Protein Kinase C (Pkc)-δ Mediates Arginine-Induced Glucagon Secretion in Pancreatic α-Cells
Abstract
:1. Introduction
2. Results
2.1. Knockdown of Pkcδ Decreased Glucagon Secretion in InR1G9 Cells
2.2. Arginine-Induced Glucagon Secretion Was Decreased by Pkcδ Knockdown in InR1G9 Cells
2.3. Establishment of α-Cell-Specific Pkcδ-Knockout Mice
2.4. Arginine-Induced Glucagon Secretion Decreased in αPkcδKO Mice and the Islets from αPkcδKO Mice
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Glucagon Secretion Assay
4.3. Protein Extraction and Western Blotting
4.4. RNA Extraction and Quantitative PCR
4.5. siRNA Transfection
4.6. MARCKS Transfection and Immunocytochemistry
4.7. Animals and Physiological Experiments
4.8. Frozen Section Preparation and Immunohistochemistry
4.9. PCR Detecting the Recombined Allele
4.10. Pancreatic Islet Isolation
4.11. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Abbreviations
cAMP | cyclic adenosine monophosphate |
CBD | common bile duct |
CF | catalytic fragment |
DAG | diacylglycerol |
FFA | free fatty acid |
Gcg | glucagon |
GFP | green fluorescent protein |
IBMX | 3-Isobutyl 1-methylxanthine |
ITT | insulin tolerance test |
IPGTT | intraperitoneal glucose tolerance test |
KATP | adenosine triphosphate-sensitive potassium |
KO | knockout |
KRB | krebs ringer buffer |
MARCKS | myristoylated alanine-rich C-kinase substrate |
NDS | normal donkey serum |
PFA | paraformaldehyde |
Pkc | protein kinase C |
PMA | phorbol 12-myristate 13-acetate |
siRNA | small interfering ribonucleic acid |
SNARE | soluble n-ethylmaleimide sensitive factor attachment protein receptor |
SSTR | somatostatin receptor |
T2DM | type 2 diabetes |
VDCC | voltage-dependent calcium channels |
αPkcδKO | α-cell-specific Pkcδ knockout |
References
- Hancock, A.S.; Du, A.; Liu, J.; Miller, M.; May, C.L. Glucagon deficiency reduces hepatic glucose production and improves glucose tolerance in adult mice. Mol. Endocrinol. 2010, 24, 1605–1614. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Wang, M.Y.; Du, X.Q.; Charron, M.J.; Unger, R.H. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 2011, 60, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Berglund, E.D.; Wang, M.Y.; Fu, X.; Yu, X.; Charron, M.J.; Burgess, S.C.; Unger, R.H. Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc. Natl. Acad. Sci. USA 2012, 109, 14972–14976. [Google Scholar] [CrossRef] [PubMed]
- Unger, R.H.; Cherrington, A.D. Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover. J. Clin. Investig. 2012, 122, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Barg, S.; Galvanovskis, J.; Göpel, S.O.; Rorsman, P.; Eliasson, L. Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting α-cells. Diabetes 2000, 49, 1500–1510. [Google Scholar] [CrossRef] [PubMed]
- Gilon, P. The role of alpha-cells in islet function and glucose homeostasis in health and type 2 diabetes. J. Mol. Biol. 2020, 432, 1367–1394. [Google Scholar] [CrossRef]
- Le Marchand, S.J.; Piston, D.W. Glucose suppression of glucagon secretion: Metabolic and calcium responses from α-cells in intact mouse pancreatic islets. J. Biol. Chem. 2010, 285, 14389–14398. [Google Scholar] [CrossRef]
- Le Marchand, S.J.; Piston, D.W. Glucose decouples intracellular Ca2+ activity from glucagon secretion in mouse pancreatic islet α-cells. PLoS ONE 2012, 7, e47084. [Google Scholar] [CrossRef]
- Quoix, N.; Cheng-Xue, R.; Mattart, L.; Zeinoun, Z.; Guiot, Y.; Beauvois, M.C.; Henquin, J.C.; Gilon, P. Glucose and pharmacological modulators of ATP-sensitive K+ channels control [Ca2+]c by different mechanisms in isolated mouse α-cells. Diabetes 2009, 58, 412–421. [Google Scholar] [CrossRef]
- Dickerson, M.T.; Dadi, P.K.K.; Altman, M.K.; Verlage, K.R.; Thorson, A.S.; Jordan, K.L.; Vierra, N.C.; Amarnath, G.; Jacobson, D.A. Glucose-mediated inhibition of calcium-activated potassium channels limits α-cell calcium influx and glucagon secretion. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E646–E659. [Google Scholar] [CrossRef]
- Yu, Q.; Shuai, H.; Ahooghalandari, P.; Gylfe, E.; Tengholm, A. Glucose controls glucagon secretion by directly modulating cAMP in α cells. Diabetologia 2019, 62, 1212–1224. [Google Scholar] [CrossRef]
- Elliott, A.D.; Ustione, A.; Piston, D.W. Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α-cell by lowering cAMP. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E130–E143. [Google Scholar] [CrossRef] [PubMed]
- Briant, L.J.B.; Reinbothe, T.M.; Spiliotis, I.; Miranda, C.; Rodriguez, B.; Rorsman, P. δ-cells, and β-cells are electrically coupled and regulate α-cell activity via somatostatin. J. Physiol. 2018, 596, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Cejvan, K.; Coy, D.H.; Holst, J.J.; Cerasi, E.; Efendic, S. Gliclazide directly inhibits arginine-induced glucagon release. Diabetes 2002, 51, S381–S384. [Google Scholar] [CrossRef] [PubMed]
- Kikkawa, U.; Matsuzaki, H.; Yamamoto, T. Protein kinase C8 (PKC8): Activation mechanisms and functions. J. Buxhem. 2002, 132, 831–839. [Google Scholar]
- Reyland, M.E. Protein kinase C isoforms: Multi-functional regulators of cell life and death. Front. Biosci. 2009, 14, 2386–2399. [Google Scholar] [CrossRef]
- Salzer, E.; Santos-Valente, E.; Keller, B.; Warnatz, K.; Boztug, K. Protein kinase C δ: A gatekeeper of immune homeostasis. J. Clin. Immunol. 2016, 36, 631–640. [Google Scholar] [CrossRef]
- Suzuki, Y.; Zhang, H.; Saito, N.; Kojima, I.; Urano, T.; Mogami, H. Glucagon-like peptide 1 activates protein kinase C through Ca2+-dependent activation of phospholipase C in insulin-secreting cells. J. Biol. Chem. 2006, 281, 28499–28507. [Google Scholar] [CrossRef]
- Xia, P.; Inoguchi, T.; Kern, T.S.; Engerman, R.L.; Oates, P.J.; King, G.L. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes 1994, 43, 1122–1129. [Google Scholar] [CrossRef]
- Geraldes, P.; Hiraoka-Yamamoto, J.; Matsumoto, M.; Clermont, A.; Leitges, M.; Marette, A.; Aiello, L.P.; Kern, T.S.; King, G.L. Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat. Med. 2009, 15, 1298–1306. [Google Scholar] [CrossRef]
- Mima, A.; Kitada, M.; Geraldes, P.; Li, Q.; Matsumoto, M.; Mizutani, K.; Qi, W.; Li, C.; Leitges, M.; Rask-Madsen, C.; et al. Glomerular VEGF resistance induced by PKCdelta/SHP-1 activation and contribution to diabetic nephropathy. FASEB J. 2012, 26, 2963–2974. [Google Scholar] [CrossRef] [PubMed]
- Hennige, A.M.; Häring, H.U.; Ranta, F.; Heinzelmann, I.; Düfer, M.; Lutz, S.Z.; Lammers, R.; Drews, G.; Ullrich, A.S. Overexpression of kinase-negative protein kinase Cδ in pancreatic β-cells protects mice from diet-induced glucose intolerance and β-cell dysfunction. Diabetes 2010, 59, 119–127. [Google Scholar] [CrossRef] [PubMed]
- De Marinis, Y.Z.; Zhang, E.; Amisten, S.; Taneera, J.; Renstrom, E.; Rorsman, P.; Eliasson, L. Enhancement of glucagon secretion in mouse and human pancreatic alpha cells by protein kinase C (PKC) involves intracellular trafficking of PKCα and PKCδ. Diabetologia 2010, 53, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Hii, C.S.; Stutchfield, J.; Howell, S.L. Enhancement of glucagon secretion from isolated rat islets of Langerhans by phorbol 12-myristate 13-acetate. Biochem. J. 1986, 233, 287–289. [Google Scholar] [CrossRef]
- Yamamoto, K.; Mizuguchi, H.; Tokashiki, N.; Kobayashi, M.; Tamaki, M.; Sato, Y.; Fukui, H.; Yamauchi, A. Protein kinase C- signaling regulates glucagon secretion from pancreatic islets. J. Med. Investig. 2017, 64, 122–128. [Google Scholar] [CrossRef]
- Takaki, R.; Ono, J.; Nakamura, M.; Yokogawa, Y.; Kumae, S.; Hiraoka, T.; Yamaguchi, K.; Hamaguchi, K.; Uchida, S. Isolation of glucagon-secreting cell lines by cloning insulinoma cells. In Vitro Cell. Dev. Biol. 1986, 22, 120–126. [Google Scholar] [CrossRef]
- Ono, J.; Yamaguchi, K.; Okeda, T.; Asano, T.; Takaki, R. Characterization of secretory responses of a glucagon-producing In-R1-G9 cell line. Duthetes Res. Clin. Pract. 1988, 4, 203–207. [Google Scholar] [CrossRef]
- Soltoff, S.P. Rottlerin: An inappropriate and ineffective inhibitor of PKCδ. Trends Pharmacol. Sci. 2007, 28, 453–458. [Google Scholar] [CrossRef]
- Song, M.; Matkovich, S.J.; Zhang, Y.; Hammer, D.J.; Dorn, G.W., 2nd. Combined cardiomyocyte PKCδ and PKCε gene deletion uncover their central role in restraining developmental and reactive heart growth. Sci. Signal. 2015, 8, ra39. [Google Scholar] [CrossRef]
- Herrera, P.L. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 2000, 127, 2317–2322. [Google Scholar] [CrossRef]
- Tuduri, E.; Denroche, H.C.; Kara, J.A.; Asadi, A.; Fox, J.K.; Kieffer, T.J. Partial ablation of leptin signaling in mouse pancreatic α-cells does not alter either glucose or lipid homeostasis. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E748–E755. [Google Scholar] [CrossRef] [PubMed]
- Shiota, C.; Prasadan, K.; Guo, P.; Fusco, J.; Xiao, X.; Gittes, G.K. Gcg (CreERT2) knockin mice as a tool for genetic manipulation in pancreatic alpha cells. Diabetologia 2017, 60, 2399–2408. [Google Scholar] [CrossRef] [PubMed]
- Madisen, L.; Zwingman, T.A.; Sunkin, S.M.; Oh, S.W.; Zariwala, H.A.; Gu, H.; Ng, L.L.; Palmiter, R.D.; Hawrylycz, M.J.; Jones, A.R.; et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 2010, 13, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Yamamoto, M.; Mizoguchi, H.; Watanabe, C.; Ito, R.; Yamamoto, S.; Sun, X.Y.; Murata, Y. Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet α-cells but not of intestinal L-cells. Mol. Endocrinol. 2009, 23, 1990–1999. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.A.; Pedersen, M.G.; Vikman, J.; Eliasson, L. Glucose-dependent docking and SNARE protein-mediated exocytosis in mouse pancreatic alpha-cell. Pflug. Arch. 2011, 462, 443–454. [Google Scholar] [CrossRef]
- Kawamori, D.; Kurpad, A.J.; Hu, J.; Liew, C.W.; Shih, J.L.; Ford, E.L.; Herrera, P.L.; Polonsky, K.S.; McGuinness, O.P.; Kulkarni, R.N. Insulin signaling in α cells modulates glucagon secretion In Vivo. Cell Metab. 2009, 9, 350–361. [Google Scholar] [CrossRef]
- Ichikawa, R.; Takano, K.; Fujimoto, K.; Motomiya, T.; Kobayashi, M.; Kitamura, T.; Shichiri, M. Basal glucagon hypersecretion and response to oral glucose load in prediabetes and mild type 2 diabetes. Endocr. J. 2019, 66, 663–675. [Google Scholar] [CrossRef]
- Kobayashi, M.; Satoh, H.; Matsuo, T.; Kusunoki, Y.; Tokushima, M.; Watada, H.; Namba, M.; Kitamura, T. Plasma glucagon levels measured by sandwich ELISA are correlated with impaired glucose tolerance in type 2 diabetes. Endocr. J. 2020, 63, 903–922. [Google Scholar] [CrossRef]
- Dorrell, C.; Grompe, M.T.; Pan, F.C.; Zhong, Y.; Canaday, P.S.; Shultz, L.D.; Greiner, D.L.; Wright, C.V.; Streeter, P.R.; Grompe, M. Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers. Mol. Cell. Endocrinol. 2011, 339, 144–150. [Google Scholar] [CrossRef]
- Muraro, M.J.; Dharmadhikari, G.; Grun, D.; Groen, N.; Dielen, T.; Jansen, E.; van Gurp, L.; Engelse, M.A.; Carlotti, F.; de Koning, E.J. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 2016, 3, 385–394.e3. [Google Scholar] [CrossRef]
- Zadeh, E.H.G.; Huang, Z.; Xia, J.; Li, D.; Davidson, H.W.; Li, W.H. ZIGIR, a granule-specific Zn2+ indicator, reveals human islet alpha cell heterogeneity. Cell Rep. 2020, 32, 107904. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honzawa, N.; Fujimoto, K.; Kobayashi, M.; Kohno, D.; Kikuchi, O.; Yokota-Hashimoto, H.; Wada, E.; Ikeuchi, Y.; Tabei, Y.; Dorn, G.W., II; et al. Protein Kinase C (Pkc)-δ Mediates Arginine-Induced Glucagon Secretion in Pancreatic α-Cells. Int. J. Mol. Sci. 2022, 23, 4003. https://doi.org/10.3390/ijms23074003
Honzawa N, Fujimoto K, Kobayashi M, Kohno D, Kikuchi O, Yokota-Hashimoto H, Wada E, Ikeuchi Y, Tabei Y, Dorn GW II, et al. Protein Kinase C (Pkc)-δ Mediates Arginine-Induced Glucagon Secretion in Pancreatic α-Cells. International Journal of Molecular Sciences. 2022; 23(7):4003. https://doi.org/10.3390/ijms23074003
Chicago/Turabian StyleHonzawa, Norikiyo, Kei Fujimoto, Masaki Kobayashi, Daisuke Kohno, Osamu Kikuchi, Hiromi Yokota-Hashimoto, Eri Wada, Yuichi Ikeuchi, Yoko Tabei, Gerald W. Dorn, II, and et al. 2022. "Protein Kinase C (Pkc)-δ Mediates Arginine-Induced Glucagon Secretion in Pancreatic α-Cells" International Journal of Molecular Sciences 23, no. 7: 4003. https://doi.org/10.3390/ijms23074003
APA StyleHonzawa, N., Fujimoto, K., Kobayashi, M., Kohno, D., Kikuchi, O., Yokota-Hashimoto, H., Wada, E., Ikeuchi, Y., Tabei, Y., Dorn, G. W., II, Utsunomiya, K., Nishimura, R., & Kitamura, T. (2022). Protein Kinase C (Pkc)-δ Mediates Arginine-Induced Glucagon Secretion in Pancreatic α-Cells. International Journal of Molecular Sciences, 23(7), 4003. https://doi.org/10.3390/ijms23074003