osteosarcoma by regulating microRNA-181a via targeting PTEN gene in vivo and vitro. Tumor Biol. 2017, 39, 101042831769755. [Google Scholar] [CrossRef] [Green Version]
- Nagaraj, A.B.; Knarr, M.; Sekhar, S.; Connor, R.S.; Joseph, P.; Kovalenko, O.; Fleming, A.; Surti, A.; Nurmemmedov, E.; Beltrame, L.; et al. The miR–181a–SFRP4 Axis Regulates Wnt Activation to Drive Stemness and Platinum Resistance in Ovarian Cancer. Cancer Res. 2021, 81, 2044–2055. [Google Scholar] [CrossRef]
- Assmann, J.L.J.C.; Leon, L.G.; Stavast, C.J.; van den Bogaerdt, S.E.; Schilperoord-Vermeulen, J.; Sandberg, Y.; Bellido, M.; Erkeland, S.J.; Feith, D.J.; Loughran, T.P., Jr.; et al. miR-181a is a novel player in the STAT3-mediated survival network of TCRαβ+ CD8+ T large granular lymphocyte leukemia. Leukemia 2021, 1–11. [Google Scholar] [CrossRef]
- Huang, X.; Schwind, S.; Santhanam, R.; Eisfeld, A.-K.; Chiang, C.; Lankenau, M.; Yu, B.; Hoellerbauer, P.; Jin, Y.; Tarighat, S.S.; et al. Targeting the RAS/MAPK pathway with miR-181a in acute myeloid leukemia. Oncotarget 2016, 7, 59273–59286. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.-X.; Zhu, W.; Fang, C.; Fan, L.; Zou, Z.-J.; Wang, Y.-H.; Liu, P.; Hong, M.; Miao, K.-R.; Liu, P.; et al. miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 2012, 33, 1294–1301. [Google Scholar] [CrossRef] [Green Version]
- Su, R.; Lin, H.-S.; Zhang, X.-H.; Yin, X.-L.; Ning, H.-M.; Liu, B.; Zhai, P.-F.; Gong, J.-N.; Shen, C.; Song, L.; et al. MiR-181 family: Regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene 2015, 34, 3226–3239. [Google Scholar] [CrossRef]
- Jiang, X.-M.; Yu, X.-N.; Liu, T.-T.; Zhu, H.-R.; Shi, X.; Bilegsaikhan, E.; Guo, H.-Y.; Song, G.-Q.; Weng, S.-Q.; Huang, X.-X.; et al. microRNA-19a-3p promotes tumor metastasis and chemoresistance through the PTEN/Akt pathway in hepatocellular carcinoma. Biomed. Pharmacother. 2018, 105, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-X.; Yang, Z.-F.; Tang, W.-G.; Ke, A.-W.; Liu, W.; Li, Y.; Gao, C.; Hu, B.; Fu, P.-Y.; Yu, M.-C.; et al. MicroRNA-19a-3p regulates cell growth through modulation of the PIK3IP1-AKT pathway in hepatocellular carcinoma. J. Cancer 2020, 11, 2476–2484. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Qiang, T.; Wang, J.; Ji, L.; Li, B. Simvastatin regulates the proliferation, apoptosis, migration and invasion of human acute myeloid leukemia cells via miR-19a-3p/HIF-1α axis. Bioengineered 2021, 12, 11898–11908. [Google Scholar] [CrossRef] [PubMed]
- Mian, Y.A.; Zeleznik-Le, N.J. The miR-17∼92 cluster contributes to MLL leukemia through the repression of MEIS1 competitor PKNOX1. Leuk. Res. 2016, 46, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raeisi, F.; Mahmoudi, E.; Dehghani-Samani, M.; Hosseini, S.S.E.; Ghahfarrokhi, A.M.; Arshi, A.; Forghanparast, K.; Ghazanfari, S. Differential Expression Profile of miR-27b, miR-29a, and miR-155 in Chronic Lymphocytic Leukemia and Breast Cancer Patients. Mol. Ther.-Oncolytics 2020, 16, 230–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Wang, X.-S.; Yang, G.-H.; Zhai, P.-F.; Xiao, Z.; Xia, L.-Y.; Chen, L.-R.; Wang, Y.; Wang, X.-Z.; Bi, L.-X.; et al. miR-29a and miR-142-3p downregulation and diagnostic implication in human acute myeloid leukemia. Mol. Biol. Rep. 2012, 39, 2713–2722. [Google Scholar] [CrossRef]
- Ngankeu, A.; Ranganathan, P.; Havelange, V.; Nicolet, D.; Volinia, S.; Powell, B.L.; Kolitz, J.E.; Uy, G.L.; Stone, R.M.; Kornblau, S.M.; et al. Discovery and functional implications of a miR-29b-1/miR-29a cluster polymorphism in acute myeloid leukemia. Oncotarget 2018, 9, 4354–4365. [Google Scholar] [CrossRef] [Green Version]
- Casabonne, D.; Benavente, Y.; Seifert, J.; Costas, L.; Armesto, M.; Arestin, M.; Besson, C.; Hosnijeh, F.S.; Duell, E.J.; Weiderpass, E.; et al. Serum levels of hsa-miR-16-5p, hsa-miR-29a-3p, hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-223-3p and subsequent risk of chronic lymphocytic leukemia in the EPIC study. Int. J. Cancer 2020, 147, 1315–1324. [Google Scholar] [CrossRef]
- Calin, G.A.; Cimmino, A.; Fabbri, M.; Ferracin, M.; Wojcik, S.E.; Shimizu, M.; Taccioli, C.; Zanesi, N.; Garzon, R.; Aqeilan, R.I.; et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 5166–5171. [Google Scholar] [CrossRef] [Green Version]
- Humplikova, L.; Kollinerova, S.; Papajik, T.; Pikalova, Z.; Holzerova, M.; Prochazka, V.; Divoka, M.; Modriansky, M.; Indrak, K.; Jarosova, M. Expression of miR-15a and miR-16-1 in patients with chronic lymphocytic leukemia. Biomed. Pap. 2013, 157, 284–293. [Google Scholar] [CrossRef]
- Bollaert, E.; Claus, M.; Vandewalle, V.; Lenglez, S.; Essaghir, A.; Demoulin, J.-B.; Havelange, V. MiR-15a-5p Confers Chemoresistance in Acute Myeloid Leukemia by Inhibiting Autophagy Induced by Daunorubicin. Int. J. Mol. Sci. 2021, 22, 5153. [Google Scholar] [CrossRef]
- Chen, D.; Wu, D.; Shao, K.; Ye, B.; Huang, J.; Gao, Y. MiR-15a-5p negatively regulates cell survival and metastasis by targeting CXCL10 in chronic myeloid leukemia. Am. J. Transl. Res. 2017, 9, 4308–4316. [Google Scholar] [PubMed]
- Klein, U.; Lia, M.; Crespo, M.; Siegel, R.; Shen, Q.; Mo, T.; Ambesi-Impiombato, A.; Califano, A.; Migliazza, A.; Bhagat, G.; et al. The DLEU2/miR-15a/16-1 Cluster Controls B Cell Proliferation and Its Deletion Leads to Chronic Lymphocytic Leukemia. Cancer Cell. 2010, 17, 28–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, K.; Li, S.; Adams, P.D.; Deshpande, A.J. The role of TP53 in acute myeloid leukemia: Challenges and opportunities. Genes Chromosom. Cancer 2019, 58, 875–888. [Google Scholar] [CrossRef] [Green Version]
- Stanchina, M.; Soong, D.; Zheng-Lin, B.; Watts, J.M.; Taylor, J. Advances in Acute Myeloid Leukemia: Recently Approved Therapies and Drugs in Development. Cancers 2020, 12, 3225. [Google Scholar] [CrossRef]
- Lu, T.-X.; Young, K.H.; Xu, W.; Li, J.-Y. TP53 dysfunction in diffuse large B-cell lymphoma. Crit. Rev. Oncol. Hematol. 2016, 97, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, C.; Zhao, Y.; Feng, Z. MicroRNA Control of p53. J. Cell. Biochem. 2017, 118, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Cao, J.; Topatana, W.; Juengpanich, S.; Li, S.; Zhang, B.; Shen, J.; Cai, L.; Cai, X.; Chen, M. Targeting mutant p53 for cancer therapy: Direct and indirect strategies. J. Hematol. Oncol. 2021, 14, 157. [Google Scholar] [CrossRef]
- Abdi, J.; Rastgoo, N.; Li, L.; Chen, W.; Chang, H. Role of tumor suppressor p53 and micro-RNA interplay in multiple myeloma pathogenesis. J. Hematol. Oncol. 2017, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhang, T.; Xu, Z.; Gu, Y.; Ma, J.; Li, X.; Guo, H.; Wen, X.; Zhang, W.; Yang, L.; et al. BCL2 overexpression: Clinical implication and biological insights in acute myeloid leukemia. Diagn. Pathol. 2019, 14, 68. [Google Scholar] [CrossRef]
- Samra, B.; Konopleva, M.; Isidori, A.; Daver, N.; DiNardo, C. Venetoclax-Based Combinations in Acute Myeloid Leukemia: Current Evidence and Future Directions. Front. Oncol. 2020, 10, 562558. [Google Scholar] [CrossRef] [PubMed]
- Gabra, M.M.; Salmena, L. MicroRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front. Oncol. 2017, 7, 255. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Lin, J.; Gao, L.; Li, Y.; Wang, L.; Yu, L. MicroRNA-193b regulates c-Kit proto-oncogene and represses cell proliferation in acute myeloid leukemia. Leuk. Res. 2011, 35, 1226–1232. [Google Scholar] [CrossRef]
- Rezaeian, A.-H.; Khanbabaei, H.; Calin, G.A. Therapeutic Potential of the miRNA–ATM Axis in the Management of Tumor Radioresistance. Cancer Res. 2020, 80, 139–150. [Google Scholar] [CrossRef]
- Rossetti, S.; Sacchi, N. RUNX1: A MicroRNA Hub in Normal and Malignant Hematopoiesis. Int. J. Mol. Sci. 2013, 14, 1566–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.; Fu, Y.; Wang, S.; Xu, M.; Yin, X.; Zhou, M.; Wang, X.; Chen, C. miR-96 acts as a tumor suppressor via targeting the BCR-ABL1 oncogene in chronic myeloid leukemia blastic transformation. Biomed. Pharmacother. 2019, 119, 109413. [Google Scholar] [CrossRef]
- Mohamad, S.F.S.; Elias, M.H. Potential treatment for chronic myeloid leukemia using microRNA: In silico comparison between plants and human microRNAs in targeting BCR-ABL1 gene. Egypt. J. Med. Hum. Genet. 2021, 22, 35. [Google Scholar] [CrossRef]
- Bardelli, V.; Arniani, S.; Pierini, V.; Pierini, T.; di Giacomo, D.; Gorello, P.; Moretti, M.; Pellanera, F.; Elia, L.; Vitale, A.; et al. MYB rearrangements and over-expression in T-cell acute lymphoblastic leukemia. Genes Chromosom. Cancer 2021, 60, 482–488. [Google Scholar] [CrossRef]
- Li, M.; Jiang, P.; Cheng, K.; Zhang, Z.; Lan, S.; Li, X.; Zhao, L.; Wang, Y.; Wang, X.; Chen, J.; et al. Regulation of MYB by distal enhancer elements in human myeloid leukemia. Cell Death Dis. 2021, 12, 223. [Google Scholar] [CrossRef]
- Sarvaiya, P.J.; Schwartz, J.R.; Hernandez, C.P.; Rodriguez, P.C.; Vedeckis, W.V. Role of c-Myb in the survival of pre B-cell acute lymphoblastic leukemia and leukemogenesis. Am. J. Hematol. 2012, 87, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Takam Kamga, P. Signaling Pathways in Leukemia: Any Role for Medicinal Plants in Leukemia Therapy. J. Dis. Med. Plants 2015, 1, 76. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Shukla, V.; Joshi, S.S. Regulation of MAPK signaling and implications in chronic lymphocytic leukemia. Leuk. Lymphoma 2018, 59, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-R.; Li, W.; Wu, Y.; Wu, L.-Q.; Li, X.; Guo, Y.-F.; Zheng, X.-H.; Lian, X.-L.; Huang, H.-F.; Chen, Y.-Z. Hepatocyte growth factor promotes proliferation, invasion, and metastasis of myeloid leukemia cells through PI3K-AKT and MAPK/ERK signaling pathway. Am. J. Transl. Res. 2016, 8, 3630–3644. [Google Scholar] [PubMed]
- Chen, J. MicroRNAs, signaling pathways and diseases. Ann. Transl. Med. 2015, 3, 329. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Miao, H.; Ma, N.; Lu, W.; Luo, B. Correlations between Epstein-Barr virus and acute leukemia. J. Med. Virol. 2017, 89, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Tsimberidou, A.-M.; Keating, M.J.; Bueso-Ramos, C.E.; Kurzrock, R. Epstein-Barr virus in patients with chronic lymphocytic leukemia: A pilot study. Leuk. Lymphoma 2006, 47, 827–836. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, X.; Cobb, G.P.; Anderson, T.A. microRNAs as oncogenes and tumor suppressors. Dev. Biol. 2007, 302, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yendamuri, S.; Calin, G.A. The role of microRNA in human leukemia: A review. Leukemia 2009, 23, 1257–1263. [Google Scholar] [CrossRef] [Green Version]
- Cimmino, A.; Calin, G.A.; Fabbri, M.; Iorio, M.V.; Ferracin, M.; Shimizu, M.; Wojcik, S.E.; Aqeilan, R.I.; Zupo, S.; Dono, M.; et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 2005, 102, 13944–13949. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Hu, C.; Arnovitz, S.; Bugno, J.; Yu, M.; Zuo, Z.; Chen, P.; Huang, H.; Ulrich, B.; Gurbuxani, S.; et al. miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nat. Commun. 2016, 7, 11452. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Gómez, Y.; Organista-Nava, J.; Illades-Aguiar, B.; Leyva-Vázquez, M.A. miRNAs in Acute Lymphoblastic Leukemia: Diagnosis, Prognosis and Target Therapeutic. In Advances in Hematologic Malignancies; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.A.; O’Connell, R.M. MicroRNAs and acute myeloid leukemia: Therapeutic implications and emerging concepts. Blood 2017, 130, 1290–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi, H.; Abadi, M.H.J.N.; Razi, E.; Mousavi, N.; Morovati, H.; Sarvizadeh, M.; Taghizadeh, M. MicroRNAs and response to therapy in leukemia. J. Cell. Biochem. 2019, 120, 14233–14246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Guo, Q.; Diao, Y.; Liu, H.; Song, G.; Wang, W.; Zhang, Z.; Yin, H.; Li, L. Prognostic role of microRNA-155 in patients with leukemia: A meta-analysis. Clin. Chim. Acta 2018, 483, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Zhi, F.; Cao, X.; Xie, X.; Wang, B.; Dong, W.; Gu, W.; Ling, Y.; Wang, R.; Yang, Y.; Liu, Y. Identification of Circulating MicroRNAs as Potential Biomarkers for Detecting Acute Myeloid Leukemia. PLoS ONE 2013, 8, e56718. [Google Scholar] [CrossRef] [Green Version]
- Zenz, T.; Mohr, J.; Eldering, E.; Kater, A.P.; Bühler, A.; Kienle, D.; Winkler, D.; Dürig, J.; van Oers, M.H.J.; Mertens, D.; et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 2009, 113, 3801–3808. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-S.; Li, L.; Li, L.; Chu, S.; Shiang, K.-D.; Li, M.; Sun, H.-Y.; Xu, J.; Xiao, F.-J.; Sun, G.; et al. MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood 2015, 125, 1302–1313. [Google Scholar] [CrossRef] [Green Version]
- Hershkovitz-Rokah, O.; Modai, S.; Pasmanik-Chor, M.; Toren, A.; Shomron, N.; Raanani, P.; Shpilberg, O.; Granot, G. MiR-30e induces apoptosis and sensitizes K562 cells to imatinib treatment via regulation of the BCR–ABL protein. Cancer Lett. 2015, 356, 597–605. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Lin, Y.-C.-D.; Li, J.; Huang, K.-Y.; Shrestha, S.; Hong, H.-C.; Tang, Y.; Chen, Y.-G.; Jin, C.-N.; Yu, Y.; et al. miRTarBase 2020: Updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res. 2019, 48, D148–D154. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Surdo, P.L.; Calderone, A.; Iannuccelli, M.; Licata, L.; Peluso, D.; Castagnoli, L.; Cesareni, G.; Perfetto, L. DISNOR: A disease network open resource. Nucleic Acids Res. 2018, 46, D527–D534. [Google Scholar] [CrossRef] [Green Version]
Study Start Year | Disease Type | Study Status | Study Approach | Therapeutic (If Any) | Age Group | Sample Source | Identifier |
---|---|---|---|---|---|---|---|
2010 | Acute myeloid leukemia | Completed | Biomarker profiling | 0–1 | Tissue | NCT01229124 | |
2012 | B-cell acute lymphoblastic leukemia | Completed | Biomarker profiling | 15–65 | Tissue | NCT01505699 | |
2010 | Acute myeloid leukemia | Completed | Biomarker profiling | All | Tissue | NCT01057199 | |
2016 | Acute lymphoblastic leukemia | Unknown | Biomarker profiling | 2–19 | Blood | NCT03000335 | |
2012 | Acute myeloid leukemia | Completed | Biomarker profiling | 0–3 | Tissue, blood, bone marrow | NCT01511575 | |
2011 | Acute myeloid leukemia | Completed | Biomarker profiling | 0–30 | Bone marrow | NCT01298414 | |
2007 | Acute lymphoblastic leukemia | Unknown | Biomarker profiling | 1–18 | Not specified | NCT00526084 | |
2010 | Leukemia | Unknown | Biomarker profiling | 3–21 | Blood, cerebrospinal fluid | NCT01541800 | |
2009 | Acute myeloid leukemia | Active | Biomarker profiling | All | Blood, tissue | NCT00900224 | |
2009 | Acute myeloid leukemia | Active | Biomarker profiling | 15–59 | Blood, tissue | NCT00898092 | |
2011 | TEL/AML1-positive acute lymphoblastic leukemia | Completed | Expression study | 1–18 | Bone marrow | NCT01282593 | |
2012 | Acute myeloid leukemia | Completed | Treatment and expression study | Trebananib, low-dose cytarabine | 18+ | Blood, bone marrow | NCT01555268 |
2008 | Acute myeloid leukemia | Completed | Treatment and expression study | Azacitidine, bortezomib | 18+ | Blood, bone marrow | NCT00624936 |
2008 | Chronic myelomonocytic leukemia | Terminated | Treatment and expression study | Clofarabine | 18+ | Blood, bone marrow | NCT00708721 |
2016 | Acute myeloid leukemia | Not yet recruiting | Treatment and expression study | Decitabine | 65+ | Blood, bone marrow | NCT02698124 |
2009 | Acute lymphoblastic leukemia | Completed | Biomarker profiling | 1–21 | Blood, bone marrow | NCT00896766 | |
2010 | Acute myeloid leukemia | Completed | Treatment and expression study | Cytarabine, idarubicin, lenalidomide | 18–64 | Blood, bone marrow | NCT01132586 |
2014 | Acute myeloid leukemia | Completed | Treatment and expression study | Pacritinib | 18+ | Blood, bone marrow | NCT02323607 |
2017 | Chronic lymphocytic leukemia | Completed | Treatment and expression study | Cladribine, rituximab, vorinostat | 18+ | Blood, bone marrow | NCT00764517 |
2013 | Chronic lymphocytic leukemia | Completed | Treatment and expression study | Bendamustine, rituximab | 18+ | Blood, bone marrow | NCT01832922 |
2009 | Chronic myelomonocytic leukemia | Completed | Treatment and expression study | Azacitidine, lintuzumab | 18+ | Blood, bone marrow | NCT00997243 |
2012 | Multiple hematologic malignanices | Completed | Treatment and expression study | Fludarabine phosphate, methoxyamine | 18+ | Blood, bone marrow | NCT01658319 |
2010 | Multiple hematologic malignanices | Completed | Treatment and expression study | Azacitidine, bortezomib | 18+ | Blood | NCT01129180 |
2015 | Acute myeloid leukemia | Active | Treatment and expression study | 1–21 | Blood, bone marrow | NCT02642965 | |
2012 | T-cell leukemia/lymphoma | Recruiting | Expression study | 18+ | Blood, bone marrow, skin tissue, tumor tissue, urine | NCT01676805 | |
2018 | Acute myeloid leukemia | Recruiting | Treatment and expression study | Daratumumab, donor lymphocytes | All | Blood, bone marrow | NCT03537599 |
2011 | Multiple hematologic malignanices | Completed | Treatment and expression study | Histone deacetylase inhibitor 4SC-202 | 18+ | Blood, bone marrow | NCT01344707 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turk, A.; Calin, G.A.; Kunej, T. MicroRNAs in Leukemias: A Clinically Annotated Compendium. Int. J. Mol. Sci. 2022, 23, 3469. https://doi.org/10.3390/ijms23073469
Turk A, Calin GA, Kunej T. MicroRNAs in Leukemias: A Clinically Annotated Compendium. International Journal of Molecular Sciences. 2022; 23(7):3469. https://doi.org/10.3390/ijms23073469
Chicago/Turabian StyleTurk, Aleksander, George A. Calin, and Tanja Kunej. 2022. "MicroRNAs in Leukemias: A Clinically Annotated Compendium" International Journal of Molecular Sciences 23, no. 7: 3469. https://doi.org/10.3390/ijms23073469
APA StyleTurk, A., Calin, G. A., & Kunej, T. (2022). MicroRNAs in Leukemias: A Clinically Annotated Compendium. International Journal of Molecular Sciences, 23(7), 3469. https://doi.org/10.3390/ijms23073469