An Updated Model of the Divisome: Regulation of the Septal Peptidoglycan Synthesis Machinery by the Divisome
Abstract
:1. Introduction
2. Peptidoglycan Biosynthesis and Remodeling
3. The Septal Peptidoglycan Synthesis Machinery
3.1. FtsWI Holoenzyme Is Exclusively Involved in Cell Shape Remodelling, While PBP1b May Only Play a Minor Role during Division
3.2. The ECL4 Loop of FtsW Regulates GTase Activity through Active Site Modulation
3.3. The Pedestal Domain of FtsI Is Involved in sPG Synthesis through the Activation of FtsW GTase Activity
3.4. sPG Activity May Be Regulated by the Modulation of the Interaction between FtsW and FtsI
4. Septal Peptidoglycan Synthesis Regulation
4.1. FtsA: The FtsN Recruiter
4.2. The Activator FtsN
4.2.1. Partial Redundancy of FtsN by DedD
4.2.2. FtsN Translocates the Synthesis Complex to a Synthesis Track at Midcell
4.3. The Regulatory Subcomplex FtsBLQ
4.3.1. A Cytoplasmic Interaction between FtsL and FtsW Recruits the Synthesis Machinery
4.3.2. FtsB and FtsL Both Contain a Control Constriction Domain (CCD), While FtsL Has an Additional Activation of the FtsWI Domain (AWI)
4.3.3. PBP1b Activity Is Suppressed by the FtsL CCD Domain and Activated by EFtsN
4.3.4. The AWI Domain Appears to Directly Activate FtsWI through the Allosteric Binding of a Hydrophobic Pocket around FtsI Pedestal Domain Residue V86
4.3.5. FtsQ May Inhibit FtsWI Activity by Interacting with the FtsI Pedestal Domain
4.3.6. FtsBLQ (in)Active States Are Modulated by FtsBL (inter)Coiled Coil Instability
4.3.7. C-Terminal Interactions in the FtsBLQ Subcomplex Appear to Modulate the FtsBL Coiled Coil Stability
4.3.8. The FtsBLQ Subcomplex Allosterically Controls sPG Synthesis through Suppressing and Activating Interactions, the Latter Induced by FtsN
5. An Updated Model
Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angert, E.R. Alternatives to binary fission in bacteria. Nat. Rev. Microbiol. 2005, 3, 214–224. [Google Scholar] [CrossRef] [PubMed]
- den Blaauwen, T.; Hamoen, L.W.; Levin, P.A. The divisome at 25: The road ahead. Curr. Opin. Microbiol. 2017, 36, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Aarsman, M.E.G.; Piette, A.; Fraipont, C.; Vinkenvleugel, T.M.F.; Nguyen-Distèche, M.; Den Blaauwen, T. Maturation of the Escherichia coli divisome occurs in two steps. Mol. Microbiol. 2005, 55, 1631–1645. [Google Scholar] [CrossRef] [PubMed]
- Gamba, P.; Veening, J.W.; Saunders, N.J.; Hamoen, L.W.; Daniel, R.A. Two-step assembly dynamics of the Bacillus subtilis divisome. J. Bacteriol. 2009, 191, 4186–4194. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Henke, W.; Pichoff, S.; Lutkenhaus, J. How FtsEX localizes to the Z ring and interacts with FtsA to regulate cell division. Mol. Microbiol. 2019, 112, 881–895. [Google Scholar] [CrossRef]
- Schmidt, K.L.; Peterson, N.D.; Kustusch, R.J.; Wissel, M.C.; Graham, B.; Phillips, G.J.; Weiss, D.S. A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli. J. Bacteriol. 2004, 186, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.D.; Levin, P.A. Metabolism, cell growth and the bacterial cell cycle. Nat. Rev. Microbiol. 2009, 7, 822. [Google Scholar] [CrossRef]
- Uehara, T.; Park, J.T. Growth of Escherichia coli: Significance of peptidoglycan degradation during elongation and septation. J. Bacteriol. 2008, 190, 3914–3922. [Google Scholar] [CrossRef] [Green Version]
- Beaufay, F.; Coppine, J.; Hallez, R. When the metabolism meets the cell cycle in bacteria. Curr. Opin. Microbiol. 2021, 60, 104–113. [Google Scholar] [CrossRef]
- Casiraghi, A.; Suigo, L.; Valoti, E.; Straniero, V. Targeting Bacterial Cell Division: A Binding Site-Centered Approach to the Most Promising Inhibitors of the Essential Protein FtsZ. Antibiotics 2020, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, P.; Yarlagadda, V.; Ghosh, C.; Haldar, J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. MedChemComm 2017, 8, 516. [Google Scholar] [CrossRef] [PubMed]
- Elander, R.P. Industrial production of beta-lactam antibiotics. Appl. Microbiol. Biotechnol. 2003, 61, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, W.; Blanot, D.; De Pedro, M.A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 2008, 32, 149–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Typas, A.; Banzhaf, M.; Gross, C.A.; Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 2011, 10, 123. [Google Scholar] [CrossRef] [Green Version]
- Leclercq, S.; Derouaux, A.; Olatunji, S.; Fraipont, C.; Egan, A.J.F.; Vollmer, W.; Breukink, E.; Terrak, M. Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Liu, B.; Persons, L.; Lee, L.; de Boer, P.A.J. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol. Microbiol. 2015, 95, 945–970. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.C.; Beckwith, J. FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol. Microbiol. 2001, 42, 395–413. [Google Scholar] [CrossRef] [Green Version]
- Pichoff, S.; Du, S.; Lutkenhaus, J. Disruption of divisome assembly rescued by FtsN–FtsA interaction in Escherichia coli. Proc. Natl. Acad. Sci. USA 2018, 115, E6855–E6862. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, A.; Welsh, M.A.; Marmont, L.S.; Lee, W.; Sjodt, M.; Kruse, A.C.; Kahne, D.; Bernhardt, T.G.; Walker, S. FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nat. Microbiol. 2019, 4, 587. [Google Scholar] [CrossRef]
- Meeske, A.J.; Riley, E.P.; Robins, W.P.; Uehara, T.; Mekalanos, J.J.; Kahne, D.; Walker, S.; Kruse, A.C.; Bernhardt, T.G.; Rudner, D.Z. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 2016, 537, 634–638. [Google Scholar] [CrossRef] [Green Version]
- Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The penicillin-binding proteins: Structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 2008, 32, 234–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertsche, U.; Kast, T.; Wolf, B.; Fraipont, C.; Aarsman, M.E.G.; Kannenberg, K.; Von Rechenberg, M.; Nguyen-Distèche, M.; Den Blaauwen, T.; Höltje, J.V.; et al. Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Mol. Microbiol. 2006, 61, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Park, K.T.; Du, S.; Lutkenhaus, J. Essential role for ftsl in activation of septal peptidoglycan synthesis. mBio 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Goehring, W.; Gonzalez, M.D.; Beckwith, J.; Goehring, N.W.; Gonzalez, M.D.; Beckwith, J. Premature targeting of cell division proteins to midcell reveals hierarchies of protein interactions involved in divisome assembly. Mol. Microbiol. 2006, 61, 33–45. [Google Scholar] [CrossRef]
- Marmont, L.S.; Bernhardt, T.G. A conserved subcomplex within the bacterial cytokinetic ring activates cell wall synthesis by the FtsW-FtsI synthase. Proc. Natl. Acad. Sci. USA 2020, 117, 23879–23885. [Google Scholar] [CrossRef]
- Boes, A.; Olatunji, S.; Breukink, E.; Terrak, M. Regulation of the Peptidoglycan Polymerase Activity of PBP1b by Antagonist Actions of the Core Divisome Proteins FtsBLQ and FtsN. mBio 2019, 10, e01912-18. [Google Scholar] [CrossRef] [Green Version]
- Gerding, M.A.; Liu, B.; Bendezú, F.O.; Hale, C.A.; Bernhardt, T.G.; De Boer, P.A.J. Self-Enhanced Accumulation of FtsN at Division Sites and Roles for Other Proteins with a SPOR Domain (DamX, DedD, and RlpA) in Escherichia coli Cell Constriction. J. Bacteriol. 2009, 191, 7383. [Google Scholar] [CrossRef] [Green Version]
- Boes, A.; Kerff, F.; Herman, R.; Touze, T.; Breukink, E.; Terrak, M. The bacterial cell division protein fragment EFtsN binds to and activates the major peptidoglycan synthase PBP1b. J. Biol. Chem. 2020, 295, 18256–18265. [Google Scholar] [CrossRef]
- Yang, X.; McQuillen, R.; Lyu, Z.; Phillips-Mason, P.; De La Cruz, A.; McCausland, J.W.; Liang, H.; DeMeester, K.E.; Santiago, C.C.; Grimes, C.L.; et al. A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW. Nat. Microbiol. 2021, 6, 584–593. [Google Scholar] [CrossRef]
- Lyu, Z.; Yahashiri, A.; Yang, X.; McCausland, J.W.; Kaus, G.M.; McQuillen, R.; Weiss, D.S.; Xiao, J. FtsN activates septal cell wall synthesis by forming a processive complex with the septum-specific peptidoglycan synthase in E. coli. bioRxiv 2021, 457437. [Google Scholar] [CrossRef]
- Du, S.; Pichoff, S.; Lutkenhaus, J. Roles of ATP Hydrolysis by FtsEX and Interaction with FtsA in Regulation of Septal Peptidoglycan Synthesis and Hydrolysis. mBio 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Park, K.T.; Pichoff, S.; Du, S.; Lutkenhaus, J. FtsA acts through FtsW to promote cell wall synthesis during cell division in Escherichia coli. Proc. Natl. Acad. Sci. USA 2021, 118, e2107210118. [Google Scholar] [CrossRef] [PubMed]
- Busiek, K.K.; Margolin, W. A role for FtsA in SPOR-independent localization of the essential Escherichia coli cell division protein FtsN. Mol. Microbiol. 2014, 92, 1212–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Hale, C.A.; Persons, L.; Phillips-Mason, P.J.; De Boer, P.A.J. Roles of the DedD Protein in Escherichia coli Cell Constriction. J. Bacteriol. 2019, 201, e00698-18. [Google Scholar] [CrossRef] [Green Version]
- Ryan Arends, S.J.; Williams, K.; Scott, R.J.; Rolong, S.; Popham, D.L.; Weiss, D.S. Discovery and characterization of three new Escherichia coli septal ring proteins that contain a SPOR domain: DamX, DedD, and RlpA. J. Bacteriol. 2010, 192, 242–255. [Google Scholar] [CrossRef] [Green Version]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Barreteau, H.; Kovač, A.; Boniface, A.; Sova, M.; Gobec, S.; Blanot, D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 2008, 32, 168–207. [Google Scholar] [CrossRef] [Green Version]
- Chung, B.C.; Zhao, J.; Gillespie, R.A.; Kwon, D.Y.; Guan, Z.; Hong, J.; Zhou, P.; Lee, S.Y. Crystal Structure of MraY, an Essential Membrane Enzyme for Bacterial Cell Wall Synthesis. Science 2013, 341, 1012. [Google Scholar] [CrossRef] [Green Version]
- White, C.L.; Kitich, A.; Gober, J.W. Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol. Microbiol. 2010, 76, 616–633. [Google Scholar] [CrossRef] [PubMed]
- Mengin-Lecreulx, D.; Texier, L.; Rousseau, M.; Van Heijenoort, J. The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine: N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis. J. Bacteriol. 1991, 173, 4625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Barrett, D.; Zhang, Y.; Kahne, D.; Sliz, P.; Walker, S. Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc. Natl. Acad. Sci. USA 2007, 104, 5348–5353. [Google Scholar] [CrossRef] [Green Version]
- Sung, M.T.; Lai, Y.T.; Huang, C.Y.; Chou, L.Y.; Shih, H.W.; Cheng, W.C.; Wong, C.H.; Ma, C. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc. Natl. Acad. Sci. USA 2009, 106, 8824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermassen, A.; Leroy, S.; Talon, R.; Provot, C.; Popowska, M.; Desvaux, M. Cell wall hydrolases in bacteria: Insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Front. Microbiol. 2019, 10, 331. [Google Scholar] [CrossRef] [PubMed]
- Uehara, T.; Bernhardt, T.G. More than just lysins: Peptidoglycan hydrolases tailor the cell wall. Curr. Opin. Microbiol. 2011, 14, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcorlo, M.; Dik, D.A.; De Benedetti, S.; Mahasenan, K.V.; Lee, M.; Domínguez-Gil, T.; Hesek, D.; Lastochkin, E.; López, D.; Boggess, B.; et al. Structural basis of denuded glycan recognition by SPOR domains in bacterial cell division. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Weaver, A.I.; Jiménez-Ruiz, V.; Tallavajhala, S.R.; Ransegnola, B.P.; Wong, K.Q.; Dörr, T. Lytic transglycosylases RlpA and MltC assist in Vibrio cholerae daughter cell separation. Mol. Microbiol. 2019, 112, 1100–1115. [Google Scholar] [CrossRef]
- Jorgenson, M.A.; Chen, Y.; Yahashiri, A.; Popham, D.L.; Weiss, D.S. The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol. Microbiol. 2014, 93, 113–128. [Google Scholar] [CrossRef] [Green Version]
- Sjodt, M.; Rohs, P.D.A.; Gilman, M.S.A.; Erlandson, S.C.; Zheng, S.; Green, A.G.; Brock, K.P.; Taguchi, A.; Kahne, D.; Walker, S.; et al. Structural coordination of polymerization and crosslinking by a SEDS–bPBP peptidoglycan synthase complex. Nat. Microbiol. 2020, 5, 813–820. [Google Scholar] [CrossRef]
- Fraipont, C.; Alexeeva, S.; Wolf, B.; Der Ploeg, R.; Schloesser, M.; Den Blaauwen, T.; Nguyen-Distèche, M. The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology 2011, 157, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjit, D.K.; Jorgenson, M.A.; Young, K.D. PBP1B Glycosyltransferase and Transpeptidase Activities Play Different Essential Roles during the De Novo Regeneration of Rod Morphology in Escherichia coli. J. Bacteriol. 2017, 199, e00612-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazos, M.; Vollmer, W. Regulation and function of class A Penicillin-binding proteins. Curr. Opin. Microbiol. 2021, 60, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Meiresonne, N.Y.; Bouhss, A.; den Blaauwen, T. FtsW activity and lipid II synthesis are required for recruitment of MurJ to midcell during cell division in Escherichia coli. Mol. Microbiol. 2018, 109, 855–884. [Google Scholar] [CrossRef] [PubMed]
- Mercer, K.L.N.; Weiss, D.S. The Escherichia coli Cell Division Protein FtsW Is Required To Recruit Its Cognate Transpeptidase, FtsI (PBP3), to the Division Site. J. Bacteriol. 2002, 184, 904. [Google Scholar] [CrossRef] [Green Version]
- Wissel, M.C.; Weiss, D.S. Genetic Analysis of the Cell Division Protein FtsI (PBP3): Amino Acid Substitutions That Impair Septal Localization of FtsI and Recruitment of FtsN. J. Bacteriol. 2004, 186, 490. [Google Scholar] [CrossRef] [Green Version]
- Reichmann, N.T.; Tavares, A.C.; Saraiva, B.M.; Jousselin, A.; Reed, P.; Pereira, A.R.; Monteiro, J.M.; Sobral, R.G.; VanNieuwenhze, M.S.; Fernandes, F.; et al. SEDS–bPBP pairs direct lateral and septal peptidoglycan synthesis in Staphylococcus aureus. Nat. Microbiol. 2019, 4, 1368–1377. [Google Scholar] [CrossRef]
- Vigouroux, A.; Cordier, B.; Aristov, A.; Alvarez, L.; Özbaykal, G.; Chaze, T.; Oldewurtel, E.R.; Matondo, M.; Cava, F.; Bikard, D.; et al. Class-A penicillin binding proteins do not contribute to cell shape but repair cellwall defects. eLife 2020, 9, e51998. [Google Scholar] [CrossRef]
- Egan, A.J.F.; Jean, N.L.; Koumoutsi, A.; Bougault, C.M.; Biboy, J.; Sassine, J.; Solovyova, A.S.; Breukink, E.; Typas, A.; Vollmer, W.; et al. Outer-membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B. Proc. Natl. Acad. Sci. USA 2014, 111, 8197–8202. [Google Scholar] [CrossRef] [Green Version]
- Caparrós, M.; Quintela, J.; de Pedro, M.A. Variability of peptidoglycan surface density in Escherichia coli. FEMS Microbiol. Lett. 1994, 121, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Verheul, J.; Lodge, A.; Yau, H.C.; Liu, X.; Typas, A.; Banzhaf, M.; Vollmer, W.; den Blaauwen, T. Midcell localization of PBP4 of Escherichia coli is essential for the timing of divisome assembly. bioRxiv 2020. [Google Scholar] [CrossRef]
- Vischer, N.O.E.; Verheul, J.; Postma, M.; van den Berg van Saparoea, B.; Galli, E.; Natale, P.; Gerdes, K.; Luirink, J.; Vollmer, W.; Vicente, M.; et al. Cell age dependent concentration of Escherichia coli divisome proteins analyzed with ImageJ and ObjectJ. Front. Microbiol. 2015, 6, 586. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, T.G.; De Boer, P.A.J. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol. Microbiol. 2003, 48, 1171–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogliano, J.; Pogliano, K.; Weiss, D.S.; Losick, R.; Beckwith, J. Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc. Natl. Acad. Sci. USA 1997, 94, 559–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastoret, S.; Fraipont, C.; Den Blaauwen, T.; Wolf, B.; Aarsman, M.E.G.; Piette, A.; Thomas, A.; Brasseur, R.; Nguyen-Distèche, M. Functional analysis of the cell division protein FtsW of Escherichia coli. J. Bacteriol. 2004, 186, 8370–8379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauvage, E.; Derouaux, A.; Fraipont, C.; Joris, M.; Herman, R.; Rocaboy, M.; Schloesser, M.; Dumas, J.; Kerff, F.; Nguyen-Distèche, M.; et al. Crystal Structure of Penicillin-Binding Protein 3 (PBP3) from Escherichia coli. PLoS ONE 2014, 9, 98042. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Boes, A.; Cui, Y.; Zhao, S.; Liao, Q.; Gong, H.; Breukinkid, E.; Lutkenhausid, J.; Terrakid, M.; Duid, S. Identification of the potential active site of the septal peptidoglycan polymerase FtsW. PLoS Genet. 2022, 18, e1009993. [Google Scholar] [CrossRef]
- Sjodt, M.; Brock, K.; Dobihal, G.; Rohs, P.D.A.; Green, A.G.; Hopf, T.A.; Meeske, A.J.; Srisuknimit, V.; Kahne, D.; Walker, S.; et al. Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. Nature 2018, 556, 118–121. [Google Scholar] [CrossRef]
- Li, Y.; Gong, H.; Zhan, R.; Ouyang, S.; Park, K.T.; Lutkenhaus, J.; Du, S. Genetic analysis of the septal peptidoglycan synthase FtsWI complex supports a conserved activation mechanism for SEDS-bPBP complexes. PLoS Genet. 2021, 17, e1009366. [Google Scholar] [CrossRef]
- Spratt, B.G.; Cromie, K.D. Penicillin-binding proteins of gram-negative bacteria. Rev. Infect. Dis. 1988, 10, 699–711. [Google Scholar] [CrossRef]
- Marrec-Fairley, M.; Piette, A.; Gallet, X.; Brasseur, R.; Hara, H.; Fraipont, C.; Ghuysen, J.M.; Nguyen-Distèche, M. Differential functionalities of amphiphilic peptide segments of the cell-septation penicillin-binding protein 3 of Escherichia coli. Mol. Microbiol. 2000, 37, 1019–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapp, C.S.; Pollack, R.M. Crystal packing effects on protein loops. Proteins Struct. Funct. Bioinform. 2005, 60, 103–109. [Google Scholar] [CrossRef]
- Pucci, M.J.; Thanassi, J.A.; Discotto, L.F.; Kessler, R.E.; Dougherty, T.J. Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J. Bacteriol. 1997, 179, 5632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.C.; Weiss, D.S.; Ghigo, J.M.; Beckwith, J. Septal Localization of FtsQ, an Essential Cell Division Protein in Escherichia coli. J. Bacteriol. 1999, 181, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robichon, C.; Karimova, G.; Beckwith, J.; Ladant, D. Role of leucine zipper motifs in association of the Escherichia coli cell division proteins FtsL and FtsB. J. Bacteriol. 2011, 193, 4988–4992. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, C.; Natale, P.; Cueto, L.; Vicente, M. The keepers of the ring: Regulators of FtsZ assembly. FEMS Microbiol. Rev. 2016, 40, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Szwedziak, P.; Wang, Q.; Freund, S.M.; Löwe, J. FtsA forms actin-like protofilaments. EMBO J. 2012, 31, 2249. [Google Scholar] [CrossRef] [Green Version]
- Shiomi, D.; Margolin, W. Dimerization or oligomerization of the actin-like FtsA protein enhances the integrity of the cytokinetic Z ring. Mol. Microbiol. 2007, 66, 1396–1415. [Google Scholar] [CrossRef] [Green Version]
- Krupka, M.; Rowlett, V.W.; Morado, D.; Vitrac, H.; Schoenemann, K.; Liu, J.; Margolin, W. Escherichia coli FtsA forms lipid-bound minirings that antagonize lateral interactions between FtsZ protofilaments. Nat. Commun. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Pichoff, S.; Lutkenhaus, J. Identification of a region of FtsA required for interaction with FtsZ. Mol. Microbiol. 2007, 64, 1129–1138. [Google Scholar] [CrossRef]
- Rico, A.I.; García-Ovalle, M.; Mingorance, J.; Vicente, M. Role of two essential domains of Escherichia coli FtsA in localization and progression of the division ring. Mol. Microbiol. 2004, 53, 1359–1371. [Google Scholar] [PubMed]
- Busiek, K.K.; Eraso, J.M.; Wang, Y.; Margolin, W. The Early Divisome Protein FtsA Interacts Directly through Its 1c Subdomain with the Cytoplasmic Domain of the Late Divisome Protein FtsN. J. Bacteriol. 2012, 194, 1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichoff, S.; Shen, B.; Sullivan, B.; Lutkenhaus, J. FtsA mutants impaired for self-interaction bypass ZipA suggesting a model in which FtsA’s self-interaction competes with its ability to recruit downstream division proteins. Mol. Microbiol. 2012, 83, 151–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Männik, J.; Pichoff, S.; Lutkenhaus, J.; Männik, J. Cell cycle-dependent recruitment of FtsN to the divisome in Escherichia coli. bioRxiv 2021. [Google Scholar] [CrossRef]
- Grenga, L.; Rizzo, A.; Paolozzi, L.; Ghelardini, P. Essential and non-essential interactions in interactome networks: The Escherichia coli division proteins FtsQ–FtsN interaction. Environ. Microbiol. 2013, 15, 3210–3217. [Google Scholar] [CrossRef] [PubMed]
- Ursinus, A.; Van Den Ent, F.; Brechtel, S.; De Pedro, M.; Höltje, J.V.; Löwe, J.; Vollmer, W. Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J. Bacteriol. 2004, 186, 6728–6737. [Google Scholar] [CrossRef] [Green Version]
- Addinall, S.G.; Cao, C.; Lutkenhaus, J. FtsN, a late recruit to the septum in Escherichia coli. Mol. Microbiol. 1997, 25, 303–309. [Google Scholar] [CrossRef]
- Duncan, T.R.; Yahashiri, A.; Ryan Arends, S.J.; Popham, D.L.; Weiss, D.S. Identification of SPOR domain amino acids important for septal localization, peptidoglycan binding, and a disulfide bond in the cell division protein FtsN. J. Bacteriol. 2013, 195, 5308–5315. [Google Scholar] [CrossRef] [Green Version]
- Berezuk, A.M.; Glavota, S.; Roach, E.J.; Goodyear, M.C.; Krieger, J.R.; Khursigara, C.M. Outer membrane lipoprotein RlpA is a novel periplasmic interaction partner of the cell division protein FtsK in Escherichia coli. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Perez, A.J.; Cesbron, Y.; Shaw, S.L.; Villicana, J.B.; Tsui, H.C.T.; Boersma, M.J.; Ye, Z.A.; Tovpeko, Y.; Dekker, C.; Holden, S.; et al. Movement dynamics of divisome proteins and PBP2x: FtsW in cells of Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 2019, 116, 3211–3220. [Google Scholar] [CrossRef] [Green Version]
- Bisson-Filho, A.W.; Hsu, Y.P.; Squyres, G.R.; Kuru, E.; Wu, F.; Jukes, C.; Sun, Y.; Dekker, C.; Holden, S.; VanNieuwenhze, M.S.; et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 2017, 355, 739–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Söderström, B.; Chan, H.; Shilling, P.J.; Skoglund, U.; Daley, D.O. Spatial separation of FtsZ and FtsN during cell division. Mol. Microbiol. 2018, 107, 387–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, M.J.; Yakhnina, A.A.; Bernhardt, T.G. NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in Escherichia coli. PLoS Genet. 2017, 13, e1006888. [Google Scholar] [CrossRef] [Green Version]
- Cook, J.; Baverstock, T.C.; McAndrew, M.B.L.; Stansfeld, P.J.; Roper, D.I.; Crow, A. Insights into bacterial cell division from a structure of EnvC bound to the FtsX periplasmic domain. Proc. Natl. Acad. Sci. USA 2020, 117, 28355–28365. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lyu, Z.; Miguel, A.; McQuillen, R.; Huang, K.C.; Xiao, J. GTPase activity–coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 2017, 355, 744. [Google Scholar] [CrossRef] [Green Version]
- Alexeeva, S.; Gadella, T.W.J.; Verheul, J.; Verhoeven, G.S.; Den Blaauwen, T. Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol. Microbiol. 2010, 77, 384–398. [Google Scholar] [CrossRef]
- Di Lallo, G.; Fagioli, M.; Barionovi, D.; Ghelardini, P.; Paolozzi, L. Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: Bacterial septosome differentiation. Microbiology 2003, 149, 3353–3359. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.; Yoon, H.J.; Jin, K.S.; Ryu, S.; Lee, H.H. Structural Insights into the FtsQ/FtsB/FtsL Complex, a Key Component of the Divisome. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nelson, S.E.D.; Vostrikov, V.V.; Gopinath, T.; Biochemistry, G.V.; Dicke, A.A.; Veglia, G.; Shin, Y.; Fu, R.; Qin, H.; Taylor, J.; et al. Characterization of the FtsBL Membrane Protein Complex by Single Molecule TIRF Microscopy. Biophys. J. 2017, 112, 501a. [Google Scholar] [CrossRef]
- Kureisaite-Ciziene, D.; Varadajan, A.; McLaughlin, S.H.; Glas, M.; Silva, A.M.; Luirink, R.; Mueller, C.; den Blaauwen, T.; Grossmann, T.N.; Luirink, J.; et al. Structural Analysis of the Interaction between the Bacterial Cell Division Proteins FtsQ and FtsB. mBio 2018, 9, e01346-18. [Google Scholar] [CrossRef] [Green Version]
- Goehring, N.W.; Gueiros-Filho, F.; Beckwith, J. Premature targeting of a cell division protein to midcell allows dissection of divisome assembly in Escherichia coli. Genes Dev. 2005, 19, 127–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamba, P.; Hamoen, L.W.; Daniel, R.A. Cooperative recruitment of FtsW to the division Site of Bacillus subtilis. Front. Microbiol. 2016, 7, 1808. [Google Scholar] [CrossRef]
- Sánchez-Pulido, L.; Devos, D.; Genevrois, S.; Vicente, M.; Valencia, A. POTRA: A conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. Trends Biochem. Sci. 2003, 28, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Van Den Ent, F.; Vinkenvleugel, T.M.F.; Ind, A.; West, P.; Veprintsev, D.; Nanninga, N.; Den Blaauwen, T.; Löwe, J. Structural and mutational analysis of the cell division protein FtsQ. Mol. Microbiol. 2008, 68, 110–123. [Google Scholar] [CrossRef] [PubMed]
- D’Ulisse, V.; Fagioli, M.; Ghelardini, P.; Paolozzi, L. Three functional subdomains of the Escherichia coli FtsQ protein are involved in its interaction with the other division proteins. Microbiology 2007, 153, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Wissel, M.C.; Wendt, J.L.; Mitchell, C.J.; Weiss, D.S. The transmembrane helix of the Escherichia coli division protein FtsI localizes to the septal ring. J. Bacteriol. 2005, 187, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Tsang, M.-J.; Bernhardt, T.G. A role for the FtsQLB complex in cytokinetic ring activation revealed by an FtsL allele that accelerates division. Mol. Microbiol. 2015, 95, 925–944. [Google Scholar] [CrossRef] [Green Version]
- Weiss, D.S.; Chen, J.C.; Ghigo, J.M.; Boyd, D.; Beckwith, J. Localization of FtsI (PBP3) to the Septal Ring Requires Its Membrane Anchor, the Z Ring, FtsA, FtsQ, and FtsL. J. Bacteriol. 1999, 181, 508. [Google Scholar] [CrossRef] [Green Version]
- Karimova, G.; Dautin, N.; Ladant, D. Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J. Bacteriol. 2005, 187, 2233–2243. [Google Scholar] [CrossRef] [Green Version]
- Condon, S.G.F.; Mahbuba, D.-A.; Armstrong, C.R.; Diaz-Vazquez, G.; Craven, S.J.; LaPointe, L.M.; Khadria, A.S.; Chadda, R.; Crooks, J.A.; Rangarajan, N.; et al. The FtsLB subcomplex of the bacterial divisome is a tetramer with an uninterrupted FtsL helix linking the transmembrane and periplasmic regions. J. Biol. Chem. 2018, 293, 1623. [Google Scholar] [CrossRef] [Green Version]
- Craven, S.J.; Condon, S.G.F.; Diaz-Vazquez, G.; Cui, Q.; Senes, A. The coiled-coil domain of E. coli FtsLB is a structurally detuned element critical for modulating its activation in bacterial cell division. J. Biol. Chem. 2022, 298, 101460. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.D.; Beckwith, J. Divisome under Construction: Distinct Domains of the Small Membrane Protein FtsB Are Necessary for Interaction with Multiple Cell Division Proteins. J. Bacteriol. 2009, 191, 2815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, M.D.; Akbay, E.A.; Boyd, D.; Beckwith, J. Multiple interaction domains in FtsL, a protein component of the widely conserved bacterial FtsLBQ cell division complex. J. Bacteriol. 2010, 192, 2757–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broome-Smith, J.K.; Hedge, P.J.; Spratt, B.G. Production of thiol-penicillin-binding protein 3 of Escherichia coli using a two primer method of site-directed mutagenesis. EMBO J. 1985, 4, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Meisel, U.; Höltje, J.V.; Vollmer, W. Overproduction of inactive variants of the murein synthase PBP1B causes lysis in Escherichia coli. J. Bacteriol. 2003, 185, 5342–5348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, A.J.F.; Vollmer, W. The stoichiometric divisome: A hypothesis. Front. Microbiol. 2015, 6, 455. [Google Scholar] [CrossRef] [Green Version]
- Bisicchia, P.; Steel, B.; Mariam Debela, M.H.; Löwe, J.; Sherratt, D. The N-Terminal Membrane-Spanning Domain of the Escherichia coli DNA Translocase FtsK Hexamerizes at Midcell. mBio 2013, 4, e00800-13. [Google Scholar] [CrossRef] [Green Version]
- Li, G.W.; Burkhardt, D.; Gross, C.; Weissman, J.S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 2014, 157, 624–635. [Google Scholar] [CrossRef] [Green Version]
- Gunasinghe, S.D.; Webb, C.T.; Elgass, K.D.; Hay, I.D.; Lithgow, T. Super-resolution imaging of protein secretion systems and the cell surface of gram-negative bacteria. Front. Cell. Infect. Microbiol. 2017, 7, 220. [Google Scholar] [CrossRef]
- Labischinski, H.; Goodell, E.W.; Goodell, A.; Hochberg, M.L. Direct proof of a “more-than-single-layered” peptidoglycan architecture of Escherichia coli W7: A neutron small-angle scattering study. J. Bacteriol. 1991, 173, 751. [Google Scholar] [CrossRef] [Green Version]
- Gumbart, J.C.; Beeby, M.; Jensen, G.J.; Roux, B. Escherichia coli Peptidoglycan Structure and Mechanics as Predicted by Atomic-Scale Simulations. PLoS Comput. Biol. 2014, 10, e1003475. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.D.; Mesnage, S.; Hobbs, J.K.; Foster, S.J. Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef]
Region | Residues Located in the PBP1b-Binding Pocket | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EFtsN | − | − | + | − | + | |||||||||||||
P | P | K | P | E | E | R | W | R | Y | I | K | E | L | E | S | R | Q | |
L | W | S | ||||||||||||||||
T | S | |||||||||||||||||
76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | |
FtsL AWI/CCD | I | E | W | R | N | L | I | L | E | E | N | A | L | G | D | H | S | R |
E | K | K | F | K | K | S | E | D | G | Y | ||||||||
V | ||||||||||||||||||
79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | |
i | i | i | i | i | i |
Possible Interaction Interface | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FtsQ | E 50 | D 51 | A 52 | Q 53 | R 54 | L 55 | P 56 | L 57 | S 58 | K 59 | L 60 | V 61 | L 62 | W 63 | G 64 | E 65 | R 66 | H 67 | T 68 | W 69 | R 70 |
FtsI | V 47 | I 48 | S 49 | P 50 | D 51 | M 52 | L 53 | V 54 | K 55 | E 56 | G 57 | D 58 | M 59 | R 60 | S 61 | L 62 | R 63 | V 64 | Q 65 | Q 66 | V 67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attaibi, M.; den Blaauwen, T. An Updated Model of the Divisome: Regulation of the Septal Peptidoglycan Synthesis Machinery by the Divisome. Int. J. Mol. Sci. 2022, 23, 3537. https://doi.org/10.3390/ijms23073537
Attaibi M, den Blaauwen T. An Updated Model of the Divisome: Regulation of the Septal Peptidoglycan Synthesis Machinery by the Divisome. International Journal of Molecular Sciences. 2022; 23(7):3537. https://doi.org/10.3390/ijms23073537
Chicago/Turabian StyleAttaibi, Mohamed, and Tanneke den Blaauwen. 2022. "An Updated Model of the Divisome: Regulation of the Septal Peptidoglycan Synthesis Machinery by the Divisome" International Journal of Molecular Sciences 23, no. 7: 3537. https://doi.org/10.3390/ijms23073537
APA StyleAttaibi, M., & den Blaauwen, T. (2022). An Updated Model of the Divisome: Regulation of the Septal Peptidoglycan Synthesis Machinery by the Divisome. International Journal of Molecular Sciences, 23(7), 3537. https://doi.org/10.3390/ijms23073537