A Comparison of Network-Based Methods for Drug Repurposing along with an Application to Human Complex Diseases
Abstract
:1. Introduction
2. Results
2.1. In Silico Efficacy: Two Case Studies
2.1.1. Malignant Breast Neoplasm
- (i)
- The drug-treated human breast adenocarcinoma cell line (i.e., MCF7) is available from the Connectivity Map (CMap) database as drug signature;
- (ii)
- The differentially expressed genes for breast invasive carcinoma dataset are available from The Cancer Genome Atlas (TCGA) repository as disease signature (see Materials and Methods).
2.1.2. Prostate Neoplasm
- (i)
- The drug-treated human prostate adenocarcinoma cell line (i.e., PC3) from CMap database as drug signature;
- (ii)
- The differentially expressed genes for prostate adenocarcinoma dataset available from TCGA repository as disease signatures (see Section 4).
3. Discussion
3.1. Metric-Specific Off-Label Drugs: Mean
3.2. Metric-Specific Off-Label Drugs: Median
3.3. Metric-Specific Off-Label Drugs: Mode
4. Materials and Methods
4.1. Human Protein–Protein Interactome
4.2. Disease-Gene Associations
4.3. Drug-Target Interactions and Drug Medical Indications
4.4. The Network-Based Proximity Measure
4.5. Gene Set Enrichment Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, A.R.; Weiss, S.T.; Glass, K.; Sharma, A. Network Medicine in the Age of Biomedical Big Data. Front. Genet. 2019, 10, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabási, A.-L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 2011, 12, 56–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldera, M.; Buphamalai, P.; Müller, F.; Menche, J. Interactome-based approaches to human disease. Curr. Opin. Syst. Biol. 2017, 3, 88–94. [Google Scholar] [CrossRef]
- Silverman, E.K.; Schmidt, H.H.H.W.; Anastasiadou, E.; Altucci, L.; Angelini, M.; Basimon, L.; Balligand, J.-L.; Benincasa, G.; Capasso, G.; Conte, F.; et al. Molecular networks in Network Medicine: Development and applications. WIREs Syst. Biol. Med. 2020, 12, e1489. [Google Scholar] [CrossRef]
- Paci, P.; Fiscon, G.; Conte, F.; Wang, R.-S.; Farina, L.; Loscalzo, J. Gene co-expression in the interactome: Moving from correlation toward causation via an integrated approach to disease module discovery. NPJ Syst. Biol. Appl. 2021, 7, 3. [Google Scholar] [CrossRef]
- Paci, P.; Fiscon, G.; Conte, F.; Licursi, V.; Morrow, J.; Hersh, C.; Cho, M.; Castaldi, P.; Glass, K.; Silverman, E.K. Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Sci. Rep. 2020, 10, 3361. [Google Scholar] [CrossRef] [Green Version]
- Panebianco, V.; Pecoraro, M.; Fiscon, G.; Paci, P.; Farina, L.; Catalano, C. Prostate cancer screening research can benefit from network medicine: An emerging awareness. NPJ Syst. Biol. Appl. 2020, 6, 13. [Google Scholar] [CrossRef]
- Conte, F.; Fiscon, G.; Licursi, V.; Bizzarri, D.; D’Antò, T.; Farina, L.; Paci, P. A paradigm shift in medicine: A comprehensive review of network-based approaches. Biochim. Biophys. Acta BBA-Gene Regul. Mech. 2020, 1863, 194416. [Google Scholar] [CrossRef]
- Tieri, P.; Farina, L.; Petti, M. Network Inference and Reconstruction in Bioinformatics. In Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M., Nakai, K., Eds.; Academic Press: Oxford, UK, 2019; pp. 805–813. ISBN 978-0-12-811432-2. [Google Scholar]
- Fiscon, G.; Pegoraro, S.; Conte, F.; Manfioletti, G.; Paci, P. Gene network analysis using SWIM reveals interplay between the transcription factor-encoding genes HMGA1, FOXM1, and MYBL2 in triple-negative breast cancer. FEBS Lett. 2021, 595, 1569–1586. [Google Scholar] [CrossRef]
- Falcone, R.; Conte, F.; Fiscon, G.; Pecce, V.; Sponziello, M.; Durante, C.; Farina, L.; Filetti, S.; Paci, P.; Verrienti, A. BRAFV600E-mutant cancers display a variety of networks by SWIM analysis: Prediction of vemurafenib clinical response. Endocrine 2019, 64, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Paci, P.; Colombo, T.; Fiscon, G.; Gurtner, A.; Pavesi, G.; Farina, L. SWIM: A computational tool to unveiling crucial nodes in complex biological networks. Sci. Rep. 2017, 7, 44797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiscon, G.; Conte, F.; Licursi, V.; Nasi, S.; Paci, P. Computational identification of specific genes for glioblastoma stem-like cells identity. Sci. Rep. 2018, 8, 7769. [Google Scholar] [CrossRef] [PubMed]
- Fiscon, G.; Conte, F.; Paci, P. SWIM tool application to expression data of glioblastoma stem-like cell lines, corresponding primary tumors and conventional glioma cell lines. BMC Bioinform. 2018, 19, 436. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, A.M.; Conte, F.; Pane, K.; Fiscon, G.; Mirabelli, P.; Baselice, S.; Giannatiempo, R.; Messina, F.; Franzese, M.; Salvatore, M.; et al. The New Paradigm of Network Medicine to Analyze Breast Cancer Phenotypes. Int. J. Mol. Sci. 2020, 21, 6690. [Google Scholar] [CrossRef]
- Cheng, F.; Desai, R.J.; Handy, D.E.; Wang, R.; Schneeweiss, S.; Barabásiet, A.-L.; Loscalzoal, J. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat. Commun. 2018, 9, 2691. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Liu, G.; Zhou, W.; Huang, J.; Tang, Y. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference. PLoS Comput. Biol. 2012, 8, e1002503. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell. Discov. 2020, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Zhang, P.; Wang, Q.; Zhou, Y.; Chiang, C.-W.; Chen, R.; Zhang, B.; Li, B.; Lewis, S.J.; Pieper, A.A.; et al. Network-based Translation of GWAS Findings to Pathobiology and Drug Repurposing for Alzheimer’s Disease. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Gysi, D.M.; Valle, Í.D.; Zitnik, M. Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19. 2020. Available online: https://arxiv.org/abs/2004.07229 (accessed on 17 May 2020).
- Fiscon, G.; Paci, P. SAveRUNNER: An R-based tool for drug repurposing. BMC Bioinform. 2021, 22, 150. [Google Scholar] [CrossRef]
- Fiscon, G.; Conte, F.; Farina, L.; Paci, P. SAveRUNNER: A network-based algorithm for drug repurposing and its application to COVID-19. PLOS Comput. Biol. 2021, 17, e1008686. [Google Scholar] [CrossRef] [PubMed]
- Fiscon, G.; Conte, F.; Amadio, S.; Volonté, C.; Paci, P. Drug repurposing: A network-based approach to Amyotrophic Lateral Sclerosis. Neurotherapuetics 2021, 18, 1678–1691. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, F.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids. Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids. Res. 2018, 46, D1074. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Li, F.; Zhou, Y.; Zhang, Y.; Wang, Z.; Zhang, R.; Zhu, J.; Ren, Y.; Tan, Y.; et al. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids. Res. 2020, 48, D1031–D1041. [Google Scholar] [CrossRef] [Green Version]
- Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.-P.; Subramanian, A.; Ross, K.M.; et al. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science 2006, 313, 1929–1935. [Google Scholar] [CrossRef] [Green Version]
- Sirota, M.; Dudley, J.T.; Kim, J.; Chiang, A.P.; Morgan, A.A.; Sweet-Cordero, A.; Sage, J.; Butte, A.J. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med. 2011, 3, 96ra77. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version]
- Kucuk, C.; Akcan, A.; Akyýldýz, H.; Akgun, H.; Muhtaroglu, S.; Sozuer, E. Effects of amrinone in an experimental model of hepatic ischemia-reperfusion injury. J. Surg. Res. 2009, 151, 74–79. [Google Scholar] [CrossRef]
- Orii, R.; Sugawara, Y.; Hayashida, M.; Yamada, Y.; Chang, K.; Takayama, T.; Makuuchi, M.; Hanaoka, K. Effects of amrinone on ischaemia-reperfusion injury in cirrhotic patients undergoing hepatectomy: A comparative study with prostaglandin E1. Br. J. Anaesth 2000, 85, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Arzoxifene. Available online: https://go.drugbank.com/drugs/DB06249 (accessed on 14 April 2021).
- Jackson, L.R.; Cheung, K.L.; Buzdar, A.U.; Robertson, J.F.R. Arzoxifene: The evidence for its development in the management of breast cancer. Core. Evid. 2007, 2, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Mocellin, S.; Pilati, P.; Briarava, M.; Nitti, D. Breast Cancer Chemoprevention: A Network Meta-Analysis of Randomized Controlled Trials. JNCI J. Natl. Cancer. Inst 2016, 108, djv318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ersvaer, E.; Kittang, A.O.; Hampson, P.; Sand, K.; Gjertsen, B.T.; Lord, J.M.; Bruserud, Y. The Protein Kinase C Agonist PEP005 (Ingenol 3-Angelate) in the Treatment of Human Cancer: A Balance between Efficacy and Toxicity. Toxins 2010, 2, 174–194. [Google Scholar] [CrossRef] [PubMed]
- Mansuy, M.; Nikkels-Tassoudji, N.; Arrese, J.E.; Rorive, A.; Nikkels, A.F. Recurrent In Situ Melanoma Successfully Treated with Ingenol Mebutate. Dermatol. Ther. 2014, 4, 131–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methyltestosterone. Available online: https://go.drugbank.com/drugs/DB06710 (accessed on 14 April 2021).
- Anderson, G.L.; Chlebowski, R.T.; Aragaki, A.K.; Kuller, P.L.H.; Manson, P.J.E.; Gass, P.M.; Bluhm, E.; Connelly, P.S.; Hubbell, P.F.A.; Lane, P.D.; et al. Conjugated equine oestrogen and breast cancer incidence and mortality in postmenopausal women with hysterectomy: Extended follow-up of the Women’s Health Initiative randomised placebo-controlled trial. Lancet Oncol. 2012, 13, 476–486. [Google Scholar] [CrossRef] [Green Version]
- Keating, G.M.; Goa, K.L. Nesiritide: A review of its use in acute decompensated heart failure. Drugs 2003, 63, 47–70. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.M.; Starling, R.C.; Hernandez, A.F.; Armstrong, P.W.; Dickstein, K.; Hasselblad, V.; Heizer, G.M.; Komajda, M.; Massie, B.M.; McMurray, J.J.V.; et al. Effect of Nesiritide in Patients with Acute Decompensated Heart Failure. N. Engl. J. Med. 2011, 365, 32–43. [Google Scholar] [CrossRef] [Green Version]
- El Hadi, H.; Di Vincenzo, A.; Vettor, R.; Rossato, M. Relationship between Heart Disease and Liver Disease: A Two-Way Street. Cells 2020, 9, 567. [Google Scholar] [CrossRef] [Green Version]
- Zarmouh, N.O.; Messeha, S.S.; Mateeva, N.; Gangapuram, M.; Flowers, K.; Eyunni, S.V.K.; Zhang, W.; Redda, K.K.; Soliman, K.F.A. The Antiproliferative Effects of Flavonoid MAO Inhibitors on Prostate Cancer Cells. Molecules 2020, 25, 2257. [Google Scholar] [CrossRef]
- Coderch, C.; Morreale, A.; Gago, F. Tubulin-based structure-affinity relationships for antimitotic Vinca alkaloids. Anticancer. Agents. Med. Chem. 2012, 12, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Koontz, M.Z.; Horning, S.J.; Balise, R.; Greenberg, P.L.; Rosenberg, S.A.; Hoppe, R.T.; Advani, R.H. Risk of therapy-related secondary leukemia in Hodgkin lymphoma: The Stanford University experience over three generations of clinical trials. J. Clin. Oncol. J. Am. Soc. Clin. Oncol. 2013, 31, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Vinblastine. Available online: https://go.drugbank.com/drugs/DB00570 (accessed on 16 April 2021).
- Kyrtopoulos, S.A.; Anderson, L.M.; Chhabra, S.K.; Souliots, V.L.; Pletsa, V.; Valavanis, C.; Georgladis, P. DNA adducts and the mechanism of carcinogenesis and cytotoxicity of methylating agents of environmental and clinical significance. Cancer Detect. Prev. 1997, 21, 391–405. [Google Scholar] [PubMed]
- Procarbazine. Available online: https://go.drugbank.com/drugs/DB01168 (accessed on 14 April 2021).
- Triamterene. Available online: https://go.drugbank.com/drugs/DB00384 (accessed on 14 April 2021).
- Hong, E. Hypokalemia and Psychosis: A Forgotten Association. Am. J. Psychiatry Resid J. 2016, 11, 6–7. [Google Scholar] [CrossRef]
- Lee, H.T.; Choi, M.R.; Doh, M.S.; Jung, K.H.; Chai, Y.G. Effects of the monoamine oxidase inhibitors pargyline and tranylcypromine on cellular proliferation in human prostate cancer cells. Oncol. Rep. 2013, 30, 1587–1592. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, K.; Czerwinska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. Pozn. 2015, 19, A68–A77. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017, 171, 1437–1452. [Google Scholar] [CrossRef]
Receptor/Classification | Luminal A | Luminal B-Like | Luminal B-Like | Luminal B | HER2-Enriched | Triple Negative |
ER | positive | positive | positive | positive | negative | negative |
PR | positive | positive | negative | negative | negative | negative |
HER2 | negative | positive | positive | negative | positive | negative |
number of pz | 38 | 15 | 2 | 7 | 4 | 11 |
less aggressive (81%) | more aggressive (19%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiscon, G.; Conte, F.; Farina, L.; Paci, P. A Comparison of Network-Based Methods for Drug Repurposing along with an Application to Human Complex Diseases. Int. J. Mol. Sci. 2022, 23, 3703. https://doi.org/10.3390/ijms23073703
Fiscon G, Conte F, Farina L, Paci P. A Comparison of Network-Based Methods for Drug Repurposing along with an Application to Human Complex Diseases. International Journal of Molecular Sciences. 2022; 23(7):3703. https://doi.org/10.3390/ijms23073703
Chicago/Turabian StyleFiscon, Giulia, Federica Conte, Lorenzo Farina, and Paola Paci. 2022. "A Comparison of Network-Based Methods for Drug Repurposing along with an Application to Human Complex Diseases" International Journal of Molecular Sciences 23, no. 7: 3703. https://doi.org/10.3390/ijms23073703
APA StyleFiscon, G., Conte, F., Farina, L., & Paci, P. (2022). A Comparison of Network-Based Methods for Drug Repurposing along with an Application to Human Complex Diseases. International Journal of Molecular Sciences, 23(7), 3703. https://doi.org/10.3390/ijms23073703