Versatile and Easily Designable Polyester-Laser Toner Interfaces for Site-Oriented Adsorption of Antibodies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological and Optical Properties of the PET@Toner Surfaces
2.2. The Influence of Toner-Based Substrates on Efficiency and Kinetics of Antibody Binding
2.3. Studies on the UV-Induced Ozone Oxidation as a Dry Approach to Toner Hydrophilization
2.4. Fine Adjustment of Wettability and Antibody Binding Capacity of PET Foil by Toner Masking
2.5. Assessment of the pH of the Medium and the Substrate Type on the Mechanism and Efficiency of Antibody Coating
3. Materials and Methods
3.1. Reagents and Solutions
3.2. Preparation of PET and PET@toner Substrates and Antibody Coating
3.2.1. Fabrication of Various PET-Based Substrates and Microwell Arrays for Immunoreactions
3.2.2. Passive Immobilization of Antibodies
3.3. Characterization
3.3.1. Antibody Immunolabeling and Indirect Sandwich Assay
3.3.2. Optical and Microscopic Analysis
3.3.3. Contact Angle Determination
3.3.4. Surface ζ-Potential Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALP | alkaline phosphatase |
a-mIgG | anti-mouse IgG antibody |
a-rIgG | anti-rabbit IgG antibody |
BCIP/NBT | 5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium |
BSA | bovine serum albumin |
CRP | C-reactive protein |
ELISA | enzyme-linked immunosorbent assay |
gIgG | immunoglobulin G from goat |
mAb a-CRP | anti-CRP, monoclonal antibody |
mIgG | immunoglobulin G from mouse |
n-Bu | n-butyl |
pAb a-CRP | anti-CRP, polyclonal antibody |
PDMS | polydimethylsiloxane |
PET@toner | poly(ethylene terephtalate) sheet covered with cured laser toner |
PNNP | p-nitrophenyl phosphate |
PS | polystyrene |
PTFE | poly(tetrafluoroethylene) |
SZP | surface ζ-potential |
References
- Ng, A.H.C.; Uddayasankar, U.; Wheeler, A.R. Immunoassays in microfluidic systems. Anal. Bioanal. Chem. 2010, 397, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.; Han, J.; Choi, J.W.; Ahn, C.H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57. [Google Scholar] [CrossRef]
- Soares, R.R.G.; Santos, D.R.; Pinto, I.F.; Azevedo, A.M.; Aires-Barros, M.R.; Chu, V.; Conde, J.P. Multiplexed microfluidic fluorescence immunoassay with photodiode array signal acquisition for sub-minute and point-of-need detection of mycotoxins. Lab Chip 2018, 18, 1569–1580. [Google Scholar] [CrossRef] [PubMed]
- Phurimsak, C.; Tarn, M.D.; Peyman, S.A.; Greenman, J.; Pamme, N. On-chip determination of c-reactive protein using magnetic particles in continuous flow. Anal. Chem. 2014, 86, 10552–10559. [Google Scholar] [CrossRef]
- Moreno-Guzmán, M.; Eguílaz, M.; Campuzano, S.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Disposable immunosensor for cortisol using functionalized magnetic particles. Analyst 2010, 135, 1926–1933. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, X.; Ping, J.; Ying, Y. Recent advances in water-driven triboelectric nanogenerators based on hydrophobic interfaces. Nano Energy 2021, 90, 106592. [Google Scholar] [CrossRef]
- Piccin, E.; Ferraro, D.; Sartori, P.; Chiarello, E.; Pierno, M.; Mistura, G. Generation of water-in-oil and oil-in-water microdroplets in polyester-toner microfluidic devices. Sens. Actuators B Chem. 2014, 196, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Fujisaki, S.; Shibata, H.; Yamada, K.; Suzuki, K.; Citterio, D. Printed low-cost microfluidic analytical devices based on a transparent substrate. Analyst 2019, 144, 2746–2754. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, W.; He, L.; Tian, J. Printed two-dimensional micro-ring film plate for spot assays and its functionalization by immobilized enzymes. Sens. Actuators B Chem. 2015, 219, 268–275. [Google Scholar] [CrossRef]
- Kim, D.; Herr, A.E. Protein immobilization techniques for microfluidic assays. Biomicrofluidics 2013, 7, 041501. [Google Scholar] [CrossRef] [Green Version]
- Gervais, L.; Delamarche, E. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 2009, 9, 3330–3337. [Google Scholar] [CrossRef]
- Nelson, M.D.; Ramkumar, N.; Gale, B.K. Flexible, transparent, sub-100 μm microfluidic channels with fused deposition modeling 3D-printed thermoplastic polyurethane. J. Micromech. Microeng. 2019, 29, 095010. [Google Scholar] [CrossRef]
- Barbosa, A.I.; Barreto, A.S.; Reis, N.M. Transparent, Hydrophobic Fluorinated Ethylene Propylene Offers Rapid, Robust, and Irreversible Passive Adsorption of Diagnostic Antibodies for Sensitive Optical Biosensing. ACS Appl. Bio Mater. 2019, 2, 2780–2790. [Google Scholar] [CrossRef]
- Dignan, L.M.; Woolf, M.S.; Ross, J.A.; Baehr, C.; Holstege, C.P.; Pravetoni, M.; Landers, J.P. A Membrane-Modulated Centrifugal Microdevice for Enzyme-Linked Immunosorbent Assay-Based Detection of Illicit and Misused Drugs. Anal. Chem. 2021, 93, 16213–16221. [Google Scholar] [CrossRef]
- Thompson, B.L.; Ouyang, Y.; Duarte, G.R.M.; Carrilho, E.; Krauss, S.T.; Landers, J.P. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Nat. Protoc. 2015, 10, 875–886. [Google Scholar] [CrossRef]
- Birch, C.; DuVall, J.A.; Le Roux, D.; Thompson, B.L.; Tsuei, A.C.; Li, J.; Nelson, D.A.; Mills, D.L.; Landers, J.P.; Root, B.E. Rapid fabrication of electrophoretic microfluidic devices from polyester, adhesives and gold leaf. Micromachines 2017, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Moreira, N.S.; Chagas, C.L.S.; Oliveira, K.A.; Duarte-Junior, G.F.; de Souza, F.R.; Santhiago, M.; Garcia, C.D.; Kubota, L.T.; Coltro, W.K.T. Fabrication of microwell plates and microfluidic devices in polyester films using a cutting printer. Anal. Chim. Acta 2020, 1119, 1–10. [Google Scholar] [CrossRef]
- Arora, A.; Simone, G.; Salieb-Beugelaar, G.B.; Kim, J.T.; Manz, A. Latest developments in micro total analysis systems. Anal. Chem. 2010, 82, 4830–4847. [Google Scholar] [CrossRef]
- Patabadige, D.E.W.; Jia, S.; Sibbitts, J.; Sadeghi, J.; Sellens, K.; Culbertson, C.T. Micro Total Analysis Systems: Fundamental Advances and Applications. Anal. Chem. 2016, 88, 320–338. [Google Scholar] [CrossRef]
- Cunha, M.L.; Da Silva, S.S.; Stracke, M.C.; Zanette, D.L.; Aoki, M.N.; Blanes, L. Sample Preparation for Lab-on-a-Chip Systems in Molecular Diagnosis: A Review. Anal. Chem. 2022, 94, 41–58. [Google Scholar] [CrossRef]
- Nguyen, T.; Chidambara, V.A.; Andreasen, S.Z.; Golabi, M.; Huynh, V.N.; Linh, Q.T.; Bang, D.D.; Wolff, A. Point-of-care devices for pathogen detections: The three most important factors to realise towards commercialization. TrAC Trends Anal. Chem. 2020, 131, 116004. [Google Scholar] [CrossRef]
- Tsao, C.W. Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines 2016, 7, 225. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Sharma, A. Microfluidics: Recent Advances Toward Lab-on-Chip Applications in Bioanalysis. Adv. Eng. Mater. 2022, 24, 2100738. [Google Scholar] [CrossRef]
- Shin, J.H.; Choi, S. Open-source and do-it-yourself microfluidics. Sens. Actuators B Chem. 2021, 347, 130624. [Google Scholar] [CrossRef]
- Oliveira, K.A.; De Oliveira, C.R.; Da Silveira, L.A.; Tomazelli Coltro, W.K. Laser-printing of toner-based 96-microzone plates for immunoassays. Analyst 2013, 138, 1114–1121. [Google Scholar] [CrossRef]
- Ouyang, Y.; Wang, S.; Li, J.; Riehl, P.S.; Begley, M.; Landers, J.P. Rapid patterning of “tunable” hydrophobic valves on disposable microchips by laser printer lithography. Lab Chip 2013, 13, 1762–1771. [Google Scholar] [CrossRef]
- Gabriel, E.F.M.; Lucca, B.G.; Duarte, G.R.M.; Coltro, W.K.T. Recent advances in toner-based microfluidic devices for bioanalytical applications. Anal. Methods 2018, 10, 2952–2962. [Google Scholar] [CrossRef]
- Do Lago, C.L.; Torres da Silva, H.D.; Neves, C.A.; Alves Brito-Neto, J.G.; Fracassi da Silva, J.A. A dry process for production of microfluidic devices based on the lamination of laser-printed polyester films. Anal. Chem. 2003, 75, 3853–3858. [Google Scholar] [CrossRef]
- Coltro, W.K.T.; Lunte, S.M.; Carrilho, E. Comparison of the analytical performance of electrophoresis microchannels fabricated in PDMS, glass, and polyester-toner. Electrophoresis 2008, 29, 4928–4937. [Google Scholar] [CrossRef] [Green Version]
- Duarte, G.R.M.; Price, C.W.; Augustine, B.H.; Carrilho, E.; Landers, J.P. Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip. Anal. Chem. 2011, 83, 5182–5189. [Google Scholar] [CrossRef]
- Jackson, K.R.; Borba, J.C.; Meija, M.; Mills, D.L.; Haverstick, D.M.; Olson, K.E.; Aranda, R.; Garner, G.T.; Carrilho, E.; Landers, J.P. DNA purification using dynamic solid-phase extraction on a rotationally-driven polyethylene-terephthalate microdevice. Anal. Chim. Acta 2016, 937, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, K.A.; Damasceno, D.; De Oliveira, C.R.; Da Silveira, L.A.; De Oliveira, A.E.; Coltro, W.K.T. Dengue diagnosis on laser printed microzones using smartphone-based detection and multivariate image analysis. Anal. Methods 2016, 8, 6506–6511. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, J.F.; Della Pelle, F.; Rojas, D.; Compagnone, D.; Escarpa, A. Xurography-Enabled Thermally Transferred Carbon Nanomaterial-Based Electrochemical Sensors on Polyethylene Terephthalate-Ethylene Vinyl Acetate Films. Anal. Chem. 2020, 92, 13565–13572. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.R.; Kim, J.Y.; Choi, K.; Chung, D.S. On-chip immunoassay of a cardiac biomarker in serum using a polyester-toner microchip. Talanta 2013, 109, 20–25. [Google Scholar] [CrossRef]
- Thompson, B.L.; Gilbert, R.J.; Mejia, M.; Shukla, N.; Haverstick, D.M.; Garner, G.T.; Landers, J.P. Hematocrit analysis through the use of an inexpensive centrifugal polyester-toner device with finger-to-chip blood loading capability. Anal. Chim. Acta 2016, 924, 1–8. [Google Scholar] [CrossRef]
- Huang, X.; Wu, N.; Liu, W.; Shang, Y.; Liu, H.; He, Y.; Meng, H.; Dong, Y. Construction of electrochemical immunosensors based on redox hydrogels for ultrasensitive detection of carcinoembryonic antigens. New J. Chem. 2021, 45, 10880–10889. [Google Scholar] [CrossRef]
- Miyazaki, C.M.; Mishra, R.; Kinahan, D.J.; Ferreira, M.; Ducrée, J. Polyethylene imine/graphene oxide layer-by-layer surface functionalization for significantly improved limit of detection and binding kinetics of immunoassays on acrylate surfaces. Colloids Surf. B Biointerfaces 2017, 158, 167–174. [Google Scholar] [CrossRef]
- Miyazaki, C.M.; Camilo, D.E.; Shimizu, F.M.; Ferreira, M. Improved antibody loading on self-assembled graphene oxide films for using in surface plasmon resonance immunosensors. Appl. Surf. Sci. 2019, 490, 502–509. [Google Scholar] [CrossRef]
- Sastri, B.; Sankaran, V. Media/Toner Interactions in Laser Printing. In Proceedings of the International Conference on Digital Printing Technologies, New Orleans, LA, USA, 28 September–3 October 2003; pp. 619–622. [Google Scholar]
- Butler, J.E.; Navarro, P.; Sun, J. Adsorption-induced antigenic changes and their significance in ELISA and immunological disorders. Immunol. Investig. 1997, 26, 39–54. [Google Scholar] [CrossRef]
- Torcello-Gómez, A.; Santander-Ortega, M.J.; Peula-García, J.M.; Maldonado-Valderrama, J.; Gálvez-Ruiz, M.J.; Ortega-Vinuesa, J.L.; Martín-Rodríguez, A. Adsorption of antibody onto Pluronic F68-covered nanoparticles: Link with surface properties. Soft Matter 2011, 7, 8450–8461. [Google Scholar] [CrossRef]
- Wiseman, M.E.; Frank, C.W. Antibody adsorption and orientation on hydrophobic surfaces. Langmuir 2012, 28, 1765–1774. [Google Scholar] [CrossRef]
- Kanthe, A.; Ilott, A.; Krause, M.; Zheng, S.; Li, J.; Bu, W.; Bera, M.K.; Lin, B.; Maldarelli, C.; Tu, R.S. No ordinary proteins: Adsorption and molecular orientation of monoclonal antibodies. Sci. Adv. 2021, 7, eabg2873. [Google Scholar] [CrossRef]
- Słoma, M.; Wróblewski, G.; Janczak, D.; Jakubowska, M. Transparent electrodes with nanotubes and graphene for printed optoelectronic applications. J. Nanomater. 2014, 2014, 17. [Google Scholar] [CrossRef]
- Dybowska-Sarapuk, L.; Sosnowicz, W.; Krzeminski, J.; Grzeczkowicz, A.; Granicka, L.H.; Kotela, A.; Jakubowska, M. Printed graphene layer as a base for cell electrostimulation—Preliminary results. Int. J. Mol. Sci. 2020, 21, 7865. [Google Scholar] [CrossRef]
- Sethuraman, A.; Han, M.; Kane, R.S.; Belfort, G. Effect of surface wettability on the adhesion of proteins. Langmuir 2004, 20, 7779–7788. [Google Scholar] [CrossRef]
- Barbosa, A.I.; Edwards, A.D.; Reis, N.M. Antibody Surface Coverage Drives Matrix Interference in Microfluidic Capillary Immunoassays. ACS Sens. 2021, 6, 2682–2690. [Google Scholar] [CrossRef]
- Berdichevsky, Y.; Khandurina, J.; Guttman, A.; Lo, Y.-H. UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sens. Actuators B Chem. 2004, 97, 402–408. [Google Scholar] [CrossRef]
- Ruben, B.; Elisa, M.; Leandro, L.; Victor, M.; Gloria, G.; Marina, S.; Mian, S.K.; Pandiyan, R.; Nadhira, L. Oxygen plasma treatments of polydimethylsiloxane surfaces: Effect of the atomic oxygen on capillary flow in the microchannels. Micro Nano Lett. 2017, 12, 754–757. [Google Scholar] [CrossRef]
- Trantidou, T.; Elani, Y.; Parsons, E.; Ces, O. Hydrophilic surface modification of pdms for droplet microfluidics using a simple, quick, and robust method via pva deposition. Microsyst. Nanoeng. 2017, 3, 16091. [Google Scholar] [CrossRef]
- Włoch, J.; Terzyk, A.P.; Wiśniewski, M.; Kowalczyk, P. Nanoscale Water Contact Angle on Polytetrafluoroethylene Surfaces Characterized by Molecular Dynamics-Atomic Force Microscopy Imaging. Langmuir 2018, 34, 4526–4534. [Google Scholar] [CrossRef]
- Tarakanova, Y.N.; Dmitriev, A.D.; Massino, Y.S.; Pechelulko, A.A.; Segal, O.L.; Skoblov, Y.O.; Ulanova, T.I.; Lavrov, V.F.; Dmitriev, D.A. Effect of pH of adsorption buffers on the number and antigen-binding activity of monoclonal antibodies immobilized on the surface of polystyrene microplates. Appl. Biochem. Microbiol. 2015, 51, 462–469. [Google Scholar] [CrossRef]
- Yang, D.; Kroe-Barrett, R.; Singh, S.; Laue, T. IgG Charge: Practical and Biological Implications. Antibodies 2019, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Vörös, J. The density and refractive index of adsorbing protein layers. Biophys. J. 2004, 87, 553–561. [Google Scholar] [CrossRef] [Green Version]
- Corbett, J.C.W.; McNeil-Watson, F.; Jack, R.O.; Howarth, M. Measuring surface zeta potential using phase analysis light scattering in a simple dip cell arrangement. Colloids Surf. A Physicochem. Eng. Asp. 2012, 396, 169–176. [Google Scholar] [CrossRef]
Substrate | Antibody Coating | SZP (mV) | Ab Surface Density (Normalized) (%) | ||
---|---|---|---|---|---|
pH 9.6 | pH 5.0 | pH 9.6 | pH 5.0 | ||
PET | - | −48.5 ± 4.9 | −17.7 ± 1.6 | - | - |
+ | −63.7 ± 6.9 | −25.6 ± 1.5 | 100.0 ± 4.7 | 99.2 ± 4.1 | |
PET@toner | - | −41.8 ± 3.1 | −22.5 ± 1.7 | - | - |
+ | −58.8 ± 2.4 | −27.0 ± 3.2 | 97.3 ± 3.9 | 82.8 ± 4.8 | |
PS | - | −43.8 ± 3.2 | −29.5 ± 1.7 | - | - |
+ | −28.6 ± 2.2 | −33.6 ± 1.9 | 67.4 ± 3.5 | 66.4 ± 7.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozd, M.; Ivanova, P.; Tokarska, K.; Żukowski, K.; Kramarska, A.; Nowiński, A.; Kobylska, E.; Pietrzak, M.; Brzózka, Z.; Malinowska, E. Versatile and Easily Designable Polyester-Laser Toner Interfaces for Site-Oriented Adsorption of Antibodies. Int. J. Mol. Sci. 2022, 23, 3771. https://doi.org/10.3390/ijms23073771
Drozd M, Ivanova P, Tokarska K, Żukowski K, Kramarska A, Nowiński A, Kobylska E, Pietrzak M, Brzózka Z, Malinowska E. Versatile and Easily Designable Polyester-Laser Toner Interfaces for Site-Oriented Adsorption of Antibodies. International Journal of Molecular Sciences. 2022; 23(7):3771. https://doi.org/10.3390/ijms23073771
Chicago/Turabian StyleDrozd, Marcin, Polina Ivanova, Katarzyna Tokarska, Kamil Żukowski, Aleksandra Kramarska, Adam Nowiński, Ewa Kobylska, Mariusz Pietrzak, Zbigniew Brzózka, and Elżbieta Malinowska. 2022. "Versatile and Easily Designable Polyester-Laser Toner Interfaces for Site-Oriented Adsorption of Antibodies" International Journal of Molecular Sciences 23, no. 7: 3771. https://doi.org/10.3390/ijms23073771
APA StyleDrozd, M., Ivanova, P., Tokarska, K., Żukowski, K., Kramarska, A., Nowiński, A., Kobylska, E., Pietrzak, M., Brzózka, Z., & Malinowska, E. (2022). Versatile and Easily Designable Polyester-Laser Toner Interfaces for Site-Oriented Adsorption of Antibodies. International Journal of Molecular Sciences, 23(7), 3771. https://doi.org/10.3390/ijms23073771