Preparation and Modification Technology Analysis of Ionic Polymer-Metal Composites (IPMCs)
Abstract
:1. Introduction
2. IPMC Driving Mechanism
3. Preparation Technology of IPMC
3.1. Electroless Plating Preparation Method
3.1.1. Impregnation-Reduction Method
3.1.2. Reverse Electroless Plating Method
3.1.3. Co-Reduction Method
3.2. Mechanical Plating Preparation Method
3.2.1. Physical Vapor Deposition Method
3.2.2. Solution Casting Method
3.2.3. Hot-Pressing Method
3.2.4. Direct Assembly Method
4. Study on Modification of IPMC
4.1. Study on Modification of IPMC Basement Membrane
4.2. Study on Modification of Working Medium of IPMC
4.3. Study on Electrode Modification of IPMC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tiwari, R.; Garcia, E. The state of understanding of ionic polymer metal composite architecture: A review. Smart Mater. Struct. 2011, 20, 083001. [Google Scholar] [CrossRef]
- Fabiani, C.; Pisello, A.L.; Bou-Zeid, E.; Yang, J.; Cotana, F. Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance. Appl. Energ. 2019, 247, 155–170. [Google Scholar] [CrossRef]
- Wu, J.; Gong, X.; Fan, Y.; Xia, H. Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field. Smart Mater. Struct. 2010, 19, 105007. [Google Scholar] [CrossRef]
- Huang, Z.; Ye, Q.; Shi, Z.; Tang, J.N.; Ouyang, X.; Chen, D.Z. Multiple phase change-stimulated shape memory and self-healing epoxy composites with thermal regulation function. Chem. Eng. J. 2021, 409, 127382. [Google Scholar] [CrossRef]
- Tsai, S.R.; Hamblin, M.R. Biological effects and medical applications of infrared radiation. J. Photoch. Photobiol. B 2017, 170, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wong, M.C.; Bai, G.; Jie, W.; Hao, J. White and green light emissions of flexible polymer composites under electric field and multiple strains. Nano Energy 2015, 14, 372–381. [Google Scholar] [CrossRef]
- Zhang, F.; Zang, Y.; Huang, D.; Di, C.A.; Zhu, D. Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 2015, 6, 8356. [Google Scholar] [CrossRef]
- Bashir, M.; Rajendran, P. A review on electroactive polymers development for aerospace applications. J. Intell. Mater. Syst. Struct. 2018, 29, 3681–3695. [Google Scholar] [CrossRef]
- Wang, T.; Farajollahi, M.; Choi, Y.S.; Lin, I.T.; Marshall, J.E.; Thompson, N.M.; Sohini, K.-N.; John, M.; Smoukov, S.K. Electroactive polymers for sensing. Interface Focus 2016, 6, 20160026. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, Q.; Zhang, Z. Dealloying-driven nanoporous palladium with superior electrochemical actuation performance. Nanoscale 2016, 8, 7287–7295. [Google Scholar] [CrossRef]
- Torop, J.; Palmre, V.; Arulepp, M.; Sugino, T.; Asaka, K.; Aabloo, A. Flexible supercapacitor-like actuator with carbide-derived carbon electrodes. Carbon 2011, 49, 3113–3119. [Google Scholar] [CrossRef]
- Niu, X.; Stoyanov, H.; Hu, W.; Leo, R.; Brochu, P.; Pei, Q. Synthesizing a new dielectric elastomer exhibiting large actuation strain and suppressed electromechanical instability without prestretching. J. Polym. Sci. Pol. Phys. 2013, 51, 197–206. [Google Scholar] [CrossRef]
- Mirfakhrai, T.; Madden, J.D.; Baughman, R.H. Polymer artificial muscles. Mater. Today 2007, 10, 30–38. [Google Scholar] [CrossRef]
- Shankar, R.; Ghosh, T.K.; Spontak, R.J. Dielectric elastomers as next-generation polymeric actuators. Soft Matter 2007, 3, 1116–1129. [Google Scholar] [CrossRef]
- Bar-Cohen, Y.; Anderson, I.A. Electroactive polymer (EAP) actuators-background review. Mech. Soft Mater. 2019, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Wang, T.; Liang, J.; Wen, L. Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer–metal composite. Smart Mater. Struct. 2013, 22, 075035. [Google Scholar] [CrossRef]
- Kong, L.; Chen, W. Carbon nanotube and graphene-based bioinspired electrochemical actuators. Adv. Mater. 2014, 26, 1025–1043. [Google Scholar] [CrossRef]
- Chen, Z. A review on robotic fish enabled by ionic polymer–metal composite artificial muscles. Robot. Biomim. 2017, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Palza, H.; Zapata, P.A.; Angulo-Pineda, C. Electroactive smart polymers for biomedical applications. Materials 2019, 12, 277. [Google Scholar] [CrossRef] [Green Version]
- Grubb, W.T.; Niedrach, L.W. Batteries with solid ion-exchange membrane electrolytes: II. Low-temperature hydrogen-oxygen fuel cells. J. Electrochem. Soc. 1960, 107, 131–135. [Google Scholar] [CrossRef]
- Noonan, C.; Tajvidi, M.; Tayeb, A.H.; Shahinpoor, M.; Tabatabaie, S.E. Structure-property relationships in hybrid cellulose nanofibrils/Nafion-based ionic polymer-metal composites. Materials 2019, 12, 1269. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; He, Q.S.; Ding, Y.; Guo, D.J.; Li, J.B.; Dai, Z.D. Force optimization of ionic polymer metal composite actuators by an orthogonal array method. Chin. Sci. Bull. 2011, 56, 2061–2070. [Google Scholar] [CrossRef] [Green Version]
- Ho, D.; Cho, S.; Choi, Y.Y.; Choi, Y.J.; Cho, J.H. Trends of Nafion-based IPMC application and development. Ceramist 2020, 23, 16–26. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, D.; Zhang, X.; Tian, A. Electroless copper deposition and interface characteristics of ionic electroactive polymer. J. Mater. Res. Technol. 2021, 11, 849–856. [Google Scholar] [CrossRef]
- Park, J.; Palmre, V.; Hwang, T.; Kim, K.; Yim, W.; Bae, C. Electromechanical performance and other characteristics of IPMCs fabricated with various commercially available ion exchange membranes. Smart Mater. Struct. 2014, 23, 074001. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, L.; Mou, J.; Wu, D.; Xu, M.; Zhou, P.; Ren, Y. Research strategies to develop environmentally friendly marine antifouling coatings. Mar. Drugs 2020, 18, 371. [Google Scholar] [CrossRef]
- Jo, C.; Pugal, D.; Oh, I.K.; Kim, K.J.; Asaka, K. Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog. Polym. Sci. 2013, 38, 1037–1066. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, S.; Mou, J.; Wu, D.; Zheng, S. Research progress on the collaborative drag reduction effect of polymers and surfactants. Materials 2020, 13, 444. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Han, Y.; Huang, J.; Meng, E.; Ma, L.; Zhang, H.; Ding, Y. Hydrophilic poly (vinylidene fluoride) film with enhanced inner channels for both water-and ionic liquid-driven ion-exchange polymer metal composite actuators. ACS Appl. Mater. Inter. 2019, 11, 2386–2397. [Google Scholar] [CrossRef]
- Almomani, A.; Hong, W.; Hong, W.; Montazami, R. Influence of temperature on the electromechanical properties of ionic liquid-doped ionic polymer-metal composite actuators. Polymers 2017, 9, 358. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.; Li, W.; Tan, X. Encapsulation of ionic polymer-metal composite (IPMC) sensors with thick parylene: Fabrication process and characterization results. Sensor. Actuat. A-Phys. 2014, 217, 1–12. [Google Scholar] [CrossRef]
- Wu, G.; Hu, Y.; Liu, Y.; Zhao, J.; Chen, X.; Whoehling, V.; Plesse, C.; Nguyen, G.T.; Chen, W. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nat. Commun. 2015, 6, 7258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavi, M.S.S.; Alaei, A.; Hasani, M.; Kolahdouz, M.; Manteghi, F.; Ataei, F. Fabrication of ionic polymer metal composite for bio-actuation application: Sputtering and electroless plating methods. Mater. Res. Express 2018, 6, 035312. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Liu, J.; Zhu, Z.; Chang, L.; Li, D.; Jia, S. Aided manufacturing techniques and applications in optics and manipulation for ionic polymer-metal composites as soft sensors and actuators. J. Polym. Eng. 2015, 35, 611–626. [Google Scholar] [CrossRef]
- Bhandari, B.; Lee, G.Y.; Ahn, S.H. A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications. Int. J. Precis. Eng. Man. 2012, 13, 141–163. [Google Scholar] [CrossRef]
- MohdIsa, W.; Hunt, A.; HosseinNia, S.H. Sensing and self-sensing actuation methods for ionic polymer–metal composite (IPMC): A review. Sensors 2019, 19, 3967. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Luqman, M.; Dutta, A. Kraton based ionic polymer metal composite (IPMC) actuator. Sensor. Actuat. A-Phys. 2014, 216, 295–300. [Google Scholar] [CrossRef]
- Yip, J.; Feng, L.S.; Hang, C.W.; Marcus, Y.C.W.; Wai, K.C. Experimentally validated improvement of IPMC performance through alternation of pretreatment and electroless plating processes. Smart Mater. Struct. 2010, 20, 015009. [Google Scholar] [CrossRef]
- Palmre, V.; Pugal, D.; Kim, K.J.; Leang, K.K.; Asaka, K.; Aabloo, A. Nanothorn electrodes for ionic polymer-metal composite artificial muscles. Sci. Rep. 2014, 4, 6176. [Google Scholar] [CrossRef] [Green Version]
- Takenaka, H.; Torikai, E.; Kawami, Y.; Wakabayashi, N. Solid polymer electrolyte water electrolysis. Int. J. Hydrog. Energ. 1982, 7, 397–403. [Google Scholar] [CrossRef]
- Millet, P.; Pineri, M.; Durand, R. New solid polymer electrolyte composites for water electrolysis. J. Appl. Electrochem. 1989, 19, 162–166. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Zhu, Y.; Zhu, D.; Chen, H. Formation and characterization of dendritic interfacial electrodes inside an ionomer. ACS Appl. Mater. Int. 2017, 9, 30258–30262. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Zhang, X. Recent progress in preparation process of ionic polymer-metal composites. Results Phys. 2021, 29, 104800. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, I.T.; Kim, Y.H. Performance enhancement of IPMC actuator by plasma surface treatment. Smart Mater. Struct. 2007, 16, N6. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Z.; Chen, H.; Luo, B.; Chang, L.; Wang, Y.; Li, D. Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators. Smart Mater. Struct. 2014, 23, 125015. [Google Scholar] [CrossRef]
- Naji, L.; Safari, M.; Moaven, S. Fabrication of SGO/Nafion-based IPMC soft actuators with sea anemone-like Pt electrodes and enhanced actuation performance. Carbon 2016, 100, 243–257. [Google Scholar] [CrossRef]
- Faraji, S.; Ani, F.N. The development supercapacitor from activated carbon by electroless plating—A review. Renew. Sustain. Energy. Rev. 2015, 42, 823–834. [Google Scholar] [CrossRef]
- Safari, M.; Naji, L.; Baker, R.T.; Taromi, F.A. The enhancement effect of lithium ions on actuation performance of ionic liquid-based IPMC soft actuators. Polymer 2015, 76, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Chung, R.J.; Chin, T.S.; Chen, L.C.; Hsieh, M.F. Preparation of gradually componential metal electrode on solution-casted Nafion™ membrane. Biomol. Eng. 2007, 24, 434–437. [Google Scholar] [CrossRef]
- Chung, C.K.; Fung, P.K.; Hong, Y.Z.; Ju, M.S.; Lin, C.C.K.; Wu, T.C. A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sens. Actuat. B-Chem. 2006, 117, 367–375. [Google Scholar] [CrossRef]
- Bennett, M.D.; Leo, D.J. Manufacture and characterization of ionic polymer transducers employing non-precious metal electrodes. Smart Mater. Struct. 2003, 12, 424. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Liang, Y.; Ren, L.; Tian, W.; Ren, L. High-performance ionic-polymer–metal composite: Toward large-deformation fast-response artificial muscles. Adv. Funct. Mater. 2020, 30, 1908508. [Google Scholar] [CrossRef]
- Guo, H.; Gong, S.; Khor, K.A.; Xu, H. Effect of thermal exposure on the microstructure and properties of EB-PVD gradient thermal barrier coatings. Surf. Coat. Technol. 2003, 168, 23–29. [Google Scholar] [CrossRef]
- Fu, R.; Yang, Y.; Lu, C.; Ming, Y.; Zhao, X.; Hu, Y.; Zhao, L.; Hao, J.; Chen, W. Large-Scale Fabrication of High-Performance Ionic Polymer–Metal Composite Flexible Sensors by in Situ Plasma Etching and Magnetron Sputtering. ACS Omega 2018, 3, 9146–9154. [Google Scholar] [CrossRef]
- Siripong, M.; Fredholm, S.; Nguyen, Q.A.; Shih, B.; Itescu, J.; Stolk, J. A cost-effective fabrication method for ionic polymer-metal composites. MRS Online Proc. Libr. 2005, 889, 403. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, D.; Zhang, X.; Tian, A.; He, M. Property of ionic polymer metal composite with different thicknesses based on solution casting technique. Int. J. Mod. Phys. B 2020, 34, 2050263. [Google Scholar] [CrossRef]
- Tiwari, R.; Kim, K.J.; Kim, S.M. Ionic polymer-metal composite as energy harvesters. Smart Struct. Syst. 2008, 4, 549–563. [Google Scholar] [CrossRef]
- Shahinpoor, M.; Kim, K.J. Novel ionic polymer–metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sensor. Actuat. A-Phys. 2002, 96, 125–132. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Song, L.; Niu, Z.; Cai, L.; Zeng, Q.; Zhang, X.; Dong, H.; Zhao, D.; Zhou, W.; et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett. 2011, 11, 4636–4641. [Google Scholar] [CrossRef]
- Lee, J.W.; Yoo, Y.T. Preparation and performance of IPMC actuators with electrospun Nafion®–MWNT composite electrodes. Sens. Actuat. B-Chem. 2011, 159, 103–111. [Google Scholar] [CrossRef]
- Nah, C.; Lee, Y.S.; Cho, B.H.; Yu, H.C.; Akle, B.; Leo, D.J. Preparation and properties of nanofibrous Nafion mats for ionic polymer metal composites. Compos. Sci. Technol. 2008, 68, 2960–2964. [Google Scholar] [CrossRef]
- Beigi, F.; Mousavi, M.S.S.; Manteghi, F.; Kolahdouz, M. Doped nafion-layered double hydroxide nanoparticles as a modified ionic polymer metal composite sheet for a high-responsive humidity sensor. Appl. Clay Sci. 2018, 166, 131–136. [Google Scholar] [CrossRef]
- Chang, X.L.; Chee, P.S.; Lim, E.H.; Tan, R.C.C. A novel crenellated ionic polymer-metal composite (IPMC) actuator with enhanced electromechanical performances. Smart Mater. Struct. 2019, 28, 115011. [Google Scholar] [CrossRef]
- Boldini, A.; Jose, K.; Cha, Y.; Porfiri, M. Enhancing the deformation range of ionic polymer metal composites through electrostatic actuation. Appl. Phys. Lett. 2018, 112, 261903. [Google Scholar] [CrossRef]
- Hao, L.N.; Chen, Y.; Zhao, Y.S. Research on enhanced performance of ionic polymer metal composite by multiwalled carbon nanotubes. Mater. Res. Innov. 2015, 19 (Suppl. S1), 477–481. [Google Scholar] [CrossRef]
- Wilson, S.A.; Jourdain, R.P.; Zhang, Q.; Dorey, R.A.; Bowen, C.R.; Willander, M.; Wahab, Q.U.; Willander, M.; Al-hilli, S.M.; Nur, O.; et al. New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng. 2007, 56, 1–129. [Google Scholar] [CrossRef] [Green Version]
- Mehraeen, S.; Sadeghi, S.; Cebeci, F.Ç.; Papila, M.; Gürsel, S.A. Polyvinylidene fluoride grafted poly (styrene sulfonic acid) as ionic polymer-metal composite actuator. Sens. Actuat. A-Phys. 2018, 279, 157–167. [Google Scholar] [CrossRef]
- Lee, J.W.; Hong, S.M.; Kim, J.; Koo, C.M. Novel sulfonated styrenic pentablock copolymer/silicate nanocomposite membranes with controlled ion channels and their IPMC transducers. Sens. Actuat. B-Chem. 2012, 162, 369–376. [Google Scholar] [CrossRef]
- Shang, X.; Fang, S.; Meng, Y. Synthesis and characterization of poly (arylene ether ketone) with sulfonated fluorene pendants for proton exchange membrane. J. Membr. Sci. 2007, 297, 90–97. [Google Scholar] [CrossRef]
- Sgreccia, E.; Chailan, J.F.; Khadhraoui, M.; Di Vona, M.L.; Knauth, P. Mechanical properties of proton-conducting sulfonated aromatic polymer membranes: Stress–strain tests and dynamical analysis. J. Power Sour. 2010, 195, 7770–7775. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Xue, Z.; Xie, X.; Zhou, X. Ionic polymer–metal composite actuator based on sulfonated poly (ether ether ketone) with different degrees of sulfonation. Sens. Actuat. A-Phys. 2016, 238, 167–176. [Google Scholar] [CrossRef]
- Zhu, Z.; Asaka, K.; Chang, L.; Takagi, K.; Chen, H. Multiphysics of ionic polymer–metal composite actuator. J. Appl. Phys. 2013, 114, 084902. [Google Scholar] [CrossRef]
- Shahinpoor, M. Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—A review. Electrochim. Acta 2003, 48, 2343–2353. [Google Scholar] [CrossRef]
- Hong, W.; Almomani, A.; Montazami, R. Influence of ionic liquid concentration on the electromechanical performance of ionic electroactive polymer actuators. Org. Electron. 2014, 15, 2982–2987. [Google Scholar] [CrossRef]
- He, Q.; Vokoun, D.; Stalbaum, T.; Kim, K.J.; Fedorchenko, A.I.; Zhou, X.; Yu, M.; Dai, Z. Mechanoelectric transduction of ionic polymer-graphene composite sensor with ionic liquid as electrolyte. Sens. Actuat. A-Phys. 2019, 286, 68–77. [Google Scholar] [CrossRef]
- Shen, C.; Zhao, Q.; Evans, C.M. Precise network polymerized ionic liquids for low-voltage, dopant-free soft actuators. Adv. Mater. Technol. 2020, 4, 1800535. [Google Scholar] [CrossRef]
- Yang, J.; Yao, J.; Wang, S. Electromechanical response performance of a reinforced biomass gel artificial muscle based on natural polysaccharide of sodium alginate doped with an ionic liquid for micro-nano regulation. Carbohyd. Polym. 2022, 275, 118717. [Google Scholar] [CrossRef]
- Noto, V.D.; Piga, M.; Giffin, G.A.; Lavina, S.; Smotkin, E.S.; Sanchez, J.Y.; Iojoiu, C. Influence of anions on proton-conducting membranes based on neutralized nafion 117, triethylammonium methanesulfonate, and triethylammonium perfluorobutanesulfonate. 1. Synthesis and properties. J. Phys. Chem. C 2012, 116, 1361–1369. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, L.; Zhang, D.; Song, W. High performance, flexible and renewable nano-biocomposite artificial muscle based on mesoporous cellulose/ionic liquid electrolyte membrane. Sens. Actuat. B-Chem. 2019, 283, 579–589. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Z.; Liu, J.; Chang, L.; Chen, H. Effects of surface roughening of Nafion 117 on the mechanical and physicochemical properties of ionic polymer–metal composite (IPMC) actuators. Smart Mater. Struct. 2016, 25, 085012. [Google Scholar] [CrossRef]
- Asaka, K.; Oguro, K. Bending of polyelectrolyte membrane–platinum composite by electric stimuli III: Self-oscillation. Electrochim. Acta 2000, 45, 4517–4523. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Wang, Y.; Zhu, Z.; Li, D. Effect of dehydration on the mechanical and physicochemical properties of gold-and palladium-ionomeric polymer-metal composite (IPMC) actuators. Electrochim. Acta 2014, 129, 450–458. [Google Scholar] [CrossRef]
- Chen, Q.; Xiong, K.; Bian, K.; Jin, N.; Wang, B. Preparation and performance of soft actuator based on IPMC with silver electrodes. Front. Mech. Eng. China 2009, 4, 436–440. [Google Scholar] [CrossRef]
- Esmaeli, E.; Ganjian, M.; Rastegar, H.; Kolahdouz, M.; Kolahdouz, Z.; Zhang, G.Q. Humidity sensor based on the ionic polymer metal composite. Sens. Actuat. B-Chem. 2017, 247, 498–504. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Jafari, S.M. Bio-nanocomposites of graphene with biopolymers; fabrication, properties, and applications. Adv. Colloid Interfac. 2021, 292, 102416. [Google Scholar] [CrossRef]
- Sun, Z.; Du, S.; Zhang, D.; Song, W. Influence of pH and loading of PANI on electrochemical and electromechanical properties for high-performance renewable soft actuator with nano-biocomposite electrode. React. Funct. Polym. 2019, 139, 102–111. [Google Scholar] [CrossRef]
Type | Material | Stimulant | Result Impact | Ref. |
---|---|---|---|---|
Property changes | Thermochromic | Thermal energy | Spectral reflectance | [2] |
Magnetorheological | Magnetic field | Viscosity | [3] | |
Shape memory | Thermal energy | Crystal phase transition | [4] | |
Energy exchanges | Photovoltaic power generation | Radiant energy | Electric current | [5] |
Electroactive polymer | Electric field | Stress | [6] | |
Thermoelectric | Electric current | Temperature difference | [7] |
Type | Category | Strain Rate (%) | Stress (MPa) | Response Time | Stiffness (MPa) | Density (g/cm3) | Drive Voltage | Ref. |
---|---|---|---|---|---|---|---|---|
Ionic type | IPMC | >20 | 10~30 | ms~s | 70~300 | 1~3 | 1~5 V | [9] |
Conductive polymers | 0.1 | 5 | ms~s | >103 | 1.48 | <10 V | [10] | |
Ionic gel | 40 | - | min | 0.1 | 1.1 | 0 V/mm | [11] | |
Electric field type | Dielectric elastomer | 300 | 0.2 | ms | 0.5 | 1.5 | 144 V/μm | [12] |
Ferroelectric polymer | 2~10 | 45 | ms | 1~103 | 1.78 | 200 V/μm | [13] | |
Electrostrictive elastomer | 1.7 | 65 | ms | 600 | 7.5 | 12 V/μm | [14] |
Category | Preparation Method | Advantage | Disadvantage | Ref. |
---|---|---|---|---|
Electroless plating | Impregnation–reduction method | Forms durable metal electrode layers | Time consuming and costly | [41] |
Reverse electroless plating | More uniform metal particle distribution | The process is complicated | [49] | |
Co-reduction method | Non metallic materials can be used | Time consuming and costly | [51] | |
Mechanical plating | Physical vapor deposition | Time saving and large area preparation | Poor bond fastness | [55] |
Solution casting method | Diversified shapes | Need to be used with other methods | [56] | |
Hot-pressing method | The thickness of the membrane is controllable | Poor flexibility | [58] | |
Direct assembly method | Easy to operate | Poor interface bonding | [60] |
Modification Aspect | Advantage | Disadvantage | Ref. | |
---|---|---|---|---|
Modification of basement membrane | MWCNTs/IPMC | The surface coating is smooth and uniform, and the rigidity of the basement membrane is enhanced | There are problems with low output force and retraction | [65] |
Blended composite ion exchange membrane | Conducive to ion migration and improve driving performance | Higher cost | [67] | |
Hydrocarbon backbone ion polymer membrane | Good proton conductivity, low cost and environmental protection | Time consuming to prepare polymeric membranes | [71] | |
Modification of the working medium | Organic solvents | Improve the stability of the basement membrane | Slow driving speed | [74] |
Ionic liquid | Improve drive performance and operating life | Higher cost | [79] | |
Modification of electrodes | Rare metals | Good conductivity and stability | Easy to fall off after repeated use | [82] |
Carbon material | High performance, high conductivity | Higher cost | [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Gu, Y.; Zhang, J.; Ma, L.; Yan, M.; Mou, J.; Ren, Y. Preparation and Modification Technology Analysis of Ionic Polymer-Metal Composites (IPMCs). Int. J. Mol. Sci. 2022, 23, 3522. https://doi.org/10.3390/ijms23073522
He C, Gu Y, Zhang J, Ma L, Yan M, Mou J, Ren Y. Preparation and Modification Technology Analysis of Ionic Polymer-Metal Composites (IPMCs). International Journal of Molecular Sciences. 2022; 23(7):3522. https://doi.org/10.3390/ijms23073522
Chicago/Turabian StyleHe, Chendong, Yunqing Gu, Junjun Zhang, Longbiao Ma, Muhan Yan, Jiegang Mou, and Yun Ren. 2022. "Preparation and Modification Technology Analysis of Ionic Polymer-Metal Composites (IPMCs)" International Journal of Molecular Sciences 23, no. 7: 3522. https://doi.org/10.3390/ijms23073522
APA StyleHe, C., Gu, Y., Zhang, J., Ma, L., Yan, M., Mou, J., & Ren, Y. (2022). Preparation and Modification Technology Analysis of Ionic Polymer-Metal Composites (IPMCs). International Journal of Molecular Sciences, 23(7), 3522. https://doi.org/10.3390/ijms23073522