In Vivo and In Vitro Cartilage Differentiation from Embryonic Epicardial Progenitor Cells
Abstract
:1. Introduction
2. Results
2.1. Chondrocyte Clusters Are Present in the Chick Heart
2.2. LOT Cartilage Derives from the (Pro)Epicardium In Vivo
2.3. Proepicardium-Derived Cells Differentiate into Chondrocytes In Vitro
3. Discussion
4. Materials and Methods
4.1. Avian Embryos
4.2. Quail to Chick Chimeras
4.3. PE Isolation and Culture
4.4. Samples Treatment
4.5. Histochemistry
4.6. Immunohistochemistry
4.7. Quantifications
4.8. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, B.A. Cartilago cordis in serpents. Anat. Rec. 1994, 240, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Sumida, H.; Akimoto, N.; Nakamura, H. Distribution of the neural crest cells in the heart of birds: A three dimensional analysis. Anat. Embryol. 1989, 180, 29–35. [Google Scholar] [CrossRef] [PubMed]
- López, D.; Durán, A.C.; Sans-Coma, V. Formation of cartilage in cardiac semilunar valves of chick and quail. Ann. Anat. Anat. Anz. 2000, 182, 349–359. [Google Scholar] [CrossRef]
- Duran, A.C.; Lopez, D.; Guerrero, A.; Mendoza, A.; Arque, J.M.; Sans-Coma, V. Formation of cartilaginous foci in the central fibrous body of the heart in Syrian hamsters (Mesocricetus auratus). J. Anat. 2004, 205, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.-J.; Wheatley, S.; Muscat, G.; Conway-Campbell, J.; Bowles, J.; Wright, E.; Bell, D.; Tam, P.P.; Cheah, K.S.; Koopman, P. SOX9 Binds DNA, Activates Transcription, and Coexpresses with Type II Collagen during Chondrogenesis in the Mouse. Dev. Biol. 1997, 183, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.; Trainor, P.A. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone 2020, 137, 115409. [Google Scholar] [CrossRef]
- Kirby, M.L.; Stewart, D.E. Neural crest origin of cardiac ganglion cells in the chick embryo: Identification and extirpation. Dev. Biol. 1983, 97, 433–443. [Google Scholar] [CrossRef]
- Kirby, M.L.; Waldo, K.L. Neural Crest and Cardiovascular Patterning. Circ. Res. 1995, 77, 211–215. [Google Scholar] [CrossRef]
- Jiang, X.; Rowitch, D.H.; Soriano, P.; McMahon, A.P.; Sucov, H.M. Fate of the mammalian cardiac neural crest. Development 2000, 127, 1607–1616. [Google Scholar] [CrossRef]
- Karunamuni, G.H.; Ma, P.; Gu, S.; Rollins, A.M.; Jenkins, M.W.; Watanabe, M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. Birth Defects Res. Part C 2014, 102, 227–250. [Google Scholar] [CrossRef] [Green Version]
- Wessels, A.; Pomares, J.M.P. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat. Rec. Part A 2004, 276A, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Smits, A.M.; Dronkers, E.; Goumans, M.-J. The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate. Pharmacol. Res. 2018, 127, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, A.; Aranega, A.E.; Franco, D. More than Just a Simple Cardiac Envelope; Cellular Contributions of the Epicardium. Front. Cell Dev. Biol. 2017, 5, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saremi, F.; Sanchez-Quintana, D.; Mori, S.; Muresian, H.; Spicer, D.E.; Hassani, C.; Anderson, R.H. Fibrous Skeleton of the Heart: Anatomic Overview and Evaluation of Pathologic Conditions with CT and MR Imaging. Radiographics 2017, 37, 1330–1351. [Google Scholar] [CrossRef]
- James, T.N. Anatomy of the sinus node, AV node and os cordis of the beef heart. Anat. Rec. 1965, 153, 361–371. [Google Scholar] [CrossRef]
- Ghonimi, W. Os cordis of The Mature Dromedary Camel Heart (Camelus dromedaries) with Special Emphasis to The Cartilago Cordis. J. Vet. Sci. Technol. 2014, 1, 3. [Google Scholar] [CrossRef]
- Daghash, S.; Farghali, H.A. The cardiac skeleton of the Egyptian Water buffalo (Bubalus bubalis). Int. J. Adv. Res. Biol. Sci. 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Frink, R.J.; Merrick, B. The sheep heart: Coronary and conduction system anatomy with special reference to the presence of an os cordis. Anat. Rec. 1974, 179, 189–199. [Google Scholar] [CrossRef]
- Egerbacher, M.; Weber, H.; Hauer, S. Bones in the heart skeleton of the otter (Lutra lutra). J. Anat. 2000, 196, 485–491. [Google Scholar] [CrossRef]
- Yamada, M.-O.; Takeuchi, H.; Yamamoto, K.; Takakusu, A. Hematopoiesis in Bovine Heart Bone. Cell Struct. Funct. 1977, 2, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Kelsall, M.A.; Visci, M. Aortic cartilage in the heart of Syrian hamsters. Anat. Rec. 1970, 166, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.A.; Greco, M.A. Cardiac myxoma with chondroid features: A light and electron microscopic study. Hum. Pathol. 1981, 12, 370–374. [Google Scholar] [CrossRef]
- Groom, D.A.; Starke, W.R. Cartilaginous Metaplasia in Calcific Aortic Valve Disease. Am. J. Clin. Pathol. 1990, 93, 809–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pomares, J.M.P.; De La Pompa, J.L. Signaling During Epicardium and Coronary Vessel Development. Circ. Res. 2011, 109, 1429–1442. [Google Scholar] [CrossRef] [Green Version]
- Guadix, J.A.; Carmona, R.; Muñoz-Chápuli, R.; Pérez-Pomares, J.M. In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells. Dev. Dyn. 2006, 235, 1014–1026. [Google Scholar] [CrossRef]
- Katz, T.C.; Singh, M.K.; Degenhardt, K.; Rivera-Feliciano, J.; Johnson, R.L.; Epstein, J.A.; Tabin, C.J. Distinct Compartments of the Proepicardial Organ Give Rise to Coronary Vascular Endothelial Cells. Dev. Cell 2012, 22, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Cano, E.; Carmona, R.; Ruiz-Villalba, A.; Rojas, A.; Chau, Y.-Y.; Wagner, K.D.; Wagner, N.; Hastie, N.D.; Muñoz-Chápuli, R.; Pérez-Pomares, J.M. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc. Natl. Acad. Sci. USA 2016, 113, 656–661. [Google Scholar] [CrossRef] [Green Version]
- Palmquist-Gomes, P.; Pérez-Pomares, J.M.; Guadix, J.A. Proepicardial Origin of Developing Coronary Vessels. Rev. Española De Cardiol. 2019, 72, 163. [Google Scholar] [CrossRef]
- Azambuja, A.P.; Portillo-Sánchez, V.; Rodrigues, M.V.; Omae, S.V.; Schechtman, D.; Strauss, B.E.; Costanzi-Strauss, E.; Krieger, J.E.; Perez-Pomares, J.M.; Xavier-Neto, J. Retinoic Acid and VEGF Delay Smooth Muscle Relative to Endothelial Differentiation to Coordinate Inner and Outer Coronary Vessel Wall Morphogenesis. Circ. Res. 2010, 107, 204–216. [Google Scholar] [CrossRef] [Green Version]
- Volz, K.S.; Jacobs, A.H.; Chen, H.; Poduri, A.; McKay, A.S.; Riordan, D.P.; Kofler, N.M.; Kitajewski, J.; Weissman, I.L.; Red-Horse, K. Pericytes are progenitors for coronary artery smooth muscle. eLife 2015, 4, e10036. [Google Scholar] [CrossRef]
- Zhou, B.; von Gise, A.; Ma, Q.; Hu, Y.W.; Pu, W.T. Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev. Biol. 2010, 338, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore-Morris, T.; Guimarães-Camboa, N.; Banerjee, I.; Zambon, A.C.; Kisseleva, T.; Velayoudon, A.; Stallcup, W.B.; Gu, Y.; Dalton, N.D.; Cedenilla, M.; et al. Resident fibroblast lineages mediate pressure overload—Induced cardiac fibrosis. J. Clin. Investig. 2014, 124, 2921–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Villalba, A.; Simón, A.M.; Pogontke, C.; Castillo, M.I.; Abizanda, G.; Pelacho, B.; Sanchez, R.; Segovia, J.C.; Prosper, F.; Pérez-Pomares, J.M. Interacting Resident Epicardium-Derived Fibroblasts and Recruited Bone Marrow Cells Form Myocardial Infarction Scar. J. Am. Coll. Cardiol. 2015, 65, 2057–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forte, E.; Skelly, D.A.; Chen, M.; Daigle, S.; Morelli, K.A.; Hon, O.; Philip, V.M.; Costa, M.W.; Rosenthal, N.A.; Furtado, M.B. Dynamic Interstitial Cell Response during Myocardial Infarction Predicts Resilience to Rupture in Genetically Diverse Mice. Cell Rep. 2020, 30, 3149–3163.e6. [Google Scholar] [CrossRef] [Green Version]
- Wessels, A.; Hoff, M.J.V.D.; Adamo, R.F.; Phelps, A.L.; Lockhart, M.M.; Sauls, K.; Briggs, L.E.; Norris, R.A.; van Wijk, B.; Perez-Pomares, J.M.; et al. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev. Biol. 2012, 366, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Cavallero, S.; Patterson, M.; Shen, H.; Xu, J.; Kumar, S.R.; Sucov, H.M. Adipogenesis and epicardial adipose tissue: A novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation. Proc. Natl. Acad. Sci. USA 2015, 112, 2070–2075. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.-L.; Martin, J.C.; Sun, Y.; Cui, L.; Wang, L.; Ouyang, K.; Yang, L.; Bu, L.; Liang, X.; Zhang, X.; et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008, 454, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Smart, N.; Bollini, S.; Dubé, K.N.; Vieira, J.M.; Zhou, B.; Davidson, S.; Yellon, D.; Riegler, J.; Price, A.N.; Lythgoe, M.F.; et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature 2011, 474, 640–644. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Ma, Q.; Rajagopal, S.; Wu, S.M.; Domian, I.; Rivera-Feliciano, J.; Jiang, D.; Von Gise, A.; Ikeda, S.; Chien, K.R.; et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008, 454, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Buermans, H.P.J.; van Wijk, B.; Hulsker, M.A.; Smit, N.C.H.; den Dunnen, J.T.; van Ommen, G.B.; Moorman, A.F.; van den Hoff, M.J.; Hoen, P.A.C. ’t. Comprehensive Gene-Expression Survey Identifies Wif1 as a Modulator of Cardiomyocyte Differentiation. PLoS ONE 2010, 5, e15504. [Google Scholar] [CrossRef] [Green Version]
- Dueñas, A.; Expósito, A.; Muñoz, M.D.M.; De Manuel, M.J.; Cámara-Morales, A.; Serrano-Osorio, F.; García-Padilla, C.; Torres, F.H.; Domínguez, J.N.; Aránega, A.; et al. MiR-195 enhances cardiomyogenic differentiation of the proepicardium/septum transversum by Smurf1 and Foxp1 modulation. Sci. Rep. 2020, 10, 9334. [Google Scholar] [CrossRef]
- Kruithof, B.P.T.; van Wijk, B.; Somi, S.; Kruithof-de Julio, M.; Pérez Pomares, J.M.; Weesie, F.; Wessels, A.; Moorman, A.F.M.; van den Hoff, M.J.B. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev. Biol. 2006, 295, 507–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomanek, R.J.; Ishii, Y.; Holifield, J.S.; Sjogren, C.L.; Hansen, H.K.; Mikawa, T. VEGF Family Members Regulate Myocardial Tubulogenesis and Coronary Artery Formation in the Embryo. Circ. Res. 2006, 98, 947–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowska-Steifer, E.; Niderla-Bielińska, J.; Ciszek, B.; Kujawa, M.; Bartkowiak, M.; Flaht-Zabost, A.; Klosinska, D.; Ratajska, A. Cells with hematopoietic potential reside within mouse proepicardium. Histochem. Cell Biol. 2018, 149, 577–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultheiss, T.M.; Burch, J.B.; Lassar, A.B. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 1997, 11, 451–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero, J.A.; Lorda-Diez, C.I.; Hurlé, J.M. Regenerative medicine and connective tissues: Cartilage versus tendon. J. Tissue Eng. Regen. Med. 2011, 6, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, S.J.; Stanley, R.L.; Evans, D.J.R. Developmental stages of the Japanese quail. J. Anat. 2010, 216, 3–15. [Google Scholar] [CrossRef]
- Hamburger, V.; Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 1951, 88, 49–92. [Google Scholar] [CrossRef]
- Palmquist-Gomes, P.; Pérez-Pomares, J.M.; Guadix, J.A. Cellular identities in an unusual presentation of cyclopia in a chick embryo. J. Exp. Zool. Part B Mol. Dev. Evol. 2019, 332, 179–186. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmquist-Gomes, P.; Marín-Sedeño, E.; Ruiz-Villalba, A.; Rico-Llanos, G.A.; Pérez-Pomares, J.M.; Guadix, J.A. In Vivo and In Vitro Cartilage Differentiation from Embryonic Epicardial Progenitor Cells. Int. J. Mol. Sci. 2022, 23, 3614. https://doi.org/10.3390/ijms23073614
Palmquist-Gomes P, Marín-Sedeño E, Ruiz-Villalba A, Rico-Llanos GA, Pérez-Pomares JM, Guadix JA. In Vivo and In Vitro Cartilage Differentiation from Embryonic Epicardial Progenitor Cells. International Journal of Molecular Sciences. 2022; 23(7):3614. https://doi.org/10.3390/ijms23073614
Chicago/Turabian StylePalmquist-Gomes, Paul, Ernesto Marín-Sedeño, Adrián Ruiz-Villalba, Gustavo Adolfo Rico-Llanos, José María Pérez-Pomares, and Juan Antonio Guadix. 2022. "In Vivo and In Vitro Cartilage Differentiation from Embryonic Epicardial Progenitor Cells" International Journal of Molecular Sciences 23, no. 7: 3614. https://doi.org/10.3390/ijms23073614
APA StylePalmquist-Gomes, P., Marín-Sedeño, E., Ruiz-Villalba, A., Rico-Llanos, G. A., Pérez-Pomares, J. M., & Guadix, J. A. (2022). In Vivo and In Vitro Cartilage Differentiation from Embryonic Epicardial Progenitor Cells. International Journal of Molecular Sciences, 23(7), 3614. https://doi.org/10.3390/ijms23073614