Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives
Abstract
:1. Introduction
2. Ion Exchange and Signaling Pathways in Sperm Motility and Capacitation
3. Mutations in Ion Transporters and Channels That Result in Human Asthenozoospermia
3.1. CatSper
3.2. SLC26A3 and SLC26A8
3.3. SLC9C1 (sNHE)
3.4. PKD (TRPP)
3.5. VDAC2 and VDAC3
3.6. SLO3/KCNUI
3.7. Other Ion Channels to Be Explored in Human Asthenozoospermia
4. Information from Knockout Mouse Models
4.1. PMCA4
4.2. ATP1A4
4.3. TRPV1 and TRPV4
4.4. NHA1 and NHA2
4.5. SLC9A8
4.6. CNNM4
5. Perspectives in Therapeutics and Male Contraception: Clues from Epididymosomes
Protein Name | Uniprot Ref | Sub-Cellular Location |
---|---|---|
ATP2B4 (PMCA4) Plasma membrane calcium-transporting ATPase 4 | Q6Q477 | Plasma membrane—flagellum membrane |
VDAC 1/2/3 Voltage-dependent anion-selective channel protein 1/2/3 | Q60932 Q60930 Q60931 | Mitochondrion outer membrane—Sperm plasma OR acrosomal membrane—dense outer fibers (VDAC 2/3) |
ATP1A1/A4 * Sodium/potassium-transporting ATPase subunit alpha-1/4 | Q8VDN2 Q9WV27 | Plasma membrane—sarcolemma |
CACNA2D1 * Voltage-dependent calcium channel subunit alpha-2/delta-1 | O08532 | Plasma membrane |
ATP1B1/B3 Sodium/potassium-transporting ATPase subunit beta-1 | P14094 P97370 | Plasma membrane |
CLIC1 */3 Chloride intracellular channel protein 1/3 | Q9Z1Q5 Q9D7P7 | Plasma membrane—cytosol—nucleus |
SLC38a5 Sodium-coupled neutral amino acid transporter 5 | Q3U1J0 | Plasma membrane |
5.1. PMCA4
5.2. VDAC3
5.3. ATP1A4
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeung, C.H.; Barfield, J.P.; Cooper, T.G. Physiological Volume Regulation by Spermatozoa. Mol. Cell. Endocrinol. 2006, 250, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Shukla, K.K.; Mahdi, A.A.; Rajender, S. Ion Channels in Sperm Physiology and Male Fertility and Infertility. J. Androl. 2012, 33, 777–788. [Google Scholar] [CrossRef]
- Freitas, M.J.; Vijayaraghavan, S.; Fardilha, M. Signaling Mechanisms in Mammalian Sperm Motility. Biol. Reprod. 2017, 96, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Heidary, Z.; Saliminejad, K.; Zaki-Dizaji, M.; Khorram Khorshid, H.R. Genetic Aspects of Idiopathic Asthenozoospermia as a Cause of Male Infertility. Hum. Fertil. 2020, 23, 83–92. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Metzler-Guillemain, C.; Toure, A.; Coutton, C.; Arnoult, C.; Ray, P.F. Single Gene Defects Leading to Sperm Quantitative Anomalies: Single Gene Defects Leading to Sperm Quantitative Anomalies. Clin. Genet. 2017, 91, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, P.F.; Toure, A.; Metzler-Guillemain, C.; Mitchell, M.J.; Arnoult, C.; Coutton, C. Genetic Abnormalities Leading to Qualitative Defects of Sperm Morphology or Function: Genetic Abnormalities Leading to Qualitative Sperm Defects. Clin. Genet. 2017, 91, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.H.; Cooper, T.G. Developmental Changes in Signalling Transduction Factors in Maturing Sperm during Epididymal Transit. Cell. Mol. Biol. 2003, 49, 341–349. [Google Scholar]
- Fraser, L.R. Requirements for Successful Mammalian Sperm Capacitation and Fertilization. Arch. Pathol. Lab. Med. 1992, 116, 345–350. [Google Scholar]
- Stival, C.; Puga Molina, L.d.C.; Paudel, B.; Buffone, M.G.; Visconti, P.E.; Krapf, D. Sperm Capacitation and Acrosome Reaction in Mammalian Sperm. Adv. Anat. Embryol. Cell Biol. 2016, 220, 93–106. [Google Scholar] [CrossRef]
- Bernardino, R.L.; Carrageta, D.F.; Sousa, M.; Alves, M.G.; Oliveira, P.F. PH and Male Fertility: Making Sense on PH Homeodynamics throughout the Male Reproductive Tract. Cell. Mol. Life Sci. 2019, 76, 3783–3800. [Google Scholar] [CrossRef]
- Puga Molina, L.C.; Luque, G.M.; Balestrini, P.A.; Marín-Briggiler, C.I.; Romarowski, A.; Buffone, M.G. Molecular Basis of Human Sperm Capacitation. Front. Cell Dev. Biol. 2018, 6, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jonge, C. Biological Basis for Human Capacitation. Hum. Reprod. Update 2005, 11, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Nowicka-Bauer, K.; Szymczak-Cendlak, M. Structure and Function of Ion Channels Regulating Sperm Motility—An Overview. Int. J. Mol. Sci. 2021, 22, 3259. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; McGoldrick, L.L.; Chung, J.-J. Sperm Ion Channels and Transporters in Male Fertility and Infertility. Nat. Rev. Urol. 2021, 18, 46–66. [Google Scholar] [CrossRef] [PubMed]
- Vyklicka, L.; Lishko, P.V. Dissecting the Signaling Pathways Involved in the Function of Sperm Flagellum. Curr. Opin. Cell Biol. 2020, 63, 154–161. [Google Scholar] [CrossRef]
- Gallo, A.; Tosti, E. Ion Currents Involved in Gamete Physiology. Int. J. Dev. Biol. 2015, 59, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Gervasi, M.G.; Visconti, P.E. Molecular Changes and Signaling Events Occurring in Spermatozoa during Epididymal Maturation. Andrology 2017, 5, 204–218. [Google Scholar] [CrossRef]
- Chen, Y.; Cann, M.J.; Litvin, T.N.; Iourgenko, V.; Sinclair, M.L.; Levin, L.R.; Buck, J. Soluble Adenylyl Cyclase as an Evolutionarily Conserved Bicarbonate Sensor. Science 2000, 289, 625–628. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, B.S.; Conti, M. Calcium Regulation of the Soluble Adenylyl Cyclase Expressed in Mammalian Spermatozoa. Proc. Natl. Acad. Sci. USA 2003, 100, 10676–10681. [Google Scholar] [CrossRef] [Green Version]
- Visconti, P.E.; Krapf, D.; de la Vega-Beltrán, J.L.; Acevedo, J.J.; Darszon, A. Ion Channels, Phosphorylation and Mammalian Sperm Capacitation. Asian J. Androl. 2011, 13, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Visconti, P.E. Understanding the Molecular Basis of Sperm Capacitation through Kinase Design. Proc. Natl. Acad. Sci. USA 2009, 106, 667–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, S.S. Control of Hyperactivation in Sperm. Hum. Reprod. Update 2008, 14, 647–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrera, A.; Moos, J.; Ning, X.P.; Gerton, G.L.; Tesarik, J.; Kopf, G.S.; Moss, S.B. Regulation of Protein Tyrosine Phosphorylation in Human Sperm by a Calcium/Calmodulin-Dependent Mechanism: Identification of A Kinase Anchor Proteins as Major Substrates for Tyrosine Phosphorylation. Dev. Biol. 1996, 180, 284–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcelay, E.; Salicioni, A.M.; Wertheimer, E.; Visconti, P.E. Identification of Proteins Undergoing Tyrosine Phosphorylation during Mouse Sperm Capacitation. Int. J. Dev. Biol. 2008, 52, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, M.A.; Smith, N.D.; Hetherington, L.; Taubman, K.; Graham, M.E.; Robinson, P.J.; Aitken, R.J. Label-Free Quantitation of Phosphopeptide Changes during Rat Sperm Capacitation. J. Proteome Res. 2010, 9, 718–729. [Google Scholar] [CrossRef]
- Miller, M.R.; Kenny, S.J.; Mannowetz, N.; Mansell, S.A.; Wojcik, M.; Mendoza, S.; Zucker, R.S.; Xu, K.; Lishko, P.V. Asymmetrically Positioned Flagellar Control Units Regulate Human Sperm Rotation. Cell Rep. 2018, 24, 2606–2613. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A Unique View on Male Infertility around the Globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [Green Version]
- Krausz, C.; Riera-Escamilla, A. Genetics of Male Infertility. Nat. Rev. Urol. 2018, 15, 369–384. [Google Scholar] [CrossRef]
- Gunes, S.; Esteves, S.C. Role of Genetics and Epigenetics in Male Infertility. Andrologia 2020, 53, e13586. [Google Scholar] [CrossRef]
- Curi, S.M.; Ariagno, J.I.; Chenlo, P.H.; Mendeluk, G.R.; Pugliese, M.N.; Sardi Segovia, L.M.; Repetto, H.E.H.; Blanco, A.M. Asthenozoospermia: Analysis of a Large Population. Arch. Androl. 2003, 49, 343–349. [Google Scholar] [CrossRef]
- Jiao, S.-Y.; Yang, Y.-H.; Chen, S.-R. Molecular Genetics of Infertility: Loss-of-Function Mutations in Humans and Corresponding Knockout/Mutated Mice. Hum. Reprod. Update 2021, 27, 154–189. [Google Scholar] [CrossRef] [PubMed]
- Touré, A.; Martinez, G.; Kherraf, Z.-E.; Cazin, C.; Beurois, J.; Arnoult, C.; Ray, P.F.; Coutton, C. The Genetic Architecture of Morphological Abnormalities of the Sperm Tail. Hum. Genet. 2020, 140, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Sironen, A.; Shoemark, A.; Patel, M.; Loebinger, M.R.; Mitchison, H.M. Sperm Defects in Primary Ciliary Dyskinesia and Related Causes of Male Infertility. Cell. Mol. Life Sci. 2020, 77, 2029–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avenarius, M.R.; Hildebrand, M.S.; Zhang, Y.; Meyer, N.C.; Smith, L.L.H.; Kahrizi, K.; Najmabadi, H.; Smith, R.J.H. Human Male Infertility Caused by Mutations in the CATSPER1 Channel Protein. Am. J. Hum. Genet. 2009, 84, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avidan, N.; Tamary, H.; Dgany, O.; Cattan, D.; Pariente, A.; Thulliez, M.; Borot, N.; Moati, L.; Barthelme, A.; Shalmon, L.; et al. CATSPER2, a Human Autosomal Nonsyndromic Male Infertility Gene. Eur. J. Hum. Genet. 2003, 11, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.F.; Syritsyna, O.; Fellous, M.; Serres, C.; Mannowetz, N.; Kirichok, Y.; Lishko, P.V. Disruption of the Principal, Progesterone-Activated Sperm Ca2+ Channel in a CatSper2-Deficient Infertile Patient. Proc. Natl. Acad. Sci. USA 2013, 110, 6823–6828. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Malekpour, M.; Al-Madani, N.; Kahrizi, K.; Zanganeh, M.; Mohseni, M.; Mojahedi, F.; Daneshi, A.; Najmabadi, H.; Smith, R.J.H. Sensorineural Deafness and Male Infertility: A Contiguous Gene Deletion Syndrome. J. Med. Genet. 2007, 44, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, C.; Rieger, S.; Brenker, C.; Young, S.; Hamzeh, H.; Wachten, D.; Tüttelmann, F.; Röpke, A.; Kaupp, U.B.; Wang, T.; et al. Rotational Motion and Rheotaxis of Human Sperm Do Not Require Functional CatSper Channels and Transmembrane Ca2+ Signaling. EMBO J. 2020, 39, e102363. [Google Scholar] [CrossRef]
- Luo, T.; Chen, H.; Zou, Q.; Wang, T.; Cheng, Y.; Wang, H.; Wang, F.; Jin, Z.; Chen, Y.; Weng, S.; et al. A Novel Copy Number Variation in CATSPER2 Causes Idiopathic Male Infertility with Normal Semen Parameters. Hum. Reprod. 2019, 34, 414–423. [Google Scholar] [CrossRef]
- Brown, S.G.; Miller, M.R.; Lishko, P.V.; Lester, D.H.; Publicover, S.J.; Barratt, C.L.R.; Martins Da Silva, S. Homozygous In-Frame Deletion in CATSPERE in a Man Producing Spermatozoa with Loss of CatSper Function and Compromised Fertilizing Capacity. Hum. Reprod. 2018, 33, 1812–1816. [Google Scholar] [CrossRef] [Green Version]
- Höglund, P.; Hihnala, S.; Kujala, M.; Tiitinen, A.; Dunkel, L.; Holmberg, C. Disruption of the SLC26A3-Mediated Anion Transport Is Associated with Male Subfertility. Fertil. Steril. 2006, 85, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Wedenoja, S.; Khamaysi, A.; Shimshilashvili, L.; Anbtawe-Jomaa, S.; Elomaa, O.; Toppari, J.; Höglund, P.; Aittomäki, K.; Holmberg, C.; Hovatta, O.; et al. A Missense Mutation in SLC26A3 Is Associated with Human Male Subfertility and Impaired Activation of CFTR. Sci. Rep. 2017, 7, 14208. [Google Scholar] [CrossRef] [Green Version]
- Dirami, T.; Rode, B.; Jollivet, M.; Da Silva, N.; Escalier, D.; Gaitch, N.; Norez, C.; Tuffery, P.; Wolf, J.-P.; Becq, F.; et al. Missense Mutations in SLC26A8, Encoding a Sperm-Specific Activator of CFTR, Are Associated with Human Asthenozoospermia. Am. J. Hum. Genet. 2013, 92, 760–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavarocchi, E.; Whitfield, M.; Chargui, A.; Stouvenel, L.; Lorès, P.; Coutton, C.; Arnoult, C.; Santulli, P.; Patrat, C.; Thierry-Mieg, N.; et al. The Sodium/Proton Exchanger SLC9C1 (sNHE) Is Essential for Human Sperm Motility and Fertility. Clin. Genet. 2021, 99, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Hua, Y.; Zhang, J.; Chen, W.; Zhao, K.; Xi, W.; Wang, H.; Fang, J.; Su, S.; Tang, M.; et al. Abnormal Hypermethylation of the VDAC2 Promoter Is a Potential Cause of Idiopathic Asthenospermia in Men. Sci. Rep. 2016, 6, 37836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asmarinah, A.; Nuraini, T.; Atmadja, D.S.; Moeloek, N.H. Mutation in Exon 6 of the Human VDAC3 (Porin Type 3) Gene in the Sperm with Low Motility. Int. J. Androl. 2005, 5, 35. [Google Scholar]
- Asmarinah, A.; Nuraini, T.; Sumarsih, T.; Paramita, R.; Saleh, M.I.; Narita, V.; Moeloek, N.; Steger, K.; Hinsch, K.-D.; Hinsch, E. Mutations in Exons 5, 7 and 8 of the Human Voltage-Dependent Anion Channel Type 3 (VDAC3) Gene in Sperm with Low Motility: VDAC3 Gene Mutations in Low Motile Sperm. Andrologia 2012, 44, 46–52. [Google Scholar] [CrossRef]
- Lv, M.; Liu, C.; Ma, C.; Yu, H.; Shao, Z.; Gao, Y.; Liu, Y.; Wu, H.; Tang, D.; Tan, Q.; et al. Homozygous Mutation in SLO3 Leads to Severe Asthenoteratozoospermia Due to Acrosome Hypoplasia and Mitochondrial Sheath Malformations. Reprod. Biol. Endocrinol. 2022, 20, 5. [Google Scholar] [CrossRef]
- He, W.-B.; Xiao, W.-J.; Tan, Y.-Q.; Zhao, X.-M.; Li, W.; Zhang, Q.-J.; Zhong, C.-G.; Li, X.-R.; Hu, L.; Lu, G.-X.; et al. Novel Mutations of PKD Genes in Chinese Patients Suffering from Autosomal Dominant Polycystic Kidney Disease and Seeking Assisted Reproduction. BMC Med. Genet. 2018, 19, 186. [Google Scholar] [CrossRef]
- Lishko, P.V.; Mannowetz, N. CatSper: A Unique Calcium Channel of the Sperm Flagellum. Curr. Opin. Physiol. 2018, 2, 109–113. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Mannowetz, N.; Zhang, Y.; Everley, R.A.; Gygi, S.P.; Bewersdorf, J.; Lishko, P.V.; Chung, J.-J. Dual Sensing of Physiologic PH and Calcium by EFCAB9 Regulates Sperm Motility. Cell 2019, 177, 1480–1494.e19. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Ke, M.; Zhang, Y.; Yan, Z.; Wu, J. Structure of a Mammalian Sperm Cation Channel Complex. Nature 2021, 595, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Navarro, B.; Perez, G.; Jackson, A.C.; Hsu, S.; Shi, Q.; Tilly, J.L.; Clapham, D.E. A Sperm Ion Channel Required for Sperm Motility and Male Fertility. Nature 2001, 413, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Lishko, P.V.; Botchkina, I.L.; Kirichok, Y. Progesterone Activates the Principal Ca2+ Channel of Human Sperm. Nature 2011, 471, 387–391. [Google Scholar] [CrossRef]
- Strünker, T.; Goodwin, N.; Brenker, C.; Kashikar, N.D.; Weyand, I.; Seifert, R.; Kaupp, U.B. The CatSper Channel Mediates Progesterone-Induced Ca2+ Influx in Human Sperm. Nature 2011, 471, 382–386. [Google Scholar] [CrossRef]
- Torrezan-Nitao, E.; Brown, S.G.; Mata-Martínez, E.; Treviño, C.L.; Barratt, C.; Publicover, S. [Ca2+]i Oscillations in Human Sperm Are Triggered in the Flagellum by Membrane Potential-Sensitive Activity of CatSper. Hum. Reprod. 2021, 36, 293–304. [Google Scholar] [CrossRef]
- Chung, J.-J.; Shim, S.-H.; Everley, R.A.; Gygi, S.P.; Zhuang, X.; Clapham, D.E. Structurally Distinct Ca2+ Signaling Domains of Sperm Flagella Orchestrate Tyrosine Phosphorylation and Motility. Cell 2014, 157, 808–822. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.E.; Quill, T.A.; Westenbroek, R.E.; Schuh, S.M.; Hille, B.; Babcock, D.F. Identical Phenotypes of CatSper1 and CatSper2 Null Sperm. J. Biol. Chem. 2005, 280, 32238–32244. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.; Wolff, C.A.; Suarez, S.S. CatSper-Null Mutant Spermatozoa Are Unable to Ascend beyond the Oviductal Reservoir. Reprod. Fertil. Dev. 2009, 21, 345. [Google Scholar] [CrossRef]
- Quill, T.A.; Sugden, S.A.; Rossi, K.L.; Doolittle, L.K.; Hammer, R.E.; Garbers, D.L. Hyperactivated Sperm Motility Driven by CatSper2 Is Required for Fertilization. Proc. Natl. Acad. Sci. USA 2003, 100, 14869–14874. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Moran, M.M.; Navarro, B.; Chong, J.A.; Krapivinsky, G.; Krapivinsky, L.; Kirichok, Y.; Ramsey, I.S.; Quill, T.A.; Clapham, D.E. All Four CatSper Ion Channel Proteins Are Required for Male Fertility and Sperm Cell Hyperactivated Motility. Proc. Natl. Acad. Sci. USA 2007, 104, 1219–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.-J.; Navarro, B.; Krapivinsky, G.; Krapivinsky, L.; Clapham, D.E. A Novel Gene Required for Male Fertility and Functional CATSPER Channel Formation in Spermatozoa. Nat. Commun. 2011, 2, 153. [Google Scholar] [CrossRef] [PubMed]
- Dorwart, M.R.; Shcheynikov, N.; Yang, D.; Muallem, S. The Solute Carrier 26 Family of Proteins in Epithelial Ion Transport. Physiology 2008, 23, 104–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Khouri, E.; Touré, A. Functional Interaction of the Cystic Fibrosis Transmembrane Conductance Regulator with Members of the SLC26 Family of Anion Transporters (SLC26A8 and SLC26A9): Physiological and Pathophysiological Relevance. Int. J. Biochem. Cell Biol. 2014, 52, 58–67. [Google Scholar] [CrossRef]
- Touré, A. Importance of SLC26 Transmembrane Anion Exchangers in Sperm Post-Testicular Maturation and Fertilization Potential. Front. Cell Dev. Biol. 2019, 7, 230. [Google Scholar] [CrossRef]
- Seidler, U.; Nikolovska, K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr. Physiol. 2019, 9, 839–872. [Google Scholar] [CrossRef]
- Alper, S.L.; Sharma, A.K. The SLC26 Gene Family of Anion Transporters and Channels. Mol. Aspects Med. 2013, 34, 494–515. [Google Scholar] [CrossRef] [Green Version]
- Dawson, P.A.; Markovich, D. Pathogenetics of the Human SLC26 Transporters. Curr. Med. Chem. 2005, 12, 385–396. [Google Scholar] [CrossRef]
- Everett, L.A.; Green, E.D. A Family of Mammalian Anion Transporters and Their Involvement in Human Genetic Diseases. Hum. Mol. Genet. 1999, 8, 1883–1891. [Google Scholar] [CrossRef] [Green Version]
- Toure, A.; Morin, L.; Pineau, C.; Becq, F.; Dorseuil, O.; Gacon, G. Tat1, a Novel Sulfate Transporter Specifically Expressed in Human Male Germ Cells and Potentially Linked to Rhogtpase Signaling. J. Biol. Chem. 2001, 276, 20309–20315. [Google Scholar] [CrossRef] [Green Version]
- Touré, A.; Lhuillier, P.; Gossen, J.A.; Kuil, C.W.; Lhôte, D.; Jégou, B.; Escalier, D.; Gacon, G. The Testis Anion Transporter 1 (Slc26a8) Is Required for Sperm Terminal Differentiation and Male Fertility in the Mouse. Hum. Mol. Genet. 2007, 16, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Rode, B.; Dirami, T.; Bakouh, N.; Rizk-Rabin, M.; Norez, C.; Lhuillier, P.; Lorès, P.; Jollivet, M.; Melin, P.; Zvetkova, I.; et al. The Testis Anion Transporter TAT1 (SLC26A8) Physically and Functionally Interacts with the Cystic Fibrosis Transmembrane Conductance Regulator Channel: A Potential Role during Sperm Capacitation. Hum. Mol. Genet. 2012, 21, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, S.; Kere, J.; Holmberg, C.; Höglund, P. SLC26A3 Mutations in Congenital Chloride Diarrhea: SLC26A3 MUTATIONS IN CLD. Hum. Mutat. 2002, 20, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Schweinfest, C.W.; Spyropoulos, D.D.; Henderson, K.W.; Kim, J.-H.; Chapman, J.M.; Barone, S.; Worrell, R.T.; Wang, Z.; Soleimani, M. Slc26a3 (Dra)-Deficient Mice Display Chloride-Losing Diarrhea, Enhanced Colonic Proliferation, and Distinct Up-Regulation of Ion Transporters in the Colon. J. Biol. Chem. 2006, 281, 37962–37971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Khouri, E.; Whitfield, M.; Stouvenel, L.; Kini, A.; Riederer, B.; Lores, P.; Roemermann, D.; di Stefano, G.; Drevet, J.R.; Saez, F.; et al. Slc26a3 Deficiency Is Associated with Epididymis Dysplasia and Impaired Sperm Fertilization Potential in the Mouse. Mol. Reprod. Dev. 2018, 85, 682–695. [Google Scholar] [CrossRef]
- Chávez, J.C.; Hernández-González, E.O.; Wertheimer, E.; Visconti, P.E.; Darszon, A.; Treviño, C.L. Participation of the Cl−/HCO3− Exchangers SLC26A3 and SLC26A6, the Cl− Channel CFTR, and the Regulatory Factor SLC9A3R1 in Mouse Sperm Capacitation. Biol. Reprod. 2012, 86, 14. [Google Scholar] [CrossRef]
- Wang, D.; King, S.M.; Quill, T.A.; Doolittle, L.K.; Garbers, D.L. A New Sperm-Specific Na+/H+ Exchanger Required for Sperm Motility and Fertility. Nat. Cell Biol. 2003, 5, 1117–1122. [Google Scholar] [CrossRef]
- Wang, D.; Hu, J.; Bobulescu, I.A.; Quill, T.A.; McLeroy, P.; Moe, O.W.; Garbers, D.L. A Sperm-Specific Na+/H+ Exchanger (SNHE) Is Critical for Expression and in Vivo Bicarbonate Regulation of the Soluble Adenylyl Cyclase (SAC). Proc. Natl. Acad. Sci. USA 2007, 104, 9325–9330. [Google Scholar] [CrossRef] [Green Version]
- Windler, F.; Bönigk, W.; Körschen, H.G.; Grahn, E.; Strünker, T.; Seifert, R.; Kaupp, U.B. The Solute Carrier SLC9C1 Is a Na+/H+-Exchanger Gated by an S4-Type Voltage-Sensor and Cyclic-Nucleotide Binding. Nat. Commun. 2018, 9, 2809. [Google Scholar] [CrossRef]
- Romero, F.; Nishigaki, T. Comparative Genomic Analysis Suggests That the Sperm-Specific Sodium/Proton Exchanger and Soluble Adenylyl Cyclase Are Key Regulators of CatSper among the Metazoa. Zool. Lett. 2019, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Prömel, S.; Langenhan, T.; Araç, D. Matching Structure with Function: The GAIN Domain of Adhesion-GPCR and PKD1-like Proteins. Trends Pharmacol. Sci. 2013, 34, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Ta, C.M.; Vien, T.N.; Ng, L.C.T.; DeCaen, P.G. Structure and Function of Polycystin Channels in Primary Cilia. Cell. Signal. 2020, 72, 109626. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Ruden, D.M.; Lu, X. PKD2 Cation Channel Is Required for Directional Sperm Movement and Male Fertility. Curr. Biol. 2003, 13, 2175–2178. [Google Scholar] [CrossRef] [PubMed]
- Köttgen, M.; Hofherr, A.; Li, W.; Chu, K.; Cook, S.; Montell, C.; Watnick, T. Drosophila Sperm Swim Backwards in the Female Reproductive Tract and Are Activated via TRPP2 Ion Channels. PLoS ONE 2011, 6, e20031. [Google Scholar] [CrossRef] [Green Version]
- Busch, T.; Köttgen, M.; Hofherr, A. TRPP2 Ion Channels: Critical Regulators of Organ Morphogenesis in Health and Disease. Cell Calcium 2017, 66, 25–32. [Google Scholar] [CrossRef]
- Daigneault, B.W.; Miller, D.J. Transient Receptor Potential Polycystin-2 (TRPP2) Regulates Motility and Intracellular Calcium of Porcine Sperm. Andrologia 2021, 53, e14124. [Google Scholar] [CrossRef]
- Colombini, M. The VDAC Channel: Molecular Basis for Selectivity. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2016, 1863, 2498–2502. [Google Scholar] [CrossRef]
- Israelson, A.; Abu-Hamad, S.; Zaid, H.; Nahon, E.; Shoshan-Barmatz, V. Localization of the Voltage-Dependent Anion Channel-1 Ca2+-Binding Sites. Cell Calcium 2007, 41, 235–244. [Google Scholar] [CrossRef]
- De Pinto, V.; Messina, A.; Lane, D.J.R.; Lawen, A. Voltage-Dependent Anion-Selective Channel (VDAC) in the Plasma Membrane. FEBS Lett. 2010, 584, 1793–1799. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zhang, W.; Wang, Z. Voltage-Dependent Anion Channel in Mammalian Spermatozoa. Biochem. Biophys. Res. Commun. 2010, 397, 633–636. [Google Scholar] [CrossRef]
- Cheng, E.H.-Y.; Sheiko, T.V.; Fisher, J.K.; Craigen, W.J.; Korsmeyer, S.J. VDAC2 Inhibits BAK Activation and Mitochondrial Apoptosis. Science 2003, 301, 513–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, W.-S.; Park, Y.-J.; Mohamed, E.-S.A.; Pang, M.-G. Voltage-Dependent Anion Channels Are a Key Factor of Male Fertility. Fertil. Steril. 2013, 99, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Abad, S.; Castillo-Martín, M.; Gadani, B.; Rodríguez-Gil, J.; Bonet, S.; Yeste, M. Voltage-Dependent Anion Channel 2 Is Involved in in Vitro Capacitation of Boar Sperm. Reprod. Dom. Anim. 2017, 52, 65–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petit, F.M.; Serres, C.; Auer, J. Moonlighting Proteins in Sperm-Egg Interactions. Biochem. Soc. Trans. 2014, 42, 1740–1743. [Google Scholar] [CrossRef]
- Sampson, M.J.; Decker, W.K.; Beaudet, A.L.; Ruitenbeek, W.; Armstrong, D.; Hicks, M.J.; Craigen, W.J. Immotile Sperm and Infertility in Mice Lacking Mitochondrial Voltage-Dependent Anion Channel Type 3. J. Biol. Chem. 2001, 276, 39206–39212. [Google Scholar] [CrossRef] [Green Version]
- Karachitos, A.; Kmita, H. Voltage-Dependent Anion Channel Isoform 3 as a Potential Male Contraceptive Drug Target. Future Med. Chem. 2019, 11, 857–867. [Google Scholar] [CrossRef]
- Park, J.; Kim, Y.; Choi, S.; Koh, H.; Lee, S.-H.; Kim, J.-M.; Chung, J. Drosophila Porin/VDAC Affects Mitochondrial Morphology. PLoS ONE 2010, 5, e13151. [Google Scholar] [CrossRef] [Green Version]
- Navarro, B.; Kirichok, Y.; Clapham, D.E. KSper, a PH-Sensitive K+ Current That Controls Sperm Membrane Potential. Proc. Natl. Acad. Sci. USA 2007, 104, 7688–7692. [Google Scholar] [CrossRef] [Green Version]
- Santi, C.M.; Martínez-López, P.; de la Vega-Beltrán, J.L.; Butler, A.; Alisio, A.; Darszon, A.; Salkoff, L. The SLO3 Sperm-Specific Potassium Channel Plays a Vital Role in Male Fertility. FEBS Lett. 2010, 584, 1041–1046. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.-H.; Yang, C.; Kim, S.T.; Lingle, C.J.; Xia, X.-M. Deletion of the Slo3 Gene Abolishes Alkalization-Activated K+ Current in Mouse Spermatozoa. Proc. Natl. Acad. Sci. USA 2011, 108, 5879–5884. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Ferreira, J.J.; Dzikunu, V.; Butler, A.; Lybaert, P.; Yuan, P.; Magleby, K.L.; Salkoff, L.; Santi, C.M. A Genetic Variant of the Sperm-Specific SLO3 K+ Channel Has Altered PH and Ca2+ Sensitivities. J. Biol. Chem. 2017, 292, 8978–8987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lishko, P.V.; Botchkina, I.L.; Fedorenko, A.; Kirichok, Y. Acid Extrusion from Human Spermatozoa Is Mediated by Flagellar Voltage-Gated Proton Channel. Cell 2010, 140, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Kennedy, K.; De Blas, G.A.; Orta, G.; Pavarotti, M.A.; Arias, R.J.; de la Vega-Beltrán, J.L.; Li, Q.; Dai, H.; Perozo, E.; et al. Role of Human Hv1 Channels in Sperm Capacitation and White Blood Cell Respiratory Burst Established by a Designed Peptide Inhibitor. Proc. Natl. Acad. Sci. USA 2018, 115, E11847–E11856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escoffier, J.; Arnaud, B.; Kaba, M.; Hograindleur, J.P.; Le Blévec, E.; Martinez, G.; Stévant, I.; Ray, P.F.; Arnoult, C.; Nef, S. Pantoprazole, a Proton-pump Inhibitor, Impairs Human Sperm Motility and Capacitation in Vitro. Andrologia 2020, 8, 1795–1804. [Google Scholar] [CrossRef]
- Li, H.; Ding, X.; Guan, H.; Xiong, C. Inhibition of Human Sperm Function and Mouse Fertilization in Vitro by an Antibody against Cation Channel of Sperm 1: The Contraceptive Potential of Its Transmembrane Domains and Pore Region. Fertil. Steril. 2009, 92, 1141–1146. [Google Scholar] [CrossRef]
- He, Y.; Zou, Q.; Li, B.; Chen, H.; Du, X.; Weng, S.; Luo, T.; Zeng, X. Ketamine Inhibits Human Sperm Function by Ca2+-Related Mechanism. Biochem. Biophys. Res. Commun. 2016, 478, 501–506. [Google Scholar] [CrossRef]
- Ghanbari, H.; Keshtgar, S.; Kazeroni, M. Inhibition of the CatSper Channel and NOX5 Enzyme Activity Affects the Functions of the Progesterone-Stimulated Human Sperm. Iran J. Med. Sci. 2018, 43, 8. [Google Scholar]
- McBrinn, R.C.; Fraser, J.; Hope, A.G.; Gray, D.W.; Barratt, C.L.R.; Martins da Silva, S.J.; Brown, S.G. Novel Pharmacological Actions of Trequinsin Hydrochloride Improve Human Sperm Cell Motility and Function. Br. J. Pharmacol. 2019, 176, 4521–4536. [Google Scholar] [CrossRef] [Green Version]
- Keshtgar, S.; Ghanbari, H.; Ghani, E.; Moosavi, S.M.S. Effect of CatSper and Hv1 Channel Inhibition on Progesterone Stimulated Human Sperm. J. Reprod. Infertil. 2018, 19, 7. [Google Scholar]
- Rennhack, A.; Schiffer, C.; Brenker, C.; Fridman, D.; Nitao, E.T.; Cheng, Y.-M.; Tamburrino, L.; Balbach, M.; Stölting, G.; Berger, T.K.; et al. A Novel Cross-Species Inhibitor to Study the Function of CatSper Ca 2+ Channels in Sperm: A Novel CatSper Channel Inhibitor. Br. J. Pharmacol. 2018, 175, 3144–3161. [Google Scholar] [CrossRef] [Green Version]
- Francavilla, F.; Battista, N.; Barbonetti, A.; Vassallo, M.R.C.; Rapino, C.; Antonangelo, C.; Pasquariello, N.; Catanzaro, G.; Barboni, B.; Maccarrone, M. Characterization of the Endocannabinoid System in Human Spermatozoa and Involvement of Transient Receptor Potential Vanilloid 1 Receptor in Their Fertilizing Ability. Endocrinology 2009, 150, 4692–4700. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.-B.; Ma, H.-G.; Li, H.-G.; Xiong, C.-L. Blockade of Epithelial Sodium Channels Improves Sperm Motility in Asthenospermia Patients. Int. J. Androl. 2009, 32, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Candenas, L.; Pinto, F.M.; Cejudo-Román, A.; González-Ravina, C.; Fernández-Sánchez, M.; Pérez-Hernández, N.; Irazusta, J.; Subirán, N. Veratridine-Sensitive Na+ Channels Regulate Human Sperm Fertilization Capacity. Life Sci. 2018, 196, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.A.; Meizel, S. Regulation of Intracellular PH in Capacitated Human Spermatozoa by a Na+/H+ Exchanger. Mol. Reprod. Dev. 1999, 52, 189–195. [Google Scholar] [CrossRef]
- Puga Molina, L.C.; Pinto, N.A.; Torres, N.I.; González-Cota, A.L.; Luque, G.M.; Balestrini, P.A.; Romarowski, A.; Krapf, D.; Santi, C.M.; Treviño, C.L.; et al. CFTR/ENaC-Dependent Regulation of Membrane Potential during Human Sperm Capacitation Is Initiated by Bicarbonate Uptake through NBC. J. Biol. Chem. 2018, 293, 9924–9936. [Google Scholar] [CrossRef] [Green Version]
- Krasznai, Z.; Krasznai, Z.T.; Morisawa, M.; Bazsáné, Z.K.; Hernádi, Z.; Fazekas, Z.; Trón, L.; Goda, K.; Márián, T. Role of the Na+/Ca2+ Exchanger in Calcium Homeostasis and Human Sperm Motility Regulation. Cell Motil. Cytoskelet. 2006, 63, 66–76. [Google Scholar] [CrossRef]
- Li, C.-Y.; Jiang, L.-Y.; Chen, W.-Y.; Li, K.; Sheng, H.-Q.; Ni, Y.; Lu, J.-X.; Xu, W.-X.; Zhang, S.-Y.; Shi, Q.-X. CFTR Is Essential for Sperm Fertilizing Capacity and Is Correlated with Sperm Quality in Humans. Hum. Reprod. 2010, 25, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Ni, Y.; He, Y.; Chen, W.-Y.; Lu, J.-X.; Cheng, C.Y.; Ge, R.-S.; Shi, Q.-X. Inhibition of Sperm Capacitation and Fertilizing Capacity by Adjudin Is Mediated by Chloride and Its Channels in Humans. Hum. Reprod. 2013, 28, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Orta, G.; Ferreira, G.; José, O.; Treviño, C.L.; Beltrán, C.; Darszon, A. Human Spermatozoa Possess a Calcium-Dependent Chloride Channel That May Participate in the Acrosomal Reaction: Calcium-Dependent Chloride Channel in Human Sperm. J. Physiol. 2012, 590, 2659–2675. [Google Scholar] [CrossRef]
- Yeung, C.-H. Effects of the Ion-Channel Blocker Quinine on Human Sperm Volume, Kinematics and Mucus Penetration, and the Involvement of Potassium Channels. Mol. Hum. Reprod. 2001, 7, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Carranza, O.; Torres-Rodríguez, P.; Darszon, A.; Treviño, C.L.; López-González, I. Pharmacology of HSlo3 Channels and Their Contribution in the Capacitation-Associated Hyperpolarization of Human Sperm. Biochem. Biophys. Res. Commun. 2015, 466, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Hashemitabar, M.; Sabbagh, S.; Orazizadeh, M.; Ghadiri, A.; Bahmanzadeh, M. A Proteomic Analysis on Human Sperm Tail: Comparison between Normozoospermia and Asthenozoospermia. J. Assist. Reprod. Genet. 2015, 32, 853–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panner Selvam, M.K.; Agarwal, A.; Pushparaj, P.N. A Quantitative Global Proteomics Approach to Understanding the Functional Pathways Dysregulated in the Spermatozoa of Asthenozoospermic Testicular Cancer Patients. Andrology 2019, 7, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Singh, V.; Singh, S.; Yadav, S. Proteomic Analyses Reveal Lower Expression of TEX40 and ATP6V0A2 Proteins Related to Calcium Ion Entry and Acrosomal Acidification in Asthenozoospermic Males. Life Sci. 2019, 218, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Martin-Hidalgo, D.; Serrano, R.; Zaragoza, C.; Garcia-Marin, L.J.; Bragado, M.J. Human Sperm Phosphoproteome Reveals Differential Phosphoprotein Signatures That Regulate Human Sperm Motility. J. Proteom. 2020, 215, 103654. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.H.; Barfield, J.P.; Cooper, T.G. Chloride Channels in Physiological Volume Regulation of Human Spermatozoa. Biol. Reprod. 2005, 73, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-W.; Li, Y.; Zou, L.-L.; Guan, Y.-T.; Peng, S.; Zheng, L.-X.; Deng, S.-M.; Zhu, L.-Y.; Wang, L.-W.; Chen, L.-X. Chloride Channels Are Involved in Sperm Motility and Are Downregulated in Spermatozoa from Patients with Asthenozoospermia. Asian J. Androl. 2017, 19, 418. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Liang, A.; He, Y.; Li, Z.; Li, Z.; Wang, G.; Sun, F. Proteomic Analysis of Seminal Extracellular Vesicle Proteins Involved in Asthenozoospermia by ITRAQ. Mol. Reprod. Dev. 2019, 86, 1094–1105. [Google Scholar] [CrossRef]
- Murdica, V.; Cermisoni, G.C.; Zarovni, N.; Salonia, A.; Viganò, P.; Vago, R. Proteomic Analysis Reveals the Negative Modulator of Sperm Function Glycodelin as Over-Represented in Semen Exosomes Isolated from Asthenozoospermic Patients. Hum. Reprod. 2019, 34, 1416–1427. [Google Scholar] [CrossRef]
- García-Rodríguez, A.; de la Casa, M.; Peinado, H.; Gosálvez, J.; Roy, R. Human Prostasomes from Normozoospermic and Non-Normozoospermic Men Show a Differential Protein Expression Pattern. Andrology 2018, 6, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Saez, F.; Sullivan, R. Prostasomes, Post-Testicular Sperm Maturation and Fertility. Front. Biosci. 2016, 21, 1464–1473. [Google Scholar] [CrossRef]
- Stegmayr, B.; Ronquist, G. Promotive Effect on Human Sperm Progressive Motility by Prostasomes. Urol. Res. 1982, 10, 253–257. [Google Scholar] [CrossRef]
- Park, K.-H.; Kim, B.-J.; Kang, J.; Nam, T.-S.; Lim, J.M.; Kim, H.T.; Park, J.K.; Kim, Y.G.; Chae, S.-W.; Kim, U.-H. Ca2+ Signaling Tools Acquired from Prostasomes Are Required for Progesterone-Induced Sperm Motility. Sci. Signal. 2011, 4, ra31. [Google Scholar] [CrossRef] [PubMed]
- Schuh, K.; Cartwright, E.J.; Jankevics, E.; Bundschu, K.; Liebermann, J.; Williams, J.C.; Armesilla, A.L.; Emerson, M.; Oceandy, D.; Knobeloch, K.-P.; et al. Plasma Membrane Ca2+ ATPase 4 Is Required for Sperm Motility and Male Fertility. J. Biol. Chem. 2004, 279, 28220–28226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okunade, G.W.; Miller, M.L.; Pyne, G.J.; Sutliff, R.L.; O’Connor, K.T.; Neumann, J.C.; Andringa, A.; Miller, D.A.; Prasad, V.; Doetschman, T.; et al. Targeted Ablation of Plasma Membrane Ca2+-ATPase (PMCA) 1 and 4 Indicates a Major Housekeeping Function for PMCA1 and a Critical Role in Hyperactivated Sperm Motility and Male Fertility for PMCA4. J. Biol. Chem. 2004, 279, 33742–33750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R.; Al-Dossary, A.A.; Stabley, D.L.; Barone, C.; Galileo, D.S.; Strehler, E.E.; Martin-DeLeon, P.A. Plasma Membrane Ca2+-ATPase 4 in Murine Epididymis: Secretion of Splice Variants in the Luminal Fluid and a Role in Sperm Maturation. Biol. Reprod. 2013, 89, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Dossary, A.A.; Bathala, P.; Caplan, J.L.; Martin-DeLeon, P.A. Oviductosome-Sperm Membrane Interaction in Cargo Delivery: Detection of fusion and underlying molecular players using three-dimensional super-resolution structured illumination microscopy (SR-SIM). J. Biol. Chem. 2015, 290, 17710–17723. [Google Scholar] [CrossRef] [Green Version]
- Olli, K.E.; Li, K.; Galileo, D.S.; Martin-DeLeon, P.A. Plasma Membrane Calcium ATPase 4 (PMCA4) Co-Ordinates Calcium and Nitric Oxide Signaling in Regulating Murine Sperm Functional Activity. J. Cell Physiol. 2018, 233, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.E.; Galileo, D.S.; Martin-DeLeon, P.A. Plasma Membrane Ca2+-ATPase 4: Interaction with Constitutive Nitric Oxide Synthases in Human Sperm and Prostasomes Which Carry Ca2+/CaM-Dependent Serine Kinase. Mol. Hum. Reprod. 2015, 21, 832–843. [Google Scholar] [CrossRef] [Green Version]
- Stavusis, J.; Inashkina, I.; Lace, B.; Pelnena, D.; Limborska, S.; Khrunin, A.; Kucinskas, V.; Krumina, A.; Piekuse, L.; Zorn, B.; et al. A New Baltic Population-Specific Human Genetic Marker in the PMCA4 Gene. Hum. Hered. 2016, 82, 140–146. [Google Scholar] [CrossRef]
- Shamraj, O.I.; Lingrel, J.B. A Putative Fourth Na+,K(+)-ATPase Alpha-Subunit Gene Is Expressed in Testis. Proc. Natl. Acad. Sci. USA 1994, 91, 12952–12956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, G.; Melton, R.J.; Sánchez, G.; Mercer, R.W. Functional Characterization of a Testes-Specific Alpha-Subunit Isoform of the Sodium/Potassium Adenosinetriphosphatase. Biochemistry 1999, 38, 13661–13669. [Google Scholar] [CrossRef] [PubMed]
- Woo, A.L.; James, P.F.; Lingrel, J.B. Sperm Motility Is Dependent on a Unique Isoform of the Na,K-ATPase. J. Biol. Chem. 2000, 275, 20693–20699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, A.L.; James, P.F.; Lingrel, J.B. Roles of the Na,K-ATPase Alpha4 Isoform and the Na+/H+ Exchanger in Sperm Motility. Mol. Reprod. Dev. 2002, 62, 348–356. [Google Scholar] [CrossRef]
- Hlivko, J.T.; Chakraborty, S.; Hlivko, T.J.; Sengupta, A.; James, P.F. The Human Na,K-ATPase Alpha 4 Isoform Is a Ouabain-Sensitive Alpha Isoform That Is Expressed in Sperm. Mol. Reprod. Dev. 2006, 73, 101–115. [Google Scholar] [CrossRef]
- Jimenez, T.; Sánchez, G.; Wertheimer, E.; Blanco, G. Activity of the Na,K-ATPase Alpha4 Isoform Is Important for Membrane Potential, Intracellular Ca2+, and PH to Maintain Motility in Rat Spermatozoa. Reproduction 2010, 139, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, T.; Sánchez, G.; Blanco, G. Activity of the Na,K-ATPase A4 Isoform Is Regulated during Sperm Capacitation to Support Sperm Motility. J. Androl. 2012, 33, 1047–1057. [Google Scholar] [CrossRef]
- Rajamanickam, G.D.; Kastelic, J.P.; Thundathil, J.C. Content of Testis-Specific Isoform of Na/K-ATPase (ATP1A4) Is Increased during Bovine Sperm Capacitation through Translation in Mitochondrial Ribosomes. Cell Tissue Res. 2017, 368, 187–200. [Google Scholar] [CrossRef]
- Jimenez, T.; McDermott, J.P.; Sánchez, G.; Blanco, G. Na,K-ATPase Alpha4 Isoform Is Essential for Sperm Fertility. Proc. Natl. Acad. Sci. USA 2011, 108, 644–649. [Google Scholar] [CrossRef] [Green Version]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The Capsaicin Receptor: A Heat-Activated Ion Channel in the Pain Pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Ramal-Sanchez, M.; Bernabò, N.; Valbonetti, L.; Cimini, C.; Taraschi, A.; Capacchietti, G.; Machado-Simoes, J.; Barboni, B. Role and Modulation of TRPV1 in Mammalian Spermatozoa: An Updated Review. Int. J. Mol. Sci. 2021, 22, 4306. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Majhi, R.K.; Swain, N.; Giri, S.C.; Kar, S.; Samanta, L.; Goswami, C. TRPV4 Is Endogenously Expressed in Vertebrate Spermatozoa and Regulates Intracellular Calcium in Human Sperm. Biochem. Biophys. Res. Commun. 2016, 473, 781–788. [Google Scholar] [CrossRef]
- Riera, C.E.; Huising, M.O.; Follett, P.; Leblanc, M.; Halloran, J.; Van Andel, R.; de Magalhaes Filho, C.D.; Merkwirth, C.; Dillin, A. TRPV1 Pain Receptors Regulate Longevity and Metabolism by Neuropeptide Signaling. Cell 2014, 157, 1023–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wang, H.; Wang, F.; Chen, C.; Zhang, P.; Song, D.; Luo, T.; Xu, H.; Zeng, X. Sperm Motility Modulated by Trpv1 Regulates Zebrafish Fertilization. Theriogenology 2020, 151, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Hamano, K.-I.; Kawanishi, T.; Mizuno, A.; Suzuki, M.; Takagi, Y. Involvement of Transient Receptor Potential Vanilloid (TRPV) 4 in Mouse Sperm Thermotaxis. J. Reprod. Dev. 2016, 62, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Huang, J.-C.; Lu, C.-L.; Yang, J.-L.; Hu, Z.-Y.; Gao, F.; Liu, Y.-X. Immunization with a DNA Vaccine of Testis-Specific Sodium-Hydrogen Exchanger by Oral Feeding or Nasal Instillation Reduces Fertility in Female Mice. Fertil. Steril. 2010, 93, 1556–1566. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-R.; Chen, M.; Deng, S.-L.; Hao, X.-X.; Wang, X.-X.; Liu, Y.-X. Sodium–Hydrogen Exchanger NHA1 and NHA2 Control Sperm Motility and Male Fertility. Cell Death Dis. 2016, 7, e2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Chen, H.; Li, J.; Zhao, Y.; Ghishan, F.K. Disruption of NHE8 Expression Impairs Leydig Cell Function in the Testes. Am. J. Physiol. Cell Physiol. 2015, 308, C330–C338. [Google Scholar] [CrossRef] [Green Version]
- Oberheide, K.; Puchkov, D.; Jentsch, T.J. Loss of the Na+/H+ Exchanger NHE8 Causes Male Infertility in Mice by Disrupting Acrosome Formation. J. Biol. Chem. 2017, 292, 10845–10854. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Yang, P.; Shi, J.-D.; Purohit, S.; Guo, D.; An, H.; Gu, J.-G.; Ling, J.; Dong, Z.; She, J.-X. Molecular Cloning and Characterization of the Mouse Acdp Gene Family. BMC Genomics 2004, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.E.; Verwoert, G.C.; Hwang, S.-J.; Glazer, N.L.; Smith, A.V.; van Rooij, F.J.A.; Ehret, G.B.; Boerwinkle, E.; Felix, J.F.; Leak, T.S.; et al. Genome-Wide Association Studies of Serum Magnesium, Potassium, and Sodium Concentrations Identify Six Loci Influencing Serum Magnesium Levels. PLoS Genet. 2010, 6, e1001045. [Google Scholar] [CrossRef] [Green Version]
- Arjona, F.J.; de Baaij, J.H.F. CrossTalk Opposing View: CNNM Proteins Are Not Na+/Mg2+ Exchangers but Mg2+ Transport Regulators Playing a Central Role in Transepithelial Mg2+ (Re)Absorption. J. Physiol 2018, 596, 747–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Z.; Feng, J.; Franken, G.A.C.; Al’Saadi, N.; Cai, N.; Yu, A.S.; Lou, L.; Komiya, Y.; Hoenderop, J.G.J.; de Baaij, J.H.F.; et al. CNNM Proteins Selectively Bind to the TRPM7 Channel to Stimulate Divalent Cation Entry into Cells. PLoS Biol. 2021, 19, e3001496. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jin, F.; Funato, Y.; Xu, Z.; Zhu, W.; Wang, J.; Sun, M.; Zhao, Y.; Yu, Y.; Miki, H.; et al. Structural Basis for the Mg2+ Recognition and Regulation of the CorC Mg2+ Transporter. Sci. Adv. 2021, 7, eabe6140. [Google Scholar] [CrossRef]
- Yamazaki, D.; Miyata, H.; Funato, Y.; Fujihara, Y.; Ikawa, M.; Miki, H. The Mg2+ Transporter CNNM4 Regulates Sperm Ca2+ Homeostasis and Is Essential for Reproduction. J. Cell Sci. 2016, 129, 1940–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, D.; Funato, Y.; Miura, J.; Sato, S.; Toyosawa, S.; Furutani, K.; Kurachi, Y.; Omori, Y.; Furukawa, T.; Tsuda, T.; et al. Basolateral Mg2+ Extrusion via CNNM4 Mediates Transcellular Mg2+ Transport across Epithelia: A Mouse Model. PLoS Genet. 2013, 9, e1003983. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Shi, J.-D.; Yang, P.; Kumar, P.G.; Li, Q.-Z.; Run, Q.-G.; Su, Y.-C.; Scott, H.S.; Kao, K.-J.; She, J.-X. Molecular Cloning and Characterization of a Novel Gene Family of Four Ancient Conserved Domain Proteins (ACDP). Gene 2003, 306, 37–44. [Google Scholar] [CrossRef]
- Long, J.E.; Lee, M.S.; Blithe, D.L. Male Contraceptive Development: Update on Novel Hormonal and Nonhormonal Methods. Clin. Chem. 2019, 65, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Kent, K.; Johnston, M.; Strump, N.; Garcia, T.X. Toward Development of the Male Pill: A Decade of Potential Non-Hormonal Contraceptive Targets. Front. Cell Dev. Biol. 2020, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Skerget, S.; Rosenow, M.A.; Petritis, K.; Karr, T.L. Sperm Proteome Maturation in the Mouse Epididymis. PLoS ONE 2015, 10, e0140650. [Google Scholar] [CrossRef]
- James, E.R.; Carrell, D.T.; Aston, K.I.; Jenkins, T.G.; Yeste, M.; Salas-Huetos, A. The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction. Int. J. Mol. Sci. 2020, 21, 5377. [Google Scholar] [CrossRef] [PubMed]
- Nixon, B.; De Iuliis, G.N.; Hart, H.M.; Zhou, W.; Mathe, A.; Bernstein, I.R.; Anderson, A.L.; Stanger, S.J.; Skerrett-Byrne, D.A.; Jamaluddin, M.F.B.; et al. Proteomic Profiling of Mouse Epididymosomes Reveals Their Contributions to Post-Testicular Sperm Maturation. Mol. Cell Proteom. 2019, 18, S91–S108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Vos, H.R.; Tao, W.; Stoorvogel, W. Proteomic Profiling of Two Distinct Populations of Extracellular Vesicles Isolated from Human Seminal Plasma. Int. J. Mol. Sci. 2020, 21, 7957. [Google Scholar] [CrossRef] [PubMed]
- Dubois, L.; Ronquist, K.K.G.; Ek, B.; Ronquist, G.; Larsson, A. Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes. Mol. Cell Proteom. 2015, 14, 3015–3022. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, A.; Wennemuth, G.; Post, H.; Brandenburger, T.; Aumüller, G.; Wilhelm, B. Vesicular Transfer of Membrane Components to Bovine Epididymal Spermatozoa. Cell Tissue Res. 2013, 353, 549–561. [Google Scholar] [CrossRef]
- Cartwright, E.J.; Neyses, L. Evaluation of Plasma Membrane Calcium/Calmodulin-Dependent ATPase Isoform 4 as a Potential Target for Fertility Control. Handb. Exp. Pharmacol. 2010, 2010, 79–95. [Google Scholar] [CrossRef]
- Magrì, A.; Reina, S.; De Pinto, V. VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis. Front. Chem. 2018, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Syeda, S.S.; Sánchez, G.; McDermott, J.P.; Hong, K.H.; Blanco, G.; Georg, G.I. The Na+ and K+ Transport System of Sperm (ATP1A4) Is Essential for Male Fertility and an Attractive Target for Male Contraception. Biol. Reprod. 2020, 103, 343–356. [Google Scholar] [CrossRef]
Ion Channel | Mutation(s) | Patients | Phenotype | ART Outcome | Reference | |
---|---|---|---|---|---|---|
CATSPER1 | c.539–540insT (p.Lys180LysfsX8) c.948–949insATGGC (p.Asp317MetfsX18) | HOM | 3 patients from 2 consanguineous Iranian families | OAT Low semen volume | - | Avenarius et al., 2009 [34] |
CATSPER2 | ~70-kb deletion in chr 15q15 (last 2 exons of CATSPER2) | HOM | 3 brothers from a French family | Congenital dyserythropoietic anemia type I (CDAI) Astheno-teratozoospermia (91% sperm with short, coiled flagella) | - | Avidan et al., 2003 [35] |
1 patient | Severe asthenoteratozoospermia Disruption of progesterone-sensitive Ca2+ current Absence of Catsperβ | - | Avidan et al., 2003 [35]; Smith et al., 2013 [36] | |||
~100-kb deletion in chr 15q15.3 (integral loss of CATSPER2) | HOM | 7 patients from 3 Iranian families (one of which is consanguineous) | Deafness infertility syndrome (DIS) Astheno-teratozoospermia (thin heads, macrocephaly, irregular acrosome, short or coiled flagella) | - | Zhang et al., 2007 [37] | |
Quadrilateral CatSper domains, sperm rolling (rotation around the longitudinal axis), and rheotaxis (navigation in fluid flow) are not affected | - | Schiffer et al., 2020 [38] | ||||
CNV (one copy lost in the region of 43,894,500 to 43,950,000 on chr 15q15.3, containing the entire CATSPER2) deletion of CATSPER2 | HET | 1 Chinese patient | Normal semen parameters Impaired sperm hyperactivation, no response to progesterone | Failure of IVF cycle (6 oocytes) ICSI positive outcome with singleton pregnancy | Luo et al., 2019 [39] | |
CATSPERε | In-frame 6-bp deletion in exon 18 (c.2393_2398delCTATGG, p.Met799_Ala800del) | HOM | 1 European patient | Normal motility and concentration Loss of CATSPER function | Failure of IVF | Brown et al., 2018 [40] |
SLC26A3 | V317del | HOM (7) HET (1) | 8 Finnish patients | Congenital chloride diarrhea (CLD) with male subfertility (OAT) Spermatoceles | - | Höglund et al., 2006 [41] |
| HET | 12 Finnish patients | 11/12: severe or moderate oligo-astheno-zoospermia 1/12: azoospzermia (patient also carrying a CFTR 5T heterozygous allele) | - | Wedenoja et al., 2017 [42] | |
SLC26A8 (TAT1) |
| HET | 3 patients Patient 1: Caucasian Patient 2: North African Patient 3: Caucasian | Astheno-teratozoospermia (Patient 3 has OAT) Reduced amount of SLC26A8-mutated protein and associated CFTR channel | Patient 1: ART attempt, natural pregnancy after 2.5 years without proof of paternity Patient 2: ART attempt, natural pregnancy with a new partner Patient 3: ART attempt, 4 ICSI failures | Dirami et al., 2013 [43] |
SLC9C1 (sNHE) | c.2748 + 2T > C (p.Glu884_Lys916del) | HOM | 1 African patient | Asthenozoospermia | ICSI failure | Cavarocchi et al., 2021 [44] |
VDAC2 | CpGs hypermethylation in the promoter | 25 Chinese patients | Idiopathic asthenozoospermia | - | Xu et al., 2016 [45] | |
VDAC3 | Missense variants in exon 6 (Ile131Leu, Lys171Glu) | - | Asthenozoospermia | - | Asmarinah et al., 2005 [46] | |
3 patients: deletion in exon 5 1 patient: deletion in exon 7 1 patient: deletions in exons 5 and 7 1 patient: missense mutation (Asp228Asn) in exon 7 1 patient: deletions in exons 5, 7, and 8 | 7 Chinese patients | Asthenozoospermia | - | Asmarinah et al., 2011 [47] | ||
SLO3 | Missense variant c.1237A > T, p.Ile413Phe | HOM | 1 Chinese patient | Asthenoteratozoospermia | ICSI positive outcome with singleton pregnancy | Lv et al., 2022 [48] |
PKD1-2 | Several PKD1 or PKD2 mutations | N/A | 46 Chinese patients | Autosomal dominant polycystic kidney disease (ADPKD) 37/46 patients with abnormal semen parameters (AST, OAT, AZOO) | 2 natural pregnancies 2 ICSI 31 ICSI + PGD | He et al., 2018 [49] |
Ion Channel | Current | Inhibitor | Effect | Reference |
---|---|---|---|---|
hHv1 | H+ | hanatoxin-containing venom (Grammastola rosea) | No significant change in sperm hyperactivation A combination of venom and progesterone caused decreased full 360° rotation of the sperm flagella | Lishko et al., 2010 [102] Miller et al., 2018 [26] |
Corza6 (de novo peptide inhibitor) | AR inhibited by ∼70% No effect on sperm viability, sperm motility, or tyrosine phosphorylation pattern | Zhao et al., 2018 [103] | ||
Pantoprazole (proton-pump inhibitor) | Decreased sperm progressive motility and capacitation-induced sperm hyperactivation (hyperpolarization and protein phosphorylation) | Escoffier et al., 2020 [104] | ||
CatSper1 | Cations (Ca2+) | anti-CatSper1 IgG antibody (H-300) | Reduced sperm progressive motility after 1, 2, and 4 h of incubation Reduced sperm hyperactivated motility after 5 h of incubation | Li et al., 2009 [105] |
CatSper | Ketamine | No effect on sperm viability, capacitation, or spontaneous AR Reduced intracellular calcium concentration | He et al., 2016 [106] | |
NNC | Reduced sperm viability, motility, and velocity Inhibition of progesterone induced AR | Ghanbari et al., 2018 [107] | ||
Trequinsin hydrochloride | >hyperactivation and penetration into viscous medium <intracellular cGMP | McBrinn et al., 2019 [108] | ||
CatSper and Hv1 | Cations | NNC, ZnCl2, NNC + Zn | Reduced sperm viability, motility, and curvilinear velocity in all groups containing NNC, zinc, and NNC + zinc. The progesterone–induced acrosome reaction was abolished by each of these inhibitors. The combinatory effect of NNC plus zinc on motility and progesterone–induced acrosome reaction was no stronger than NNC by itself. | Keshtgar et al., 2018 [109] |
CatSper and hSLO3 | Cations | RU1968 | Reduced progesterone-induced sperm hypermotility Minor inhibitory effect on hSLO3 rather than CatSper | Rennhack et al., 2018 [110] |
TRPV1 | Cations | Capsazepine | Inhibition of progesterone-promoted sperm-oocyte fusion Reduced progesterone-induced AR rate, reduced spontaneous AR rate No effect on sperm motility | Francavilla et al., 2009 [111] |
ENaC | Na+ | EIPA | Improved sperm motility in healthy donors and asthenozoospermic patients | Kong et al., 2009 [112] |
NaV | Na+ | Lidocaine | Induction of hyperactivated motility | Candenas et al., 2018 [113] |
NHE1/SLC9A1 | Na+/H+ | EIPA | No effect on AR | Garcia and Meizel, 1999 [114] |
NBC | Na+/HCO3− | S0859 | Lower PKA activity | Puga Molina et al., 2018 [115] |
NCX | Na+/Ca2+ | bepridil, DCB, KB-R7943 | Impaired sperm motility | Krasznai et al., 2006 [116] |
CFTR | Anions (Cl−) | CFTRinh-172 | Inhibition of progesterone-induced sperm capacitation, cAMP synthesis, hyperactivated motility, and rhuZP3a-induced AR | Li et al., 2010 [117] |
Cl− channels | Cl− | Adjudin (Cl− channels blocker) | Reduced sperm hyperactivation but no effect on sperm motility Blockage of rhuZP3b- and progesterone-induced AR in a dose-dependent manner Inhibition of forskolin-activated transmembrane AC and sAC activity Impaired serine and threonine sperm protein phosphorylation Prevention of sperm penetration of zona-free hamster eggs | Li et al., 2013 [118] |
TMEM16A/ANO1 | Cl− | NFA, DIDS, TMEM16Ainh | Reduced rhZP3-induced AR | Orta et al., 2012 [119] |
K channels | K+ | Quinine | Increased sperm volume, reduced sperm kinematics and mucus penetration K-ionophores valinomycin and gramicidin counteract 4-aminopyridine but not TEA (K-blockers) Can mimic quinine | Yeung and Cooper, 2001 [120] |
hSLO3 | K+ | Progesterone, Ba2þ and Quinidine (+++) Penitrem A and Charybdotoxin (+) Iberiotoxin and Slotoxin (~) | Pharmacological comparison of the CAH and hSlo3 profiles indicates that in addition to hSlo3, other K+ channels (possibly Slo1) may participate in CAH | Sanchez-Carranza et al., 2015 [121] |
NaV | Na+ | Veratridine | >sperm progressive motility without producing hyperactivation >protein tyrosine phosphorylation Blockage of progesterone-induced AR Membrane depolarisation | Candenas et al., 2018 [113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavarocchi, E.; Whitfield, M.; Saez, F.; Touré, A. Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives. Int. J. Mol. Sci. 2022, 23, 3926. https://doi.org/10.3390/ijms23073926
Cavarocchi E, Whitfield M, Saez F, Touré A. Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives. International Journal of Molecular Sciences. 2022; 23(7):3926. https://doi.org/10.3390/ijms23073926
Chicago/Turabian StyleCavarocchi, Emma, Marjorie Whitfield, Fabrice Saez, and Aminata Touré. 2022. "Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives" International Journal of Molecular Sciences 23, no. 7: 3926. https://doi.org/10.3390/ijms23073926
APA StyleCavarocchi, E., Whitfield, M., Saez, F., & Touré, A. (2022). Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives. International Journal of Molecular Sciences, 23(7), 3926. https://doi.org/10.3390/ijms23073926