Involvement of E. coli 6S RNA in Oxidative Stress Response
Abstract
:1. Introduction
2. Results
2.1. The Oxidative Stress Phenotype of the 6S RNA-Deficient Strain
2.2. Investigation of E. coli Strains with Complementation of the ssrS Gene
2.3. Lack of 6S RNA Is Lethal for E. coli in the Presence of Elevated H2O2 Concentrations
2.4. Investigation of 6S RNA Expression under Oxidative Stress Conditions
2.5. Screening for Oxidative Stress Response Genes Affected by 6S RNA
2.6. Comparative Proteomic Analysis of E.coli 6S RNA Knockout and WT Cells under Oxidative Stress Conditions
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Plasmids
4.2. Growth Curve Measurements in Flasks
4.3. Growth Curve Measurements in Plates with Manual Monitoring of Optical Density
4.4. Estimation of Cell Survival on Agar Plates
4.5. Inhibition Zone Assays
4.6. Gel Eletrophoresis and Northern Blotting
4.7. Reverse Transcription and qRT-PCR
4.8. Comparative Proteome Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Browning, D.F.; Busby, S.J. Local and global regulation of transcription initiation in bacteria. Nat. Rev. Microbiol. 2016, 14, 638–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishihama, A. Building a complete image of genome regulation in the model organism Escherichia coli. J. Gen. Appl. Microbiol. 2018, 63, 311–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergkessel, M. Bacterial transcription during growth arrest. Transcription 2021, 12, 232–249. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y. What bacteria want. Environ. Microbiol. 2018, 20, 4221–4229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonilla, C.Y. Generally stressed out bacteria: Environmental stress response mechanisms in Gram-positive bacteria. Integr. Comp. Biol. 2020, 60, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Bruhn-Olszewska, B.; Szczepaniak, P.; Matuszewska, E.; Kuczyńska-Wiśnik, D.; Stojowska-Swędrzyńska, K.; Moruno Algara, M.; Laskowska, E. Physiologically distinct subpopulations formed in Escherichia coli cultures in response to heat shock. Microbiol. Res. 2018, 209, 33–42. [Google Scholar] [CrossRef]
- Browning, D.F.; Butala, M.; Busby, S.J.W. Bacterial transcription ractors: Regulation by pick “N” mix. J. Mol. Biol. 2019, 431, 4067–4077. [Google Scholar] [CrossRef]
- Holmqvist, E.; Wagner, E.G.H. Impact of bacterial sRNAs in stress responses. Biochem. Soc. Trans. 2017, 45, 1203–1212. [Google Scholar] [CrossRef] [Green Version]
- Gottesman, S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. J. Biol. Chem. 2019, 294, 11685–11700. [Google Scholar]
- Sedlyarova, N.; Shamovsky, I.; Bharati, B.K.; Epshtein, V.; Chen, J.; Gottesman, S.; Schroeder, R.; Nudler, E. sRNA-mediated control of transcription termination in E. coli. Cell 2016, 167, 111–121.e13. [Google Scholar] [CrossRef] [Green Version]
- Raina, M.; King, A.; Bianco, C.; Vanderpool, C.K. Dual-Function RNAs. Microbiol. Spectr. 2018, 6, 5. [Google Scholar] [CrossRef]
- Kim, W.; Lee, Y. Mechanism for coordinate regulation of rpoS by sRNA-sRNA interaction in Escherichia coli. RNA Biol. 2020, 17, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Hör, J.; Matera, G.; Vogel, J.; Gottesman, S.; Storz, G. Trans-acting small RNAs and their effects on gene expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Negrete, A.; Shiloach, J. Improving E. coli growth performance by manipulating small RNA expression. Microb. Cell Fact. 2017, 16, 198. [Google Scholar] [CrossRef] [Green Version]
- Wassarman, K.M. 6S RNA, a global regulator of transcription. Microbiol. Spectr. 2018, 6, 355–367. [Google Scholar] [CrossRef]
- Burenina, O.Y.; Elkina, D.A.; Hartmann, R.K.; Oretskaya, T.S.; Kubareva, E.A. Small noncoding 6S RNAs of bacteria. Biochemistry 2015, 80, 1429–1446. [Google Scholar] [CrossRef]
- Neusser, T.; Polen, T.; Geissen, R.; Wagner, R. Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery. BMC Genom. 2010, 11, 165. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, A.T.; Klocko, A.D.; Liu, X.; Wassarman, K.M. Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of σ70. Mol. Microbiol. 2008, 67, 1242–1256. [Google Scholar] [CrossRef]
- Hoch, P.G.; Burenina, O.Y.; Weber, M.H.; Elkina, D.A.; Nesterchuk, M.V.; Sergiev, P.V.; Hartmann, R.K.; Kubareva, E.A. Phenotypic characterization and complementation analysis of Bacillus subtilis 6S RNA single and double deletion mutants. Biochimie 2015, 117, 87–99. [Google Scholar] [CrossRef]
- Wehner, S.; Damm, K.; Hartmann, R.K.; Marz, M. Dissemination of 6S RNA among bacteria. RNA Biol. 2014, 11, 1467–1478. [Google Scholar]
- Trotochaud, A.E.; Wassarman, K.M. 6S RNA function enhances longterm cell survival. J. Bacteriol. 2004, 186, 4978–4985. [Google Scholar] [PubMed] [Green Version]
- Cavanagh, A.T.; Chandrangsu, P.; Wassarman, K.M. 6S RNA regulation of relA alters ppGpp levels in early stationary phase. Microbiology 2010, 156, 3791–3800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trotochaud, A.E.; Wassarman, K.M. 6S RNA regulation of pspF transcription leads to altered cell survival at high pH. J. Bacteriol. 2006, 188, 3936–3943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burenina, O.Y.; Hoch, P.G.; Damm, K.; Salas, M.; Zatsepin, T.S.; Lechner, M.; Oretskaya, T.S.; Kubareva, E.A.; Hartmann, R.K. Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs–Commonalities and differences. RNA 2014, 20, 348–359. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, A.T.; Wassarman, K.M. 6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis. J. Bacteriol. 2013, 195, 2079–2086. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-Ostertag, I.J.; Cavanagh, A.T.; Wassarman, K.M. Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli. Nucleic Acids Res. 2013, 41, 7501–7511. [Google Scholar] [CrossRef] [Green Version]
- Thüring, M.; Ganapathy, S.; Schlüter, M.; Lechner, M.; Hartmann, R.K. 6S-2 RNA deletion in the undomesticated B. subtilis strain NCIB 3610 causes a biofilm derepression phenotype. RNA Biol. 2021, 18, 79–92. [Google Scholar] [CrossRef]
- Elkina, D.; Weber, L.; Lechner, M.; Burenina, O.; Weisert, A.; Kubareva, E.; Hartmann, R.K.; Klug, G. 6S RNA in Rhodobacter sphaeroides: 6S RNA and pRNA transcript levels peak in late exponential phase and gene deletion causes a high salt stress phenotype. RNA Biol. 2017, 14, 1627–1637. [Google Scholar] [CrossRef] [Green Version]
- Heilmann, B.; Hakkila, K.; Georg, J.; Tyystjärvi, T.; Hess, W.R.; Axmann, I.M.; Dienst, D. 6S RNA plays a role in recovery from nitrogen depletion in Synechocystis sp. PCC 6803. BMC Microbiol. 2017, 17, 229. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Sang, Y.; Qin, R.; Cui, Z.; Yao, Y.F. 6S RNA is involved in acid resistance and invasion of epithelial cells in Salmonella enterica serovar Typhimurium. Future Microbiol. 2017, 12, 1045–1057. [Google Scholar] [CrossRef]
- Faucher, S.P.; Friedlander, G.; Livny, J.; Margalit, H.; Shuman, H.A. Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc. Natl. Acad. Sci. USA 2010, 107, 7533–7538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drecktrah, D.; Hall, L.S.; Brinkworth, A.J.; Comstock, J.R.; Wassarman, K.M.; Samuels, D.S. Characterization of 6S RNA in the Lyme disease spirochete. Mol. Microbiol. 2020, 113, 399–417. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.M.; Zagorski, J.; Wang, Z.; Fournier, M.J. Escherichia coli 6S RNA gene is part of a dual function transcription unit. J. Bacteriol. 1985, 161, 1162–1170. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, B.M.; Grünweller, A.; Weber, M.H.; Hartmann, R.K. Northern blot detection of endogenous small RNAs (approximately 14 nt) in bacterial total RNA extracts. Nucleic Acids Res. 2010, 38, e147. [Google Scholar] [CrossRef] [Green Version]
- Michán, C.; Manchado, M.; Dorado, G.; Pueyo, C. In vivo transcription of the Escherichia coli oxyR regulon as a function of growth phase and in response to oxidative stress. J. Bacteriol. 1999, 181, 2759–2764. [Google Scholar] [CrossRef] [Green Version]
- Chiang, S.M.; Schellhorn, H.E. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch. Biochem. Biophys. 2012, 525, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Seixas, A.F.; Quendera, A.P.; Sousa, J.P.; Silva, A.F.Q.; Arraiano, C.M.; Andrade, J.M. Bacterial response to oxidative stress and RNA oxidation. Front. Genet. 2022, 12, 821535. [Google Scholar] [CrossRef]
- Altuvia, S.; Weinstein-Fischer, D.; Zhang, A.; Postow, L.; Storz, G. A small, stable RNA induced by oxidative stress: Role as a pleiotropic regulator and antimutator. Cell 1997, 90, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Basak, S.; Jiang, R. Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP). PLoS ONE 2012, 7, e51179. [Google Scholar] [CrossRef]
- Partridge, J.D.; Poole, R.K.; Green, J. The Escherichia coli yhjA gene, encoding a predicted cytochrome c peroxidase, is regulated by FNR and OxyR. Microbiology 2007, 153, 1499–1509. [Google Scholar] [CrossRef] [Green Version]
- Arenas, F.A.; Díaz, W.A.; Leal, C.A.; Pérez-Donoso, J.M.; Imlay, J.A.; Vásquez, C.C. The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions. Biochem. Biophys. Res. Commun. 2010, 398, 690–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, L.M.; Poole, L.B. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J. Biol. Chem. 2003, 278, 9203–9211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faraj Tabrizi, P.; Wennige, S.; Berneburg, M.; Maisch, T. Susceptibility of sodA- and sodB-deficient Escherichia coli mutant towards antimicrobial photodynamic inactivation via the type I-mechanism of action. Photochem. Photobiol. Sci. 2018, 17, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Lesniak, J.; Barton, W.A.; Nikolov, D.B. Structural and functional features of the Escherichia coli hydroperoxide resistance protein OsmC. Protein Sci. 2003, 12, 2838–2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, A.B.; Glinsky, G.V.; Eisenstark, A. Role of rpoS regulon in resistance to oxidative stress and near-UV radiation in delta oxyR suppressor mutants of Escherichia coli. Free Radic. Biol. Med. 1997, 23, 627–636. [Google Scholar] [CrossRef]
- Liu, Y.; Bauer, S.C.; Imlay, J.A. The YaaA protein of the Escherichia coli OxyR regulon lessens hydrogen peroxide toxicity by diminishing the amount of intracellular unincorporated iron. J. Bacteriol. 2011, 193, 2186–2196. [Google Scholar] [CrossRef] [Green Version]
- Nachin, L.; Nannmark, U.; Nyström, T. Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. J. Bacteriol. 2005, 187, 6265–6272. [Google Scholar] [CrossRef] [Green Version]
- Rocha, D.J.; Santos, C.S.; Pacheco, L.G. Bacterial reference genes for gene expression studies by RT-qPCR: Survey and analysis. Antonie Van Leeuwenhoek 2015, 108, 685–693. [Google Scholar] [CrossRef]
- Benjamin, J.-A.M.; Desnoyers, G.; Morissette, A.; Salvail, H.; Massé, E. Dealing with oxidative stress and iron starvation in microorganisms: An overview. Can. J. Physiol. Pharmacol. 2010, 88, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Hews, C.L.; Cho, T.; Rowley, G.; Raivio, T.L. Maintaining integrity under stress: Envelope stress response regulation of pathogenesis in Gram-negative bacteria. Front. Cell. Infect. Microbiol. 2019, 9, 313. [Google Scholar] [CrossRef] [Green Version]
- Imlay, J.A. Where in the world do bacteria experience oxidative stress? Environ. Microbiol. 2019, 21, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Yun, B.; King, M.; Draz, M.S.; Kline, T.; Rodriguez-Palacios, A. Oxidative reactivity across kingdoms in the gut: Host immunity, stressed microbiota and oxidized foods. Free Radic. Biol. Med. 2021, 178, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Aslund, F.; Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 1998, 279, 1718–1721. [Google Scholar] [CrossRef] [PubMed]
- Manchado, M.; Michán, C.; Pueyo, C. Hydrogen peroxide activates the SoxRS regulon in vivo. J. Bacteriol. 2000, 182, 6842–6844. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.W.; Kim, D.; Szubin, R.; Palsson, B.O. Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. Cell Rep. 2015, 12, 1289–1299. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rojas, A.; Kim, J.J.; Johnston, P.R.; Makarova, O.; Eravci, M.; Weise, C.; Hengge, R.; Rolff, J. Non-lethal exposure to H2O2 boosts bacterial survival and evolvability against oxidative stress. PLoS Genet. 2020, 16, e1008649. [Google Scholar] [CrossRef] [Green Version]
- Varghese, S.; Wu, A.; Park, S.; Imlay, K.R.; Imlay, J.A. Submicromolar hydrogen peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli. Mol. Microbiol. 2007, 64, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Shang, F.; Shen, J.; Xu, J.; Chen, X.; Ni, J.; Yu, L.; Xue, T. LsrR, the effector of AI-2 quorum sensing, is vital for the H2O2 stress response in mammary pathogenic Escherichia coli. Vet. Res. 2021, 52, 127. [Google Scholar] [CrossRef]
- Fröhlich, K.S.; Gottesman, S. Small regulatory RNAs in the enterobacterial response to envelope damage and oxidative stress. Microbiol. Spectr. 2018, 6, 211–228. [Google Scholar] [CrossRef]
- Delihas, N. Discovery and characterization of the first non-coding RNA that regulates gene expression, micF RNA: A historical perspective. World J. Biol. Chem. 2015, 6, 272–280. [Google Scholar] [CrossRef]
- Bessaiah, H.; Pokharel, P.; Loucif, H.; Kulbay, M.; Sasseville, C.; Habouria, H.; Houle, S.; Bernier, J.; Massé, É.; Van Grevenynghe, J.; et al. The RyfA small RNA regulates oxidative and osmotic stress responses and virulence in uropathogenic Escherichia coli. PLoS Pathog. 2021, 17, e1009617. [Google Scholar] [CrossRef]
- Dip, P.V.; Kamariah, N.; Nartey, W.; Beushausen, C.; Kostyuchenko, V.A.; Ng, T.S.; Lok, S.M.; Saw, W.G.; Eisenhaber, F.; Eisenhaber, B.; et al. Key roles of the Escherichia coli AhpC C-terminus in assembly and catalysis of alkylhydroperoxide reductase, an enzyme essential for the alleviation of oxidative stress. Biochim. Biophys. Acta 2014, 1837, 1932–1943. [Google Scholar] [CrossRef] [PubMed]
- Baez, A.; Shiloach, J. Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase. Microb. Cell Fact. 2013, 12, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.P.; Paxman, J.J.; Scanlon, M.J.; Heras, B. Targeting bacterial Dsb proteins for the development of anti-virulence agents. Molecules 2016, 21, 811. [Google Scholar] [CrossRef] [Green Version]
- Gößringer, M.; Lechner, M.; Brillante, N.; Weber, C.; Rossmanith, W.; Hartmann, R.K. Protein-only RNase P function in Escherichia coli: Viability, processing defects and differences between PRORP isoenzymes. Nucleic Acids Res. 2017, 45, 7441–7454. [Google Scholar] [CrossRef] [Green Version]
- Burenina, O.Y.; Elkina, D.A.; Migur, A.Y.; Oretskaya, T.S.; Evguenieva-Hackenberg, E.; Hartmann, R.K.; Kubareva, E.A. Similarities and differences between 6S RNAs from Bradyrhizobium japonicum and Sinorhizobium meliloti. J. Microbiol. 2020, 58, 945–956. [Google Scholar] [CrossRef]
- Damm, K.; Bach, S.; Müller, K.M.; Klug, G.; Burenina, O.Y.; Kubareva, E.A.; Grünweller, A.; Hartmann, R.K. Impact of RNA isolation protocols on RNA detection by Northern blotting. Methods Mol. Biol. 2015, 1296, 29–38. [Google Scholar] [CrossRef]
Gene | Name | Function | References |
---|---|---|---|
Major regulators of oxidative stress response | |||
oxyR | H2O2-inducible genes activator | activator of H2O2-inducible genes (including katG, ahpC, oxyS) | [36,37] |
oxyS | non-coding RNA OxyS | regulates expression of a number of genes by interaction with mRNAs via antisense mechanism | [38] |
soxS | regulatory protein SoxS | RNAP-binding protein, activator of superoxide response | [37] |
crp | cAMP-activated global transcriptional regulator | activates transcription by RNAP recruitment | [39] |
Proteins involved in degradation of H2O2 and/or other ROS * | |||
katG | catalase-peroxidase | degradation of H2O2 | [37] |
katE | catalase HPII | degradation of H2O2 | [37] |
yhjA | cytochrome c peroxidase Ccp | degradation of H2O2 | [40] |
btuE | thioredoxin/glutathione peroxidase BtuE | non-specific peroxidase, degradation of H2O2 | [41] |
ahpC | alkyl hydroperoxide reductase subunit C | degradation of H2O2 and organic hydroperoxides | [37] |
tpx | thiol peroxidase | degradation of H2O2 and organic hydroperoxides | [42] |
sodA | superoxide dismutase [Mn] | degradation of superoxide anion radicals | [43] |
osmC | peroxiredoxin OsmC | degradation of organic hydroperoxides | [44] |
General stress proteins | |||
rpoS | RNA polymerase sigma factor RpoS | stationary phase and general stress response gene activation | [45] |
yaaA | peroxide stress resistance protein YaaA | protects DNA from oxidative damage | [46] |
uspE | universal stress protein E | general response to different environmental stresses including anti-oxidative function, essential for cellular adhesion, agglutination, cell motility and swimming | [47] |
uspF | universal stress protein F | ||
uspG | universal stress protein UP12 | ||
Control proteins | [48] | ||
rpoD | RNA polymerase sigma factor RpoD, σ70 | primary sigma factor during exponential growth | |
gyrA | DNA gyrase subunit A | type II topoisomerase, DNA supercoiling | |
guaD | guanine deaminase | guanine degradation | |
gapA | glyceraldehyde-3-phosphate dehydrogenase A | glycolysis |
Strain or Plasmid | Genotype 1 | Reference or Source |
---|---|---|
p177_rnpB | pACYC177 rnpB amp (Ampr) | [65] |
p177_ssrS | pACYC177 ssrS amp (Ampr) | This work |
p177_empty | pACYC177 (Ampr) (Kanr) | Lab stock |
WT (MG1655) | E. coli K-12 MG1655 F- λ- ilvG- rfb-50 rph-1 | Lab stock |
ΔssrS | MG1655 ssrS::kan (Kanr) | [34] |
ΔssrS+S | MG1655 ssrS::kan (Kanr) + p177_ssrS(Ampr) | This work |
WT+S | MG1655 + p177_ssrS (Ampr) | This work |
ΔssrS+0 | MG1655 ssrS::kan (Kanr) + p177_empty (Ampr) | This work |
WT+0 | MG1655 + p177_ empty (Ampr) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burenina, O.Y.; Elkina, D.A.; Ovcharenko, A.; Bannikova, V.A.; Schlüter, M.A.C.; Oretskaya, T.S.; Hartmann, R.K.; Kubareva, E.A. Involvement of E. coli 6S RNA in Oxidative Stress Response. Int. J. Mol. Sci. 2022, 23, 3653. https://doi.org/10.3390/ijms23073653
Burenina OY, Elkina DA, Ovcharenko A, Bannikova VA, Schlüter MAC, Oretskaya TS, Hartmann RK, Kubareva EA. Involvement of E. coli 6S RNA in Oxidative Stress Response. International Journal of Molecular Sciences. 2022; 23(7):3653. https://doi.org/10.3390/ijms23073653
Chicago/Turabian StyleBurenina, Olga Y., Daria A. Elkina, Anna Ovcharenko, Valeria A. Bannikova, M. Amri C. Schlüter, Tatiana S. Oretskaya, Roland K. Hartmann, and Elena A. Kubareva. 2022. "Involvement of E. coli 6S RNA in Oxidative Stress Response" International Journal of Molecular Sciences 23, no. 7: 3653. https://doi.org/10.3390/ijms23073653
APA StyleBurenina, O. Y., Elkina, D. A., Ovcharenko, A., Bannikova, V. A., Schlüter, M. A. C., Oretskaya, T. S., Hartmann, R. K., & Kubareva, E. A. (2022). Involvement of E. coli 6S RNA in Oxidative Stress Response. International Journal of Molecular Sciences, 23(7), 3653. https://doi.org/10.3390/ijms23073653