Foliar Silicon Spray before Summer Cutting Propagation Enhances Resistance to Powdery Mildew of Daughter Plants
Abstract
:1. Introduction
2. Results
2.1. Growth and Powdery Mildew Severity
2.2. Scanning Electron Microscopy (SEM) and Chlorophyll Fluorescence Characteristics
2.3. Contents of Micro- and Macro-Nutrients
2.4. Hydrogen Peroxide (H2O2) and Lipid Peroxidation
2.5. Proline Content
2.6. Soluble Sugars and Soluble Proteins
2.7. Antioxidant Enzyme Activities
2.8. Quantitative Real-Time RT-PCR
3. Discussion
3.1. Growth and Disease Severity
3.2. Analysis of the Biochemical Mechanisms
3.3. Gene Expressions
3.4. Application Prospects of Si in Plant Stress
4. Materials and Methods
4.1. Plant Materials and Estimation of Powdery Mildew Severity
4.2. Silicon Treatments
4.3. Measurement of Growth Parameters
4.4. Scanning Electron Microscopy (SEM)
4.5. Determination of Contents of Macro- and Micro-Nutrients
4.6. Determination of Hydrogen Peroxide (H2O2) and Lipid Peroxidation
4.7. Determination of Contents of Proline and Solulel Sugar
4.8. Analysis of Contents of Total Soluble Proteins and Activities of Antioxidant Enzymes Activities
4.9. Quantitative Real-Time PCR Analysis
4.10. Data Collection and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, H.G.; Moon, B.Y.; Kang, N.J.; Kwon, J.K.; Bekhzod, K.; Park, K.S.; Lee, S.Y. Yield loss and quality degradation of strawberry fruits cultivated under the deficient insolation conditions by shading. Hortic. Environ. Biotechnol. 2014, 55, 263–270. [Google Scholar] [CrossRef]
- Caruana, J.C.; Sittmann, J.W.; Wang, W.; Liu, Z. Suppressor of runnerless encodes a DELLA protein that controls runner formation for asexual reproduction in strawberry. Mol. Plant 2018, 11, 230–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Xiao, J.; Hu, J.; Jeong, B.R. Method of silicon application affects quality of strawberry daughter plants during cutting propagation in hydroponic substrate system. Agronomy 2020, 10, 1753. [Google Scholar] [CrossRef]
- Maas, J.L. Strawberry disease management. In Diseases of Fruits and Vegetables: Volume II; Springer: New York, NY, USA, 2004; pp. 441–483. [Google Scholar]
- Nellist, C.F. Disease resistance in polyploid strawberry. In The Genomes of Rosaceous Berries and Their Wild Relatives; Springer: New York, NY, USA, 2018; pp. 79–94. [Google Scholar]
- Nelson, M.; Gubler, W.; Shaw, D.V. Relative resistance of 47 strawberry cultivars to powdery mildew in California greenhouse and field environments. In Plant Disease; Springer: New York, NY, USA, 1996; pp. 326–328. [Google Scholar]
- Kim, M.C.; Panstruga, R.; Elliott, C.; Müller, J.; Devoto, A.; Yoon, H.W.; Park, H.C.; Cho, M.J.; Schulze, L.P. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 2002, 416, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, J.H.; Wolfe, M. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 1994, 13, 97–119. [Google Scholar] [CrossRef]
- Dangl, J.L.; Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Amil, R.F.; Blanco, P.R.; Munoz, B.J.; Caballero, J.L. The strawberry plant defense mechanism: A molecular review. Plant Cell Physiol. 2011, 52, 1873–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, J. VII International Strawberry Symposium. In Strawberry Diseases and Pests-Progress and Problems; Springer: New York, NY, USA, 2012; pp. 133–142. [Google Scholar]
- McGrath, M.T. Fungicide resistance in cucurbit powdery mildew: Experiences and challenges. Plant Dis. 2001, 85, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Shishkoff, N.; McGrath, M. AQ10 biofungicide combined with chemical fungicides or AddQ spray adjuvant for control of cucurbit powdery mildew in detached leaf culture. Plant Dis. 2002, 86, 915–918. [Google Scholar] [CrossRef] [Green Version]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N.; Tamai, K.; Mitani, N. Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol. 2007, 145, 919–924. [Google Scholar] [CrossRef] [Green Version]
- Mitani, N.; Ma, J.F. Uptake system of silicon in different plant species. J. Exp. Bot. 2005, 56, 1255–1261. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Tamai, K.; Konishi, S.; Fujiwara, T.; Katsuhara, M.; Yano, M. An efflux transporter of silicon in rice. Nature 2007, 448, 209–212. [Google Scholar] [CrossRef]
- Yamaji, N.; Sakurai, G.; Mitani, U.N.; Ma, J.F. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice. Proc. Natl. Acad. Sci. USA 2015, 112, 11401–11406. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.F.; Takahashi, E. Chapter 7, Function of silicon in plant growth. In Soil, Fertilizer, and Plant Silicon Research in Japan; Elsevier: Amsterdam, The Netherlands, 2002; pp. 107–118. [Google Scholar]
- Ouellette, S.; Goyette, M.H.; Labbé, C.; Laur, J.; Gaudreau, L.; Gosselin, A.; Dorais, M.; Deshmukh, R.K.; Bélanger, R.R. Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Front. Plant Sci. 2017, 8, 949. [Google Scholar] [CrossRef]
- Park, Y.G.; Muneer, S.; Kim, S.; Hwang, S.J.; Jeong, B.R. Silicon application during vegetative propagation affects photosynthetic protein expression in strawberry. Hortic. Environ. Biotechnol. 2018, 59, 167–177. [Google Scholar] [CrossRef]
- Epstein, E. Silicon in plants: Facts vs. Concepts. In Studies in Plant Science; Elsevier: Amsterdam, The Netherlands, 2001; pp. 1–15. [Google Scholar]
- Coskun, D.; Britto, D.T.; Huynh, W.Q.; Kronzucker, H.J. The role of silicon in higher plants under salinity and drought stress. Front. Plant Sci. 2016, 7, 1072. [Google Scholar] [CrossRef] [Green Version]
- Muneer, S.; Park, Y.G.; Kim, S.; Jeong, B.R. Foliar or subirrigation silicon supply mitigates high temperature stress in strawberry by maintaining photosynthetic and stress-responsive proteins. J. Plant Growth Regul. 2017, 36, 836–845. [Google Scholar] [CrossRef]
- Park, Y.G.; Muneer, S.; Kim, S.; Hwang, S.J.; Jeong, B.R. Foliar or subirrigational silicon supply modulates salt stress in strawberry during vegetative propagation. Hortic. Environ. Biotechnol. 2018, 59, 11–18. [Google Scholar] [CrossRef]
- Liu, B.; Davies, K.; Hall, A. Silicon builds resilience in strawberry plants against both strawberry powdery mildew Podosphaera aphanis and two-spotted spider mites Tetranychus urticae. PLoS ONE 2020, 15, e0241151. [Google Scholar] [CrossRef]
- Jun, H.; Jung, H.; Imai, K. Gas exchange characteristics of a leading cultivar of Korean strawberry (Fragaria × ananassa, ‘Sulhyang’). Sci. Hortic. 2017, 221, 10–15. [Google Scholar] [CrossRef]
- Kim, T.I.; Jang, W.S.; Choi, J.H.; Nam, M.H.; Kim, W.S.; Lee, S.S. Breeding of strawberry ‘Maehyang’ for forcing culture. Hortic. Sci. Technol. 2004, 22, 434–437. [Google Scholar]
- Yoon, H.S.; Jin, H.J.; Oh, J.Y. ‘Kuemsil’, a strawberry variety suitable for forcing culture. Korean Soc. Breed. Sci. 2020, 52, 184–189. (In Korean) [Google Scholar] [CrossRef]
- Jambagi, S.; Dunwell, J.M. Global transcriptome analysis and identification of differentially expressed genes after infection of Fragaria vesca with powdery mildew (Podosphaera aphanis). Transcr. Open Access 2015, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Carisse, O.; Lefebvre, A.; Vander, H.H.; Roberge, L.; Brodeur, L. Analysis of incidence-severity relationships for strawberry powdery mildew as influenced by cultivar, cultivar type, and production systems. Plant Dis. 2013, 97, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Saharan, G.S.; Mehta, N.K.; Meena, P.D. The Disease: Powdery Mildew. In Powdery Mildew Disease of Crucifers: Biology, Ecology and Disease Management; Springer: New York, NY, USA, 2019; pp. 17–51. [Google Scholar]
- Moriondo, M.; Orlandini, S.; Giuntoli, A.; Bindi, M. The effect of downy and powdery mildew on grapevine (Vitis vinifera L.) leaf gas exchange. J. Phytopathol. 2005, 153, 350–357. [Google Scholar] [CrossRef]
- Shtienberg, D. Effects of foliar diseases on gas exchange processes: A comparative study. Phytopathology 1992, 82, 760–765. [Google Scholar] [CrossRef]
- Gordon, T.; Duniway, J. Photosynthesis in powdery mildewed sugar beet leaves. Phytopathology 1982, 72, 718–723. [Google Scholar] [CrossRef]
- Detmann, K.C.; Araújo, W.L.; Martins, S.C.; Sanglard, L.M.; Reis, J.V.; Detmann, E.; Rodrigues, F.Á.; Nunes, N.A.; Fernie, A.R.; DaMatta, F.M. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol. 2012, 196, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Savvas, D.; Giotis, D.; Chatzieustratiou, E.; Bakea, M.; Patakioutas, G. Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environ. Exp. Bot. 2009, 65, 11–17. [Google Scholar] [CrossRef]
- Dallagnol, L.; Rodrigues, F.; Tanaka, F.; Amorim, L.; Camargo, L. Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathol. 2012, 61, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.L.; Williams, L.E. Assimilate transport and partitioning in fungal biotrophic interactions. Funct. Plant Biol. 2000, 27, 549–560. [Google Scholar] [CrossRef]
- Sutton, P.N.; Gilbert, M.J.; Williams, L.E.; Hall, J. Powdery mildew infection of wheat leaves changes host solute transport and invertase activity. Physiol. Plant. 2007, 129, 787–795. [Google Scholar] [CrossRef]
- Araújo, M.U.P.; Rios, J.A.; Silva, E.T.; Rodrigues, F.Á. Silicon alleviates changes in the source-sink relationship of wheat plants infected by Pyricularia oryzae. Phytopathology 2019, 109, 1129–1140. [Google Scholar] [CrossRef]
- Jian, F.M.; Takahashi, E. Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant Soil 1991, 133, 151–155. [Google Scholar]
- Pilon, C.; Soratto, R.P.; Moreno, L.A. Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Sci. 2013, 53, 1605–1614. [Google Scholar] [CrossRef]
- Greger, M.; Landberg, T.; Vaculík, M. Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants 2018, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Do, N.C.W.A.; Souza, N.G.H.; Preston, H.A.F.; Da, S.F.B.V.; Preston, W.; Loureiro, F.L.C. Influence of silicon fertilization on nutrient accumulation, yield and fruit quality of melon grown in northeastern Brazil. Silicon 2020, 12, 937–943. [Google Scholar]
- Swain, R.; Rout, G.R. Effect of silicon interaction with nutrients of rice. J. Exp. Biol. Agric. Sci. 2018, 6, 717–731. [Google Scholar] [CrossRef]
- Dallagnol, L.J.; Ramos, A.E.R.; Rosa, D.K. Silicon use in the integrated disease management of wheat: Current knowledge. In Current Trends in Wheat Research; IntechOpen: London, UK, 2020; pp. 5–26. [Google Scholar]
- Howladar, S.M.; Al, R.S.A.; Al, Z.F.S.; Howladar, M.M.; Aldhebiani, A.Y. Silicon and its application method effects on modulation of cadmium stress responses in Triticum aestivum (L.) through improving the antioxidative defense system and polyamine gene expression. Ecotoxicol. Environ. Saf. 2018, 159, 143–152. [Google Scholar] [CrossRef]
- Kowalska, J.; Tyburski, J.; Jakubowska, M.; Krzymińska, J. Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon 2021, 13, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Guével, M.H.; Menzies, J.G.; Bélanger, R.R. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. Plant Pathol. 2007, 119, 429–436. [Google Scholar] [CrossRef]
- Wang, M.; Gao, L.; Dong, S.; Sun, Y.; Shen, Q.; Guo, S. Role of silicon on plant–pathogen interactions. Front. Plant Sci. 2017, 8, 701. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Gao, D.; Luo, S.; Zeng, R.; Yang, J.; Zhu, X. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol. Plant. 2008, 134, 324–333. [Google Scholar] [CrossRef]
- Ning, D.; Song, A.; Fan, F.; Li, Z.; Liang, Y. Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance. PLoS ONE 2014, 9, e102681. [Google Scholar] [CrossRef] [Green Version]
- Winslow, M.D.; Okada, K.; Correa, V.F. Silicon deficiency and the adaptation of tropical rice ecotypes. Plant Soil 1997, 188, 239–248. [Google Scholar] [CrossRef]
- He, C.; Ma, J.; Wang, L. A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytol. 2015, 206, 1051–1062. [Google Scholar] [CrossRef]
- Sheng, H.; Chen, S. Plant silicon-cell wall complexes: Identification, model of covalent bond formation and biofunction. Plant Physiol. Biochem. 2020, 155, 13–19. [Google Scholar] [CrossRef]
- Bilgin, D.D.; Zavala, J.A.; Zhu, J.; Clough, S.J.; Ort, D.R.; Delucia, E.H. Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ. 2010, 33, 1597–1613. [Google Scholar] [CrossRef] [Green Version]
- Rémus, B.W.; Menzies, J.G.; Bélanger, R.R. Aconitate and methyl aconitate are modulated by silicon in powdery mildew-infected wheat plants. J. Plant Physiol. 2009, 166, 1413–1422. [Google Scholar] [CrossRef]
- Rojas, C.M.; Senthil, K.M.; Tzin, V.; Mysore, K. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Wallis, C.M.; Uddin, W. Silicon-induced systemic defense responses in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology 2015, 105, 748–757. [Google Scholar] [CrossRef] [Green Version]
- Chérif, M.; Benhamou, N.; Menzies, J.G.; Bélanger, R. Silicon induced resistance in cucumber plants against Pythium ultimum. Physiol. Mol. Plant Pathol. 1992, 41, 411–425. [Google Scholar] [CrossRef]
- Bakhat, H.F.; Bibi, N.; Zia, Z.; Abbas, S.; Hammad, H.M.; Fahad, S.; Ashraf, M.R.; Shah, G.M.; Rabbani, F.; Saeed, S. Silicon mitigates biotic stresses in crop plants: A review. Crop Prot. 2018, 104, 21–34. [Google Scholar] [CrossRef]
- Gao, H.; Niu, J.; Zhao, W.; Zhang, D.; Li, S.; Liu, Y. Effect of powdery mildew on antioxidant enzymes of wheat grain. Plant Pathol. 2021, 1–16. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Zhang, Y.; Chai, T. Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress. Plant Physiol. Biochem. 2013, 68, 1–7. [Google Scholar] [CrossRef]
- Jimenez, A.; Hernandez, J.A.; Del, R.L.A.; Sevilla, F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 1997, 114, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Pieczul, K.; Dobrzycka, A.; Wolko, J.; Perek, A.; Zielezińska, M.; Bocianowski, J.; Rybus, Z.M. The activity of β-glucosidase and guaiacol peroxidase in different genotypes of winter oilseed rape (Brassica napus L.) infected by Alternaria black spot fungi. Acta Physiol. Plant. 2020, 42, 142. [Google Scholar] [CrossRef]
- Fauteux, F.; Rémus, B.W.; Menzies, J.G.; Bélanger, R.R. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 2005, 249, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bélanger, R.; Benhamou, N.; Menzies, J. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Flumeria graminis f. Sp. Tritici). Phytopathology 2003, 93, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Fortunato, A.A.; Rodrigues, F.A.; Nascimento, K.J.T. Physiological and biochemical aspects of the resistance of banana plants to fusarium wilt potentiated by silicon. Phytopathology 2012, 102, 957–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, R.; Oliveira, R.; Nascimento, K.; Rodrigues, F. Biochemical responses of coffee resistance against Meloidogyne exigua mediated by silicon. Plant Pathol. 2010, 59, 586–593. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Resende, R.S.; Dallagnol, L.J.; Datnoff, L.E. Silicon potentiates host defense mechanisms against infection by plant pathogens. In Silicon and Plant Diseases; Springer: New York, NY, USA, 2015; pp. 109–138. [Google Scholar]
- Nam, M.H.; Jeon, Y.N.; Lee, H.C.; Lee, H.D.; Kang, H.K. Comparative analysis between healthy and powdery mildew-infected plants of strawberry cultivar ‘Seolhyang’. Res. Plant Dis. 2012, 18, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Kusch, S.; Panstruga, R. Mlo-based resistance: An apparently universal “weapon” to defeat powdery mildew disease. Mol. Plant Microbe Interact. 2017, 30, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Tapia, R.R.; Barbey, C.R.; Chandra, S.; Folta, K.M.; Whitaker, V.M.; Lee, S. Evolution of the MLO gene families in octoploid strawberry (Fragaria × ananassa) and progenitor diploid species identified potential genes for strawberry powdery mildew resistance. Hortic. Res. 2021, 8, 153. [Google Scholar] [CrossRef]
- Xiao, S.; Ellwood, S.; Calis, O.; Patrick, E.; Li, T.; Coleman, M.; Turner, J.G. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 2001, 291, 118–120. [Google Scholar] [CrossRef]
- Kim, H.; O’Connell, R.; Maekawa, Y.M.; Uemura, T.; Neumann, U.; Schulze, L.P. The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant J. 2014, 79, 835–847. [Google Scholar] [CrossRef]
- Bai, G.; Su, Z.; Cai, J. Wheat resistance to Fusarium head blight. Can. J. Plant Pathol. 2018, 40, 336–346. [Google Scholar] [CrossRef]
- Goddard, R.; Steed, A.; Chinoy, C.; Ferreira, J.R.; Scheeren, P.L.; Maciel, J.L.N.; Caierão, E.; Torres, G.A.M.; Consoli, L.; Santana, F.M. Dissecting the genetic basis of wheat blast resistance in the Brazilian wheat cultivar BR 18-Terena. BMC Plant Biol. 2020, 20, 398. [Google Scholar] [CrossRef]
- Van, B.J.; Steppe, K.; Bauweraerts, I.; Kikuchi, S.; Asano, T.; Höfte, M.; De, V.D. Primary metabolism plays a central role in moulding silicon-inducible brown spot resistance in rice. Mol. Plant Pathol. 2015, 16, 811–824. [Google Scholar]
- Vivancos, J.; Labbé, C.; Menzies, J.G.; Bélanger, R.R. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol. Plant Pathol. 2015, 16, 572–582. [Google Scholar] [CrossRef]
- Sommer, A.L. Studies concerning the essential nature of aluminum and silicon for plant growth. In Agriculture Sciences; University of California Press: Berkeley, CA, USA, 1924; pp. 58–81. [Google Scholar]
- Liang, Y.C.; Ma, T.S.; Li, F.J.; Feng, Y.J. Silicon availability and response of rice and wheat to silicon in calcareous soils. Commun. Soil Sci. Plant Anal. 1994, 25, 2285–2297. [Google Scholar] [CrossRef]
- Van, L.J.C. A greenhouse without pesticides: Fact or fantasy? Crop Prot. 2000, 19, 375–384. [Google Scholar]
- Zellner, W.; Tubaña, B.; Rodrigues, F.A.; Datnoff, L.E. Silicon’s role in plant stress reduction and why this element is not used routinely for managing plant health. Plant Dis. 2021, 105, 2033–2049. [Google Scholar] [CrossRef]
- Shin, J.; Chang, Y.K.; Heung, B.; Nguyen, Q.T.; Price, G.W.; Al, M.A. Effect of directional augmentation using supervised machine learning technologies: A case study of strawberry powdery mildew detection. Biosyst. Eng. 2020, 194, 49–60. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Silva, I.T.; Antunes, C.M.F.; Carré, M.V. The infection process of Pestalotiopsis longisetula leaf spot on strawberry leaves. J. Phytopathol. 2014, 162, 690–692. [Google Scholar] [CrossRef]
- Jeon, S.H.; Kuppusamy, S.; Yoon, Y.E.; Kim, H.T.; Lee, Y.B. Are there as many essential and non-essential minerals in hydroponic strawberry (Fragaria ananassa L.) compared to those grown in soil? Biol. Trace Elem. Res. 2019, 187, 562–567. [Google Scholar] [CrossRef]
- Junglee, S.; Urban, L.; Sallanon, H.; Lopez, L.F. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. Am. J. Anal. Chem. 2014, 5, 730. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Li, X.; Hu, Y.; Zhao, P.; Xu, T.; Sun, J.; Gao, X. Proline, sugars, and antioxidant enzymes respond to drought stress in the leaves of strawberry plants. Hortic. Sci. Technol. 2015, 33, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Soundararajan, P.; Manivannan, A.; Park, Y.G.; Muneer, S.; Jeong, B.R. Silicon alleviates salt stress by modulating antioxidant enzyme activities in Dianthus caryophyllus ‘Tula’. Hortic. Environ. Biotechnol. 2015, 56, 233–239. [Google Scholar] [CrossRef]
- Soundararajan, P.; Manivannan, A.; Ko, C.H.; Park, J.E.; Jeong, B.R. Evaluation of relative toxicity caused by deicing agents on photosynthesis, redox homeostasis, and the osmoregulatory system in creeper-type plants. Hortic. Environ. Biotechnol. 2019, 60, 175–186. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, H.; Wang, X.; Xie, X.; Yue, X.; Tang, H. An alternative cetyltrimethylammonium bromide-based protocol for RNA isolation from blackberry (Rubus L.). GMR Genet. Mol. Res. 2012, 11, 1773–1782. [Google Scholar] [CrossRef]
Cultivar (A) | Treatment (B) | “Mother” Plant | “Daughter” Plant | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Height (cm) | Crown Diameter (mm) | Fresh Weight (g) | Leaf Length (cm) | Leaf Width (cm) | SPAD | Plant Height (cm) | Crown Diameter (mm) | Fresh Weight (g) | Leaf Length (cm) | Leaf Width (cm) | SPAD | ||
‘Sulhyang’ | C | 44.55 de z | 18.84 e–g | 66.01 c | 11.00 d | 7.63 c–e | 39.55 d | 21.52 f | 6.06 h | 5.12 f | 5.65 g | 4.7 bc | 44.23 ab |
S | 46.62 a–d | 21.85 b–d | 107.04 ab | 13.27 a | 10.78 a | 46.57 ab | 26.15 c–e | 7.60 e–g | 9.95 b–d | 6.75 c–f | 5.3 a–c | 45.52 ab | |
D | 48.03 a–c | 22.14 b–d | 90.44 a–c | 13.07 ab | 10.97 a | 45.12 ab | 29.53 ab | 7.51 fg | 11.83 ab | 7.43 bc | 5.5 ab | 37.40 c | |
SD | 45.05 c–e | 23.11 bc | 116.24 ab | 11.98 a–d | 9.20 b | 46.43 ab | 28.05 a–d | 8.18 d–f | 11.35 ab | 7.58 ab | 5.5 ab | 39.47 a–c | |
SR | 44.73 de | 19.39 d–g | 66.85 b | 11.57 b–d | 7.97 b–e | 46.05 ab | 26.30 b–e | 9.80 ab | 13.99 a | 7.18 b–d | 5.1 a–c | 43.03 a–c | |
‘Maehyang’ | C | 43.77 de | 17.15 g | 63.09 c | 11.40 cd | 7.15 e | 40.48 cd | 24.73 d–f | 6.67 gh | 5.86 ef | 6.35 ef | 4.3 c | 38.88 bc |
S | 45.85 b–e | 21.18 c–e | 86.72 bc | 12.53 a–d | 7.97 b–e | 43.18 a–c | 27.20 b–d | 6.88 gh | 5.81 ef | 7.40 bc | 6.0 a | 42.32 a–c | |
D | 45.88 b–e | 20.54 c–f | 82.47 bc | 12.93 a–c | 8.45 b–d | 44.35 ab | 24.65 d–f | 7.19 fg | 9.94 b–d | 6.47 d–f | 4.6 bc | 42.68 a–c | |
SD | 44.37 de | 21.32 c–e | 105.33 ab | 12.33 a–d | 8.78 bc | 43.75 a–c | 28.77 a–c | 8.60 c–e | 10.62 a–c | 7.60 ab | 5.3 a–c | 42.28 a–c | |
SR | 42.87 e | 17.96 fg | 67.18 c | 11.97 a–d | 7.32 de | 44.28 ab | 25.68 c–e | 8.57 c–e | 11.88 ab | 7.55 ab | 5.2 a–c | 45.03 ab | |
‘Kuemsil’ | C | 44.47 de | 18.07 fg | 94.82 a–c | 11.17 d | 7.90 b–e | 45.33 ab | 25.55 c–e | 7.08 g | 6.80 c–f | 6.93 b–e | 5.3 a–c | 45.90 a |
S | 48.45 ab | 24.29 b | 121.28 a | 11.70 a–d | 8.03 b–e | 45.05 ab | 22.90 ef | 8.99 b–d | 6.48 d–f | 6.12 fg | 4.7 bc | 42.83 a–c | |
D | 49.80 a | 26.93 a | 115.25 ab | 11.82 a–d | 8.47 b–d | 43.63 a–c | 25.95 c–e | 9.65 ab | 9.33 b–e | 7.20 b–d | 5.4 ab | 39.23 a–c | |
SD | 49.38 a | 21.90 b–d | 121.33 ab | 12.53 a–d | 8.58 b–d | 47.03 a | 24.68 d–f | 10.11 a | 8.22 b–f | 6.60 d–f | 5.0 bc | 41.60 a–c | |
SR | 48.60 ab | 20.20 d–f | 93.56 a–c | 12.18 a–d | 8.22 b–e | 42.80 b–d | 30.75 a | 9.41 a–c | 9.38 b–e | 8.18 a | 6.0 a | 44.55 ab | |
F-test y | A | *** | *** | *** | NS | *** | NS | NS | *** | NS | NS | NS | NS |
B | *** | *** | *** | * | *** | *** | *** | *** | *** | *** | ** | NS | |
A × B | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Cultivar (A) | Treatment (B) | Tissue | Si (mg·g−1 DW) | Macro-Nutrient | Micro-Nutrient | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca (g·g−1 DW) | K (g·g−1 DW) | P (mg·g−1 DW) | Mg (mg·g−1 DW) | S (mg·g−1 DW) | Fe (mg·g−1 DW) | Mn (mg·g−1 DW) | Zn (mg·g−1 DW) | Cu (mg·g−1 DW) | ||||
‘Sulhyang’ | C | “Mother” plant | 1.15 j–l z | 0.18 b–d | 0.10 gh | 14.99 d–i | 20.53 k–m | 1.97 i–m | 0.75 e–j | 0.69 i–l | 0.17 b–f | 0.10 e–g |
“Daughter” plant | 0.83 l | 0.08 ij | 0.10 f–h | 12.18 ij | 18.53 m | 1.80 j–m | 0.66 h–k | 0.41 mn | 0.14 e–j | 0.11 d–f | ||
S | “Mother” plant | 1.65 f–k | 0.15 c–f | 0.12 c–g | 16.56 a–h | 29.06 b–g | 2.18 h–l | 0.65 h–k | 0.47 l–n | 0.16 b–h | 0.12 a–c | |
“Daughter” plant | 1.69 f–j | 0.10 g–j | 0.15 a–d | 17.34 a–f | 19.53 lm | 1.81 j–m | 0.85 c–g | 0.67 i–l | 0.10 j | 0.10 e–g | ||
D | “Mother” plant | 2.08 d–h | 0.16 c–f | 0.17 ab | 20.19 a | 28.03 b–h | 3.09 c–g | 0.90 b–e | 0.72 i–l | 0.20 ab | 0.12 a–c | |
“Daughter” plant | 1.92 e–i | 0.10 g–j | 0.12 c–h | 14.63 e–i | 20.24 k–m | 2.94 c–h | 0.65 h–k | 0.56 j–n | 0.12 h–j | 0.10 e–g | ||
SD | “Mother” plant | 1.71 f–j | 0.11 g–i | 0.12 c–g | 15.01 d–i | 20.72 j–m | 1.14 m | 0.62 i–l | 0.51 k–n | 0.12 h–j | 0.10 f–h | |
“Daughter” plant | 1.16 j–l | 0.15 d–f | 0.10 f–h | 13.63 e–j | 25.93 c–k | 2.12 h–l | 0.92 b–e | 0.60 j–n | 0.13 f–j | 0.12 ab | ||
SR | “Mother” plant | 1.92 e–i | 0.10 g–j | 0.12 c–h | 14.63 e–i | 20.24 k–m | 2.94 c–h | 0.65 h–k | 0.56 j–n | 0.12 h–j | 0.10 e–g | |
“Daughter” plant | 2.24 d–g | 0.11 g–i | 0.13 c–f | 15.03 d–i | 21.65 i–m | 1.83 j–m | 0.72 f–j | 0.77 h–j | 0.13 f–j | 0.12 a–c | ||
‘Maehyang’ | C | “Mother” plant | 1.38 h–l | 0.13 f–h | 0.10 f–h | 10.41 j | 25.11 d–l | 2.70 d–i | 0.59 j–l | 0.75 h–k | 0.12 g–j | 0.10 e–g |
“Daughter” plant | 0.97 kl | 0.11 g–i | 0.09 h | 16.75 a–g | 23.57 f–m | 3.47 b–d | 0.71 f–j | 0.87 g–i | 0.18 b–e | 0.11 c–e | ||
S | “Mother” plant | 1.63 f–k | 0.18 b–d | 0.13 b–f | 12.37 h–j | 27.59 b–h | 2.58 e–k | 0.66 h–k | 1.28 c–e | 0.13 g–j | 0.09 gh | |
“Daughter” plant | 1.78 f–j | 0.13 e–g | 0.14 a–e | 17.86 a–e | 29.68 b–e | 4.16 b | 0.62 i–l | 1.07 e–g | 0.19 a–c | 0.09 hi | ||
D | “Mother” plant | 2.55 c–e | 0.22 a | 0.17 a | 14.72 e–i | 30.76 a–d | 3.33 b–e | 0.78 d–i | 1.70 b | 0.13 f–j | 0.11 c–e | |
“Daughter” plant | 1.77 f–j | 0.13 e–g | 0.15 a–c | 19.09 a–d | 36.21 a | 3.69 bc | 0.70 g–j | 0.98 f–h | 0.18 a–d | 0.10 f–h | ||
SD | “Mother” plant | 2.28 d–f | 0.15 d–f | 0.14 b–e | 12.99 g–j | 29.25 b–f | 2.18 h–l | 0.88 b–f | 1.34 cd | 0.13 g–j | 0.13 a | |
“Daughter” plant | 1.63 f–k | 0.10 g–j | 0.16 ab | 19.22 a–d | 27.25 b–i | 4.94 a | 0.59 j–l | 0.80 h–j | 0.22 a | 0.12 b–d | ||
SR | “Mother” plant | 1.52 g–l | 0.21 ab | 0.10 f–h | 13.48 f–j | 31.55 a–c | 2.34 f–l | 0.94 b–d | 1.99 a | 0.11 ij | 0.10 e–g | |
“Daughter” plant | 3.10 c | 0.11 g–i | 0.14 a–e | 19.49 a–c | 22.88 h–m | 2.64 d–k | 0.47 l | 0.99 f–h | 0.15 c–h | 0.03 k | ||
‘Kuemsil’ | C | “Mother” plant | 1.20 i–l | 0.18 a–d | 0.11 d–h | 15.77 b–i | 26.46 c–j | 2.93 c–h | 1.05 b | 1.67 b | 0.15 c–h | 0.12 ab |
“Daughter” plant | 0.95 kl | 0.07 j | 0.10 f–h | 14.73 e–i | 18.56 m | 3.15 c–f | 0.50 kl | 0.37 n | 0.18 a–d | 0.04 k | ||
S | “Mother” plant | 1.70 f–j | 0.19 a–c | 0.12 c–h | 16.74 a–g | 28.40 b–h | 2.68 d–j | 0.90 b–e | 1.27 c–e | 0.15 c–h | 0.12 a–c | |
“Daughter” plant | 1.83 f–j | 0.09 h–j | 0.13 c–g | 16.49 a–h | 20.20 k–m | 3.38 b–e | 0.63 i–l | 0.65 i–m | 0.18 a–d | 0.03 k | ||
D | “Mother” plant | 3.87 b | 0.17 cd | 0.12 c–h | 19.08 a–d | 35.54 ab | 2.24 g–l | 1.32 a | 1.49 bc | 0.12 h–j | 0.11 b–d | |
“Daughter” plant | 2.73 cd | 0.13 f–h | 0.13 c–g | 16.84 a–g | 20.06 k–m | 3.70 bc | 0.82 c–h | 0.48 l–n | 0.13 f–j | 0.04 k | ||
SD | “Mother” plant | 2.94 c | 0.16 c–f | 0.13 c–f | 16.16 a–i | 30.87 a–d | 2.80 d–i | 1.20 a | 1.48 bc | 0.16 b–g | 0.11 b–d | |
“Daughter” plant | 2.07 d–h | 0.08 ij | 0.12 c–h | 19.59 ab | 23.19 g–m | 3.79 bc | 0.96 bc | 0.66 i–m | 0.20 ab | 0.05 j | ||
SR | “Mother” plant | 1.62 f–k | 0.18 b–d | 0.11 e–h | 15.26 c–i | 20.31 k–m | 4.07 b | 0.66 h–k | 1.66 b | 0.16 b–h | 0.09 hi | |
“Daughter” plant | 4.94 a | 0.11 g–i | 0.13 c–g | 19.08 a–d | 24.19 e–m | 1.79 k–m | 0.50 kl | 1.15 d–f | 0.14 d–i | 0.03 k | ||
F-test y | A | *** | ** | *** | ** | *** | ** | *** | *** | *** | *** | |
B | *** | *** | * | *** | *** | *** | *** | *** | *** | *** | ||
A × B | *** | * | NS | *** | *** | *** | *** | *** | *** | *** |
Gene Name | Forward Primer (5’ to 3’) | Reverse Primer (5’ to 3’) |
---|---|---|
FaPR3 | ACAAACCATCAAGCCACGACG | TTGTCCACGCCCACATTCAAGTC |
FaPR5 | AGGTCCAGTGCAGCAATACCTG | GATTGTCGGACCTCTACCTGCA |
FaRPW8 | CTCTACAACCACGAATCGCTCAAC | GCTCATTCGTATGTCTCTCTTCCTG |
FaMLO10 | GATTATTCACCTGGTCGGACATTGG | ATGGTAAGGACAAGGCAACATCGTA |
FaLsi2 | GCTCTTTTCACCAATGACACCTC | GCATTCACACAAACTCCTACAAGC |
FaLsi3 | AACTGTTCTCTTGCTTGGAGGACG | CCCAAACTTGAGATGGCTCCAGAAT |
FaActin | TTCACGAGACCACCTATAACTC | GCTCATCCTATCAGCGATT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Li, Y.; Jeong, B.R. Foliar Silicon Spray before Summer Cutting Propagation Enhances Resistance to Powdery Mildew of Daughter Plants. Int. J. Mol. Sci. 2022, 23, 3803. https://doi.org/10.3390/ijms23073803
Xiao J, Li Y, Jeong BR. Foliar Silicon Spray before Summer Cutting Propagation Enhances Resistance to Powdery Mildew of Daughter Plants. International Journal of Molecular Sciences. 2022; 23(7):3803. https://doi.org/10.3390/ijms23073803
Chicago/Turabian StyleXiao, Jie, Yali Li, and Byoung Ryong Jeong. 2022. "Foliar Silicon Spray before Summer Cutting Propagation Enhances Resistance to Powdery Mildew of Daughter Plants" International Journal of Molecular Sciences 23, no. 7: 3803. https://doi.org/10.3390/ijms23073803
APA StyleXiao, J., Li, Y., & Jeong, B. R. (2022). Foliar Silicon Spray before Summer Cutting Propagation Enhances Resistance to Powdery Mildew of Daughter Plants. International Journal of Molecular Sciences, 23(7), 3803. https://doi.org/10.3390/ijms23073803