The Multiverse of Plant Small RNAs: How Can We Explore It?
Abstract
:1. Structural Diversity—The Big Bang of Small RNAs in Plants
2. Functional Diversity—The Expanse of the sRNAs World
3. Bioinformatics Tools for Exploration and Analysis of the World of Small RNAs
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 6669. [Google Scholar] [CrossRef]
- Song, X.; Li, Y.; Cao, X.; Qi, Y. MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions. Annu. Rev. Plant Biol. 2019, 70, 489–525. [Google Scholar] [CrossRef]
- Fang, X.; Qi, Y. Rnai in plants: An argonaute-centered view. Plant Cell 2015, 28, 272–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baulcombe, D. RNA silencing in plants. RNA silencing in plants. Nature 2004, 431, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.J.; Carrington, J.C. Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 2007, 8, 884–896. [Google Scholar] [CrossRef] [PubMed]
- Axtell, M.J. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 2013, 64, 137–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, E.; Caudy, A.A.; Hammond, S.M.; Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409, 363–366. [Google Scholar] [CrossRef] [PubMed]
- D’Ario, M.; Griffiths-Jones, S.; Kim, M. Small RNAs: Big Impact on Plant Development. Trends Plant Sci. 2017, 22, 1056–1068. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, V.; Chen, X. Small RNA metabolism in Arabidopsis. Trends Plant Sci. 2008, 13, 368–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, M.; Zhang, S.; Yu, B. microRNA biogenesis, degradation and activity in plants. Cell. Mol. Life Sci. 2015, 72, 87–99. [Google Scholar] [CrossRef]
- Park, W.; Li, J.; Song, R.; Messing, J.; Chen, X. Carpel Factory, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 2002, 12, 1484–1495. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Chu, C. MicroRNAs in crop improvement: Fine-tuners for complex traits. Nat. Plants 2017, 3, 17077. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Unver, T. A critical and speculative review on microRNA technology in crop improvement: Current challenges and future directions. Plant Sci. 2018, 274, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Liang, T.; Lu, Z. A comprehensive study of multiple mapping and feature selection for correction strategy in the analysis of small RNAs from SOLiD sequencing. BioSystems 2011, 104, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Fard, E.M.; Moradi, S.; Salekdeh, N.N.; Bakhshi, B.; Ghaffari, M.R.; Zeinalabedini, M.; Salekdeh, G.H. Plant isomiRs: Origins, biogenesis, and biological functions. Genomics 2020, 112, 3382–3395. [Google Scholar] [CrossRef]
- Borsani, O.; Zhu, J.; Verslues, P.E.; Sunkar, R.; Zhu, J.-K. Endogenous siRNAs Derived from a Pair of Natural cis-Antisense Transcripts Regulate Salt Tolerance in Arabidopsis. Cell 2005, 123, 1279–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ron, M.; Saez, M.A.; Williams, L.E.; Fletcher, J.C.; McCormick, S. Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev. 2010, 24, 1010–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katiyar-Agarwal, S.; Gao, S.; Vivian-Smith, A.; Jin, H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 2007, 21, 3123–3134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, M.; Wang, Y.; Yao, Y.; Xie, C.; Peng, H.; Ni, Z.; Sun, Q. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol. 2010, 10, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones-Rhoades, M.W.; Bartel, D.P.; Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 2006, 57, 19–53. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, H.; Zhang, Q.; Zhang, J.; Ni, F.; Liu, C.; Qi, Y. DNA Methylation Mediated by a MicroRNA Pathway. Mol. Cell 2010, 38, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Mao, L.; Qi, Y. Roles of DICER-LIKE and ARGONAUTE Proteins in TAS-Derived Small Interfering RNA-Triggered DNA Methylation. Plant Physiol. 2012, 160, 990–999. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.W.-L.; Henderson, I.; Jacobsen, S.E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 2005, 6, 351–360. [Google Scholar] [CrossRef]
- Xie, Z.; Johansen, L.K.; Gustafson, A.M.; Kasschau, K.D.; Lellis, A.D.; Zilberman, D.; Jacobsen, S.E.; Carrington, J.C. Genetic and Functional Diversification of Small RNA Pathways in Plants. PLoS Biol. 2004, 2, e104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, C.; Kuo, Y.-W.; Yan, Z.; Falk, B.W. RNA Interference Mechanisms and Applications in Plant Pathology. Annu. Rev. Phytopathol. 2018, 56, 581–610. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, F.; Hohn, T. Biogenesis and Biological Activity of Secondary siRNAs in Plants. Scientifica 2013, 2013, 783253. [Google Scholar] [CrossRef]
- Xia, Z.; Peng, J.; Li, Y.; Chen, L.; Li, S.; Zhou, T.; Fan, Z. Characterization of Small Interfering RNAs Derived from Sugarcane Mosaic Virus in Infected Maize Plants by Deep Sequencing. PLoS ONE 2014, 9, e97013. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Dasaradhi, P.V.N.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA Interference: Biology, Mechanism, and Applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csorba, T.; Kontra, L.; Burgyán, J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015, 479-480, 85–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikovics, K.; Blein, T.; Peaucelle, A.; Ishida, T.; Morin, H.; Aida, M.; Laufs, P. The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration inArabidopsis. Plant Cell 2006, 18, 2929–2945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laufs, P.; Peaucelle, A.; Morin, H.; Traas, J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 2004, 131, 4311–4322. [Google Scholar] [CrossRef] [Green Version]
- Raman, S.; Greb, T.; Peaucelle, A.; Blein, T.; Laufs, P.; Theres, K. Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant J. 2008, 55, 65–76. [Google Scholar] [CrossRef]
- Wang, J.-W.; Wang, L.-J.; Mao, Y.-B.; Cai, W.-J.; Xue, H.-W.; Chen, X.-Y. Control of Root Cap Formation by MicroRNA-Targeted Auxin Response Factors in Arabidopsis. Plant Cell 2005, 17, 2204–2216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallory, A.C.; Bartel, D.P.; Bartel, B. MicroRNA-Directed Regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is Essential for Proper Development and Modulates Expression of Early Auxin Response Genes. Plant Cell 2005, 17, 1360–1375. [Google Scholar] [CrossRef] [Green Version]
- Palatnik, J.; Allen, E.; Wu, X.; Schommer, C.; Schwab, R.; Carrington, J.; Weigel, D. Control of leaf morphogenesis by microRNAs. Nature 2003, 425, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, R.; Palatnik, J.; Riester, M.; Schommer, C.; Schmid, M.; Weigel, D. Specific Effects of MicroRNAs on the Plant Transcriptome. Dev. Cell 2005, 8, 517–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achard, P.; Herr, A.; Baulcombe, D.; Harberd, N.P. Modulation of floral development by a gibberellin-regulated microRNA. Development 2004, 131, 3357–3365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Liu, Z.; Lu, F.; Dong, A.; Huang, H. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J. 2006, 47, 841–850. [Google Scholar] [CrossRef]
- Lobbes, D.; Rallapalli, G.; Schmidt, D.D.; Martin, C.; Clarke, J. SERRATE: A new player on the plant microRNA scene. EMBO Rep. 2006, 7, 1052–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigg, S.P.; Canales, C.; Hay, A.; Tsiantis, M. SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 2005, 437, 1022–1026. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Park, M.Y.; Conway, S.R.; Wang, J.-W.; Weigel, D.; Poethig, R.S. The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell 2009, 138, 750–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Xu, M.; Willmann, M.R.; McCormick, K.; Hu, T.; Yang, L.; Starker, C.; Voytas, D.; Meyers, B.C.; Poethig, R.S. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genet. 2018, 14, e1007337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Poethig, R.S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 2006, 133, 3539–3547. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-W.; Schwab, R.; Czech, B.; Mica, E.; Weigel, D. Dual Effects of miR156-Targeted SPL Genes and CYP78A5/KLUH on Plastochron Length and Organ Size in Arabidopsis thaliana. Plant Cell 2008, 20, 1231–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ori, N.; Cohen, A.R.; Etzioni, A.; Brand, A.; Yanai, O.; Shleizer, S.; Menda, N.; Amsellem, Z.; Efroni, I.; Pekker, I.; et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat. Genet. 2007, 39, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Palatnik, J.; Wollmann, H.; Schommer, C.; Schwab, R.; Boisbouvier, J.; Rodriguez, R.; Warthmann, N.; Allen, E.; Dezulian, T.; Huson, D.; et al. Sequence and Expression Differences Underlie Functional Specialization of Arabidopsis MicroRNAs miR159 and miR319. Dev. Cell 2007, 13, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Moldovan, D.; Spriggs, A.; Yang, J.; Pogson, B.J.; Dennis, E.S.; Wilson, I.W. Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J. Exp. Bot. 2009, 61, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wei, L.; Zou, X.; Tao, Y.; Liu, Z.; Zheng, Y. Submergence-responsive MicroRNAs are Potentially Involved in the Regulation of Morphological and Metabolic Adaptations in Maize Root Cells. Ann. Bot. 2008, 102, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Li, H.; Zhang, Y.-X.; Liu, J.-Y. Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res. 2010, 39, 2821–2833. [Google Scholar] [CrossRef] [Green Version]
- Sunkar, R.; Kapoor, A.; Zhu, J.K. Erratum: Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress. Plant Cell 2006, 18, 2051–2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Liu, Y.; Liu, Z.; Kong, D.; Duan, M.; Luo, L. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J. Exp. Bot. 2010, 61, 4157–4168. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Liang, R.; Ge, L.; Li, W.; Xiao, H.; Lin, H.; Ruan, K.; Jin, Y. Identification of drought-induced microRNAs in rice. Biochem. Biophys. Res. Commun. 2007, 354, 585–590. [Google Scholar] [CrossRef]
- Liu, H.-H.; Tian, X.; Li, Y.-J.; Wu, C.-A.; Zheng, C.-C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 2008, 14, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Huertero, C.A.; Pérez, B.; Rabanal, F.; Blanco-Melo, D.; De La Rosa, C.; Estrada-Navarrete, G.; Sanchez, F.; Covarrubias, A.A.; Reyes, J.L. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol. Biol. 2009, 70, 385–401. [Google Scholar] [CrossRef]
- Fujii, H.; Chiou, T.-J.; Lin, S.-I.; Aung, K.; Zhu, J.-K. A miRNA Involved in Phosphate-Starvation Response in Arabidopsis. Curr. Biol. 2005, 15, 2038–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bari, R.; Pant, B.D.; Stitt, M.; Golm, S.P. PHO2, MicroRNA399, and PHR1 Define a Phosphate-Signaling Pathway in Plants. Plant Physiol. 2006, 141, 988–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, X.; Ren, L.; Chen, Q.-J.; Li, R.; Tang, G. UV-B-responsive microRNAs in Populus tremula. J. Plant Physiol. 2009, 166, 2046–2057. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, H.; Abdel-Ghany, S.E.; Cohu, C.M.; Kobayashi, Y.; Shikanai, T.; Pilon, M. Regulation of Copper Homeostasis by Micro-RNA in Arabidopsis. J. Biol. Chem. 2007, 282, 16369–16378. [Google Scholar] [CrossRef] [Green Version]
- Jones-Rhoades, M.W.; Bartel, D.P. Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA The primary method of identifying miRNA genes has been to isolate, reverse transcribe, clone, and sequence small cellular RNAs. Mol. Cell 2004, 14, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Rubio, V.; Linhares, F.; Solano, R.; Martín, A.C.; Iglesias, J.; Leyva, A.; Paz-Ares, J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 2001, 15, 2122–2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco-Zorrilla, J.M.; González, E.; Bustos, R.; Linhares, F.; Leyva, A.; Paz-Ares, J. The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 2004, 55, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wang, G.; Hu, X.; Wang, H.; Du, L.; Zhu, Y. Role of microRNAs in plant responses to nutrient stress. Plant Soil 2013, 374, 1005–1021. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, G.; Sutoh, K.; Zhu, J.-K.; Zhang, W. Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim. Biophys. Acta Gene Regul. Mech. 2008, 1779, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Sunkar, R.; Zhu, J.-K. Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis. Plant Cell 2004, 16, 2001–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Sun, Y.-H.; Chiang, V.L. Stress-responsive microRNAs in Populus. Plant J. 2008, 55, 131–151. [Google Scholar] [CrossRef] [PubMed]
- Sunkar, R.; Zhou, X.; Zheng, Y.; Zhang, W.; Zhu, J.-K. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol. 2008, 8, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Wang, G.; Zhang, W. UV-B responsive microRNA genes in Arabidopsis thaliana. Mol. Syst. Biol. 2007, 3, 103. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Sun, Y.-H.; Shi, R.; Clark, C.; Li, L.; Chiang, V.L. Novel and Mechanical Stress–Responsive MicroRNAs in Populus trichocarpa That Are Absent from Arabidopsis. Plant Cell 2005, 17, 2186–2203. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Chen, Z.; Zhu, C. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J. Exp. Bot. 2011, 62, 3563–3573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yuan, Y.-R.; Pei, Y.; Lin, S.-S.; Tuschl, T.; Patel, D.J.; Chua, N.-H. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 2006, 20, 3255–3268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, V. MicroRNA precursors in motion: Exportin-5 mediates their nuclear export. Trends Cell Biol. 2004, 14, 156–159. [Google Scholar] [CrossRef]
- Zhao, Y.; He, S.; Liu, C.; Ru, S.; Zhao, H.; Yang, Z.; Yang, P.; Yuan, X.; Sun, S.; Bu, D.; et al. MicroRNA regulation of messenger-like noncoding RNAs: A network of mutual microRNA control. Trends Genet. 2008, 24, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, J.; Liu, Z.; Li, X.; Wu, F.; He, Y. HEAT-INDUCED TAS1 TARGET1 Mediates Thermotolerance via HEAT STRESS TRANSCRIPTION FACTOR A1a–Directed Pathways in Arabidopsis. Plant Cell 2014, 26, 1764–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adenot, X.; Elmayan, T.; Lauressergues, D.; Boutet, S.; Bouché, N.; Gasciolli, V.; Vaucheret, H. DRB4-Dependent TAS3 trans-Acting siRNAs Control Leaf Morphology through AGO7. Curr. Biol. 2006, 16, 927–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahlgren, N.; Montgomery, T.; Howell, M.D.; Allen, E.; Dvorak, S.K.; Alexander, A.L.; Carrington, J.C. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA Affects Developmental Timing and Patterning in Arabidopsis. Curr. Biol. 2006, 16, 939–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, E.; Jouannet, V.; Herz, A.; Lokerse, A.S.; Weijers, D.; Vaucheret, H.; Nussaume, L.; Crespi, M.D.; Maizel, A. miR390, Arabidopsis TAS3 tasiRNAs, and Their AUXIN RESPONSE FACTOR Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth. Plant Cell 2010, 22, 1104–1117. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.H.; Coruh, C.; Axtell, M.J. miR156 and miR390 Regulate tasiRNA Accumulation and Developmental Timing in Physcomitrella patens. Plant Cell 2012, 24, 4837–4849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yifhar, T.; Pekker, I.; Peled, D.; Friedlander, G.; Pistunov, A.; Sabban, M.; Wachsman, G.; Alvarez, J.P.; Amsellem, Z.; Eshed, Y. Failure of the Tomato Trans-Acting Short Interfering RNA Program to Regulate AUXIN response factor3 and ARF4 Underlies the Wiry Leaf Syndrome. Plant Cell 2012, 24, 3575–3589. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Han, L.; Fu, C.; Wen, J.; Cheng, X.; Nakashima, J.; Ma, J.; Tang, Y.; Tan, Y.; Tadege, M.; et al. The Trans-Acting Short Interfering RNA3 Pathway and NO APICAL MERISTEM Antagonistically Regulate Leaf Margin Development and Lateral Organ Separation, as Revealed by Analysis of an argonaute7/lobed leaflet1 Mutant in Medicago truncatula. Plant Cell 2013, 25, 4845–4862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Lin, L.; Lai, R.; Liu, W.; Chen, Y.; Zhang, Z.; XuHan, X.; Lai, Z. MicroRNA390-Directed TAS3 Cleavage Leads to the Production of tasiRNA-ARF3/4 During Somatic Embryogenesis in Dimocarpus longan Lour. Front. Plant Sci. 2015, 6, 1119. [Google Scholar] [CrossRef] [PubMed]
- Hobecker, K.V.; Reynoso, M.A.; Bustos-Sanmamed, P.; Wen, J.; Mysore, K.; Crespi, M.; Blanco, F.A.; Zanetti, M.E. The MicroRNA390/TAS3 Pathway Mediates Symbiotic Nodulation and Lateral Root Growth. Plant Physiol. 2017, 174, 2469–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, R.; Zhu, H.; An, Y.-Q.; Beers, E.P.; Liu, Z. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol. 2012, 13, R47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rock, C.D. Trans-acting small interfering RNA4: Key to nutraceutical synthesis in grape development? Trends Plant Sci. 2013, 18, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Fei, Q.; Zhang, Y.; Xia, R.; Meyers, B.C. Small RNAs Add Zing to the Zig-Zag-Zig Model of Plant Defenses. Mol. Plant-Microbe Interact. 2016, 29, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Xia, R.; Xu, J.; Arikit, S.; Meyers, B.C. Extensive Families of miRNAs andPHASLoci in Norway Spruce Demonstrate the Origins of Complex phasiRNA Networks in Seed Plants. Mol. Biol. Evol. 2015, 32, 2905–2918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, Q.; Xia, R.; Meyers, B.C. Phased, Secondary, Small Interfering RNAs in Posttranscriptional Regulatory Networks. Plant Cell 2013, 25, 2400–2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Meyers, B.C.; Cai, C.; Xu, W.; Ma, J. Evolutionary Patterns and Coevolutionary Consequences of MIRNA Genes and MicroRNA Targets Triggered by Multiple Mechanisms of Genomic Duplications in Soybean. Plant Cell 2015, 27, 546–562. [Google Scholar] [CrossRef] [Green Version]
- Fei, Q.; Li, P.; Teng, C.; Meyers, B.C. Secondary siRNAs fromMedicago NB-LRRsmodulated via miRNA-target interactions and their abundances. Plant J. 2015, 83, 451–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, J.; Jeong, D.-H.; De Paoli, E.; Park, S.; Rosen, B.D.; Li, Y.; González, A.J.; Yan, Z.; Kitto, S.L.; Grusak, M.A.; et al. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 2011, 25, 2540–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahid, S.; Kim, G.; Johnson, N.R.; Wafula, E.; Wang, F.; Coruh, C.; Bernal-Galeano, V.; Phifer, T.; Depamphilis, C.W.; Westwood, J.H.; et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 2018, 553, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Vacic, V.; Girke, T.; Lonardi, S.; Zhu, J.-K. Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol. Biol. 2008, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Katiyar-Agarwal, S.; Morgan, R.; Dahlbeck, D.; Borsani, O.; Villegas, A.; Zhu, J.-K.; Staskawicz, B.J.; Jin, H. A pathogen-inducible endogenous siRNA in plant immunity. Proc. Natl. Acad. Sci. USA 2006, 103, 18002–18007. [Google Scholar] [CrossRef] [Green Version]
- Jin, H. Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett. 2008, 582, 2679–2684. [Google Scholar] [CrossRef] [Green Version]
- Zubko, E.; Meyer, P. A natural antisense transcript of thePetunia hybrida Shogene suggests a role for an antisense mechanism in cytokinin regulation. Plant J. 2007, 52, 1131–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzke, M.A.; Birchler, J.A. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 2005, 6, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Zamore, P.D.; Haley, B. Ribo-gnome: The Big World of Small RNAs. Science 2005, 309, 1519–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisch, D. Epigenetic Regulation of Transposable Elements in Plants. Annu. Rev. Plant Biol. 2009, 60, 43–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Won, S.Y.; Yumul, R.E.; Chen, X. Small RNAs in plants. In Molecular Biology; Springer: New York, NY, USA, 2014; pp. 95–127. [Google Scholar] [CrossRef]
- Castel, S.E.; Martienssen, R.A. RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 2013, 14, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, A.J.; Baulcombe, D.C. A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants. Science 1999, 286, 950–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addo-Quaye, C.; Eshoo, T.W.; Bartel, D.P.; Axtell, M.J. Endogenous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis Degradome. Curr. Biol. 2008, 18, 758–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.-B.; Bian, X.-Y.; Wu, L.-M.; Liu, L.-X.; Smith, N.A.; Isenegger, D.; Wu, R.-M.; Masuta, C.; Vance, V.B.; Watson, J.M.; et al. On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc. Natl. Acad. Sci. USA 2004, 101, 3275–3280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasconcelos, A.M.; Carmo, M.B.; Ferreira, B.; Viegas, I.; Gama-Carvalho, M.; Ferreira, A.; Amaral, A.J. IsomiR_Window: A system for analyzing small-RNA-seq data in an integrative and user-friendly manner. BMC Bioinform. 2021, 22, 37. [Google Scholar] [CrossRef] [PubMed]
- Thody, J.; Moulton, V.; Mohorianu, I. PAREameters: A tool for computational inference of plant miRNA–mRNA targeting rules using small RNA and degradome sequencing data. Nucleic Acids Res. 2020, 48, 2258–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Gordon, W.; Du, S.; Zhang, C.; He, W.; Xi, L.; Mathur, S.; Agostino, M.; Paradis, T.; Von Schack, D.; et al. QuickMIRSeq: A pipeline for quick and accurate quantification of both known miRNAs and isomiRs by jointly processing multiple samples from microRNA sequencing. BMC Bioinform. 2017, 18, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Zhai, J.; Zhang, X.; Ling, L.; Li, M.; Xie, S.; Song, M.; Ma, C. Interactive Web-based Annotation of Plant MicroRNAs with iwa-miRNA. Genom. Proteom. Bioinform. 2021. [Google Scholar] [CrossRef] [PubMed]
- Paicu, C.; Mohorianu, I.; Stocks, M.; Xu, P.; Coince, A.; Billmeier, M.; Dalmay, T.; Moulton, V.; Moxon, S. miRCat2: Accurate prediction of plant and animal microRNAs from next-generation sequencing datasets. Bioinformatics 2017, 33, 2446–2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitsios, D.; Kentepozidou, E.; Quintais, L.; Gutierrez, E.B.; Van Dongen, S.; Davis, M.P.; Enright, A. Mirnovo: Genome-free prediction of microRNAs from small RNA sequencing data and single-cells using decision forests. Nucleic Acids Res. 2017, 45, e177. [Google Scholar] [CrossRef] [PubMed]
- Chaves, I.; Costa, B.V.; Rodrigues, A.S.; Bohn, A.; Miguel, C.M. miRPursuit-a pipeline for automated analyses of small RNAs in model and nonmodel plants. FEBS Lett. 2017, 591, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Sablok, G.; Qiao, G.; Nie, Q.; Wen, X. isomiR2Function: An Integrated Workflow for Identifying MicroRNA Variants in Plants. Front. Plant Sci. 2017, 8, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Liu, C.; Gu, L.; Mo, B.; Cao, X.; Chen, X. TarHunter, a tool for predicting conserved microRNA targets and target mimics in plants. Bioinformatics 2017, 34, 1574–1576. [Google Scholar] [CrossRef] [PubMed]
- Ylla, G.; Liu, T.; Conesa, A. MirCure: A tool for quality control, filter and curation of microRNAs of animals and plants. Bioinformatics 2020, 36, i618–i624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, H.; Yao, Y.; Yi, M. PlantMirP-Rice: An Efficient Program for Rice Pre-miRNA Prediction. Genes 2020, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Guigon, I.; Legrand, S.; Berthelot, J.-F.; Bini, S.; Lanselle, D.; Benmounah, M.; Touzet, H. miRkwood: A tool for the reliable identification of microRNAs in plant genomes. BMC Genom. 2019, 20, 532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ju, L.; Zhai, J.; Song, Y.; Song, J.; Ma, C. miRLocator: A python implementation and web server for predicting miRNAs from Pre-miRNA sequences. Methods Mol. Biol. 2019, 1932, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Natsidis, P.; Kappas, I.; Karlowski, W.M. StarSeeker: An automated tool for mature duplex microRNA sequence identification based on secondary structure modeling of precursor molecule. J. Biol. Res. 2018, 25, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, I.; Kim, K.-B. miRHunter: A tool for predicting microRNA precursors based on combined computational method. BioChip J. 2017, 11, 164–171. [Google Scholar] [CrossRef]
- Wu, X.; Kim, T.-K.; Baxter, D.; Scherler, K.; Gordon, A.; Fong, O.; Etheridge, A.; Galas, D.J.; Wang, K. sRNAnalyzer—A flexible and customizable small RNA sequencing data analysis pipeline. Nucleic Acids Res. 2017, 45, 12140–12151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glogovitis, I.; Yahubyan, G.; Würdinger, T.; Koppers-Lalic, D.; Baev, V. miRGalaxy: Galaxy-Based Framework for Interactive Analysis of microRNA and isomiR Sequencing Data. Cancers 2021, 13, 5663. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res. 2011, 39, W155–W159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, D.; Yao, Y.; Yi, M. PlantMirP2: An Accurate, Fast and Easy-To-Use Program for Plant Pre-miRNA and miRNA Prediction. Genes 2021, 12, 1280. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wan, Y.; Ito, H.; Ma, X.; Xie, T.; Wang, T.; Shao, C.; Meng, Y. PmiRDiscVali: An integrated pipeline for plant microRNA discovery and validation. BMC Genom. 2019, 20, 133. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Z.; Wang, Y.; Li, L.; Yang, X. miRDeep-P2: Accurate and fast analysis of the microRNA transcriptome in plants. Bioinformatics 2018, 35, 2521–2522. [Google Scholar] [CrossRef] [PubMed]
- Thody, J.; Folkes, L.; Medina-Calzada, Z.; Xu, P.; Dalmay, T.; Moulton, V. PAREsnip2: A tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules. Nucleic Acids Res. 2018, 46, 8730–8739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Silva, B.V.R.; Cui, J. miRDis: A Web tool for endogenous and exogenous microRNA discovery based on deep-sequencing data analysis. Brief. Bioinform. 2017, 19, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Ayachit, G.; Pandya, H.; Das, J. miRDetect: A combinatorial approach for automated detection of novel miRNA precursors from plant EST data using homology and Random Forest classification. Genomics 2020, 112, 3201–3206. [Google Scholar] [CrossRef] [PubMed]
- Tseng, K.-C.; Chiang-Hsieh, Y.-F.; Pai, H.; Chow, C.-N.; Lee, S.-C.; Zheng, H.-Q.; Kuo, P.-L.; Li, G.-Z.; Hung, Y.-C.; Lin, N.-S.; et al. microRPM: A microRNA prediction model based only on plant small RNA sequencing data. Bioinformatics 2017, 34, 1108–1115. [Google Scholar] [CrossRef]
- Patil, A.H.; Halushka, M.K. miRge3.0: A comprehensive microRNA and tRF sequencing analysis pipeline. NAR Genom. Bioinform. 2021, 3, lqab068. [Google Scholar] [CrossRef] [PubMed]
- Thody, J.; Folkes, L.; Moulton, V. NATpare: A pipeline for high-throughput prediction and functional analysis of nat-siRNAs. Nucleic Acids Res. 2020, 48, 6481–6490. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Feng, J.; Wang, R.; Zhang, B.; Zhang, H.; Huang, J. PhasiRNAnalyzer: An integrated analyser for plant phased siRNAs. RNA Biol. 2021, 18, 1622–1629. [Google Scholar] [CrossRef] [PubMed]
- Adkar-Purushothama, C.; Iyer, P.; Sano, T.; Perreault, J.-P. sRNA Profiler: A User-Focused Interface for Small RNA Mapping and Profiling. Cells 2021, 10, 1771. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Gao, S.; Padmanabhan, C.; Li, R.; Galvez, M.; Gutierrez, D.; Fuentes, S.; Ling, K.-S.; Kreuze, J.; Fei, Z. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology 2017, 500, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Barrero, R.A.; Napier, K.R.; Cunnington, J.; Liefting, L.; Keenan, S.; Frampton, R.A.; Szabó, T.O.; Bulman, S.; Hunter, A.; Ward, L.; et al. An internet-based bioinformatics toolkit for plant biosecurity diagnosis and surveillance of viruses and viroids. BMC Bioinform. 2017, 18, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Ding, C.; Lang, X.; Guo, G.; Chen, J.; Su, X.; Liu, Q.; Ding, C.; Lang, X.; Guo, G.; et al. Small noncoding RNA discovery and profiling with sRNAtools based on high-throughput sequencing. Brief. Bioinform. 2019, 22, 463–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, K.-C.; Chiang-Hsieh, Y.-F.; Pai, H.; Wu, N.-Y.; Zheng, H.-Q.; Chow, C.-N.; Lee, T.-Y.; Chang, S.-B.; Lin, N.-S.; Chang, W.-C. sRIS: A Small RNA Illustration System for Plant Next-Generation Sequencing Data Analysis. Plant Cell Physiol. 2020, 61, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Gebert, D.; Hewel, C.; Rosenkranz, D. unitas: The universal tool for annotation of small RNAs. BMC Genom. 2017, 18, 644. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Ko, E.A.; Sanders, K.M.; Chen, Q.; Zhou, T. SPORTS1.0: A tool for annotating and profiling non-coding RNAs optimized for rRNA- and tRNA-derived small RNAs. Genom. Proteom. Bioinform. 2018, 16, 144–151. [Google Scholar] [CrossRef]
- Fletcher, S.J.; Boden, M.; Mitter, N.; Carroll, B. SCRAM: A pipeline for fast index-free small RNA read alignment and visualization. Bioinformatics 2018, 34, 2670–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio-Puerta, E.; Lebrón, R.; Rueda, A.; Gómez-Martín, C.; Giannoukakos, S.; Jáspez, D.; Medina, J.M.; Zubković, A.; Jurak, I.; Fromm, B.; et al. sRNAbench and sRNAtoolbox 2019: Intuitive fast small RNA profiling and differential expression. Nucleic Acids Res. 2019, 47, W530–W535. [Google Scholar] [CrossRef] [Green Version]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2010, 39, D152–D157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fromm, B.; Høye, E.; Domanska, D.; Zhong, X.; Aparicio-Puerta, E.; Ovchinnikov, V.; Umu, S.U.; Chabot, P.J.; Kang, W.; Aslanzadeh, M.; et al. MirGeneDB 2.1: Toward a complete sampling of all major animal phyla. Nucleic Acids Res. 2021, 50, D204–D210. [Google Scholar] [CrossRef] [PubMed]
- Hofacker, I.L. Vienna RNA secondary structure server. Nucleic Acids Res. 2003, 31, 3429–3431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahlgren, N.; Carrington, J.C. miRNA Target Prediction in Plants. Methods Mol. Biol. 2010, 592, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Chorostecki, U.P.; Palatnik, J.F. comTAR: A web tool for the prediction and characterization of conserved microRNA targets in plants. Bioinformatics 2014, 30, 2066–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.-J.; Ma, Y.-K.; Chen, T.; Wang, M.; Wang, X.-J. PsRobot: A web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 2012, 40, W22–W28. [Google Scholar] [CrossRef] [PubMed]
- Addo-Quaye, C.; Miller, W.; Axtell, M.J. CleaveLand: A pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 2008, 25, 130–131. [Google Scholar] [CrossRef] [PubMed]
- Brousse, C.; Liu, Q.; Beauclair, L.; Deremetz, A.; Axtell, M.J.; Bouché, N. A non-canonical plant microRNA target site. Nucleic Acids Res. 2014, 42, 5270–5279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakrana, A.; Hammond, R.; Patel, P.; Nakano, M.; Meyers, B.C. sPARTA: A parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets, including new miRNA target-identification software. Nucleic Acids Res. 2014, 42, e139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, R.; Bernhart, S.H.; Honer Zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef]
- Zhai, J.; Arikit, S.; Simon, S.A.; Kingham, B.F.; Meyers, B.C. Rapid construction of parallel analysis of RNA end (PARE) libraries for Illumina sequencing. Methods 2014, 67, 84–90. [Google Scholar] [CrossRef] [PubMed]
- German, M.A.; Pillay, M.; Jeong, D.-H.; Hetawal, A.; Luo, S.; Janardhanan, P.; Kannan, V.; Rymarquis, A.L.; Nobuta, K.; German, R.; et al. Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol. 2008, 26, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Gu, L.; Li, P.; Song, X.; Wei, L.; Chen, Z.; Cao, X. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front. Biol. 2010, 5, 67–90. [Google Scholar] [CrossRef]
- Shamimuzzaman, M.; Vodkin, L. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genom. 2012, 13, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Tai, H.; Sun, S.; Zhang, F.; Xu, Y.; Li, W.-X. Cloning and Characterization of Maize miRNAs Involved in Responses to Nitrogen Deficiency. PLoS ONE 2012, 7, e29669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
miRNA and isomiR Tools: | |
---|---|
Tool Name | 1. IsomiR_Window |
Type | Local, VM |
Description |
|
Ref. and tool URL | Vasconcelos et al. [103] https://github.com/andreiaamaral/IsomiR-Window/, accessed on 27 March 2022 |
Tool Name | 2. PAREameters |
Type | Local |
Description |
|
Ref. and tool URL | Thody et al. [104] https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench, accessed on 27 March 2022 |
Tool Name | 3. QuickMIRSeq |
Type | Local, Linux |
Description |
|
Ref. and tool URL | Zhao et al. [105] https://sourceforge.net/projects/quickmirseq/files/, accessed on 27 March 2022 |
Tool Name | 4. Iwa-miRNA |
Type | Web, Galaxy |
Description |
|
Ref. and tool URL | Zhang et al. [106] http://iwa-mirna.omicstudio.cloud/, accessed on 27 March 2022 |
Tool Name | 5. miRCat2 |
Type | Local, MAC, Linux and Windows |
Description |
|
Ref. and tool URL | Paicu et al. [107] https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench, accessed on 27 March 2022 |
Tool Name | 6. Mirnovo |
Type | Web, Local, Mac, Linux |
Description |
|
Ref. and tool URL | Vitsios et al. [108] https://github.com/dvitsios/mirnovo, accessed on 27 March 2022 |
Tool Name | 7. MiRPursuit |
Type | Local, Linux, Unix, Mac |
Description |
|
Ref. and tool URL | Chaves et al. [109] https://github.com/forestbiotech-lab/miRPursuit, accessed on 27 March 2022 |
Tool Name | 8. isomiR2Function |
Type | Local, Linux, Mac |
Description |
|
Ref. and tool URL | Yang et al. [110] https://github.com/347033139/isomiR2Function, accessed on 27 March 2022 |
Tool Name | 9. TarHunter |
Type | Local, Linux |
Description |
|
Ref. and tool URL | Ma et al. [111] https://github.com/XMaBio, accessed on 27 March 2022 |
Tool Name | 10. MirCure |
Type | Local, Linux, MAC OS |
Description |
|
Ref. and tool URL | Ylla et al. [112] https://github.com/ConesaLab/MirCure, accessed on 27 March 2022 |
Tool Name | 11. PlantMiRP-Rice |
Type | Local, Linux, Win |
Description |
|
Ref. and tool URL | Zhang et al. [113] https://github.com/yygen89/riceMirP, accessed on 27 March 2022 |
Tool Name | 12. mirKwood |
Type | Web, Galaxy, Docker, Local, Unix |
Description |
|
Ref. and tool URL | Guigon et al. [114] https://bioinfo.cristal.univ-lille.fr/mirkwood/mirkwood.php, accessed on 27 March 2022 |
Tool Name | 13. miRLocator |
Type | Local, Win, MacOS, Linux, Docker, web |
Description |
|
Ref. and tool URL | Zhang et al. [115] https://github.com/cma2015/miRLocator, accessed on 27 March 2022 |
Tool Name | 14. StarSeeker |
Type | Phyton, Local |
Description |
|
Ref. and tool URL | Natsidis et al. [116] https://biopython.org/, accessed on 27 March 2022 |
Tool Name | 15. miRHunter |
Type | Web |
Description |
|
Ref. and tool URL | Koh et al. [117] https://repository.hanyang.ac.kr/handle/20.500.11754/114034, accessed on 27 March 2022 |
Tool Name | 16. sRNAnalyzer |
Type | Local, Linux |
Description |
|
Ref. and tool URL | Wu et al. [118] http://srnanalyzer.systemsbiology.net/, accessed on 27 March 2022 |
Tool Name | 17. mirGalaxy |
Type | Web, Docker, Mac, Win, Linux |
Description |
|
Ref. and tool URL | Glogovitis et al. [119] https://hub.docker.com/r/glogobyte/mirgalaxy, accessed on 27 March 2022 |
Tool Name | 18. psRNATarget |
Type | Web |
Description |
|
Ref. and tool URL | Dai et al. [120] http://plantgrn.noble.org/psRNATarget/, accessed on 27 March 2022 |
Tool Name | 19. PlantMirP2 |
Type | Local, Docker, Web |
Description |
|
Ref. and tool URL | Fan et al. [121] https://github.com/wuqiansibai/plantMiRP2/releases/tag/v1.0/, accessed on 27 March 2022 |
Tool Name | 20. PmiRDiscVali |
Type | Local, Perl |
Description |
|
Ref. and tool URL | Yu et al. [122] https://github.com/unincrna/pmirdv, accessed on 27 March 2022 |
Tool Name | 21. miRDeep-P2 (update) |
Type | Local, Linux |
Description |
|
Ref. and tool URL | Wang et al. [123] https://sourceforge.net/projects/mirdp2/, accessed on 27 March 2022 |
Tool Name | 22. PAREsnip2 |
Type | Local |
Description |
|
Ref. and tool URL | Thody et al. [124] https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench/, accessed on 27 March 2022 |
Tool Name | 23. miRDis |
Type | Web |
Description |
|
Ref. and tool URL | Zhang et al. [125] http://sbbi-panda.unl.edu/miRDis/download.php, accessed on 27 March 2022 |
Tool Name | 24. miRDetect |
Type | Local, Python |
Description |
|
Ref. and tool URL | Ayachit et al. [126] https://github.com/Garima268/miRDetect, accessed on 27 March 2022 |
Tool Name | 25. microRPM |
Type | Local, Perl |
Description |
|
Ref. and tool URL | K. C. Tseng et al. [127] http://microrpm.itps.ncku.edu.tw/, accessed on 27 March 2022 |
Tool Name | 26. miRge3.0 |
Type | Local, Docker, Python |
Description |
|
Ref. and tool URL | Patil et al. [128] https://github.com/mhalushka/miRge3.0, accessed on 27 March 2022 |
natsiRNA tools | |
Tool Name | 1. NATpare |
Type | Java, Mac, Win, Linux |
Description |
|
Ref. and tool URL | Thody et al. [129] https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench/, accessed on 27 March 2022 |
phasi/tasiRNA tools | |
Tool Name | 1. PhasiRNAnalyzer |
Type | Web |
Description |
|
Ref. and tool URL | Fei et al. [130] https://cbi.njau.edu.cn/PPSA/, accessed on 27 March 2022 |
vsiRNA tools | |
Tool Name | 1. sRNAProfiler |
Type | Local, MacOS, Unix, Windows |
Description |
|
Ref. and tool URL | Adkar-Purushothama et al. [131] https://github.com/paviudes/vbind, accessed on 27 March 2022 |
Tool Name | 2. VirusDetect |
Type | Local, Linux |
Description |
|
Ref. and tool URL | Zheng et al. [132] http://virusdetect.feilab.net/cgi-bin/virusdetect/vd_download.cgi, accessed on 27 March 2022 |
Tool Name | 3. VSD toolkit |
Type | Web |
Description |
|
Ref. and tool URL | Barrero et al. [133] https://github.com/muccg/yabi, accessed on 27 March 2022 |
Misc. tools | |
Tool Name | 1. sRNAtools |
Type | Web, Docker |
Description |
|
Ref. and tool URL | Liu et al. [134] https://bioinformatics.caf.ac.cn/sRNAtools, accessed on 27 March 2022 |
Tool Name | 2. sRIS (Small RNA Illustration System) |
Type | Web, Linux |
Description |
|
Ref. and tool URL | Tseng et al. [135] http://sris.itps.ncku.edu.tw/, accessed on 27 March 2022 |
Tool Name | 3. Unitas |
Type | Local, Linux, Mac, Windows |
Description |
|
Ref. and tool URL | Gebert et al. [136] https://sourceforge.net/projects/unitas/, accessed on 27 March 2022 |
Tool Name | 4. SPORTS1.0 |
Type | Local, Linux |
Description |
|
Ref. and tool URL | Shi et al. [137] https://github.com/junchaoshi/sports1.1, accessed on 27 March 2022 |
Tool Name | 5. SCRAM |
Type | Local, Docker |
Description |
|
Ref. and tool URL | Fletcher et al. [138] https://sfletc.github.io/scram/, accessed on 27 March 2022 |
Tool Name | 6. sRNAbench and sRNAtoolbox (update) |
Type | Web server, Docker |
Description |
|
Ref. and tool URL | Aparicio-Puerta et al. [139] https://arn.ugr.es/srnatoolbox/, accessed on 27 March 2022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, Z.; Minkov, G.; Gisel, A.; Yahubyan, G.; Minkov, I.; Toneva, V.; Baev, V. The Multiverse of Plant Small RNAs: How Can We Explore It? Int. J. Mol. Sci. 2022, 23, 3979. https://doi.org/10.3390/ijms23073979
Ivanova Z, Minkov G, Gisel A, Yahubyan G, Minkov I, Toneva V, Baev V. The Multiverse of Plant Small RNAs: How Can We Explore It? International Journal of Molecular Sciences. 2022; 23(7):3979. https://doi.org/10.3390/ijms23073979
Chicago/Turabian StyleIvanova, Zdravka, Georgi Minkov, Andreas Gisel, Galina Yahubyan, Ivan Minkov, Valentina Toneva, and Vesselin Baev. 2022. "The Multiverse of Plant Small RNAs: How Can We Explore It?" International Journal of Molecular Sciences 23, no. 7: 3979. https://doi.org/10.3390/ijms23073979
APA StyleIvanova, Z., Minkov, G., Gisel, A., Yahubyan, G., Minkov, I., Toneva, V., & Baev, V. (2022). The Multiverse of Plant Small RNAs: How Can We Explore It? International Journal of Molecular Sciences, 23(7), 3979. https://doi.org/10.3390/ijms23073979