Identification of Secreted Protein Gene-Based SNP Markers Associated with Virulence Phenotypes of Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen
Abstract
:1. Introduction
2. Results
2.1. Distribution of Avirulence/Virulence Phenotypes
2.2. SP-SNP Markers
2.3. Population Structure
2.4. SP-SNPs Significantly Associated with Avirulent Genes
2.5. Accuracy and Sensitivity for Detecting Avirulence/Virulence Genes
3. Discussion
4. Materials and Methods
4.1. Isolate Selection
4.2. Virulence Data
4.3. DNA Extraction
4.4. Development of SP-SNP Markers
4.5. Isolate Genotyping
4.6. Data Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Abbreviations
SP | Secreted protein |
SNP | Single-nucleotide polymorphism |
Pst | Puccinia striiformis f. sp. tritici |
Yr | Yellow rust |
QTL | Quantitative trait locu |
EMS | Ethyl methanesulfonate |
MLG | Multi-locus genotype |
SSR | Simple sequence repeat |
IT | Infection type |
PCR | Polymerase Chain Reaction |
CA | California |
USA | United States of America |
MAF | Minor allele frequency |
GAPIT | Genome Association and Prediction Integrated Tool |
P | Probability value |
PCA | Principal component analysis |
PC | Principal component |
MG | Molecular groups |
EMMA | Efficient Mixed Model Association |
PVE | Percentage of variation explained |
FDR | False detection rate |
GWAS | Genome-wide association study |
LD | Linkage disequilibrium |
KASP | Kompetitive Allele Specific PCR |
References
- Chen, X.M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant. Pathol. 2005, 27, 314–337. [Google Scholar] [CrossRef]
- Chen, X.M. Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Secur. 2020, 12, 239–251. [Google Scholar] [CrossRef]
- Chen, X.M.; Kang, Z.S. History of research, symptoms, taxonomy of the pathogen, host range, distribution, and impact of striperust. In Stripe Rust; Chen, X.M., Kang, Z.S., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 1–33. [Google Scholar]
- Stubbs, R.W. Stripe Rust: The Cereal Rusts II: Disease, Distribution, Epidemiology and Control; Roelfs, A.P., Bushnell, W.R., Eds.; Academic Press, Inc.: New York, NY, USA, 1985; pp. 61–101. [Google Scholar]
- Wellings, C.R. Global status of stripe rust: A review of historical and current threats. Euphytica 2011, 179, 129–141. [Google Scholar] [CrossRef]
- Ali, S.; Gladieux, P.; Leconte, M.; Gautier, A.; Justesen, A.F.; Hovmoller, M.S.; Enjalbert, J.; de Vallavieille-Pope, C. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS Pathog. 2014, 10, e1003903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.; Rodriguez-Algaba, J.; Thach, T.; Sørensen, C.K.; Hansen, J.G.; Lassen, P.; Nazari, K.; Hodson, D.P.; Justesen, A.F.; Hovmøller, M.S. Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front. Plant Sci. 2017, 8, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boshoff, W.; Pretorius, Z.; Van Niekerk, B. Establishment, distribution, and pathogenicity of Puccinia striiformis f. sp. tritici in South Africa. Plant Dis. 2002, 86, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Hovmøller, M.S.; Yahyaoui, A.H.; Milus, E.A.; Justesen, A.F. Rapid global spread of two aggressive strains of a wheat rust fungus. Mol. Ecol. 2008, 17, 3818–3826. [Google Scholar] [CrossRef]
- Hovmøller, M.; Walter, S.; Bayles, R.; Hubbard, A.; Flath, K.; Sommerfeldt, N.; Leconte, M.; Czembor, P.; Rodriguez-Algaba, J.; Thach, T. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 2016, 65, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Hovmøller, M.; Justesen, A.; Brown, J. Clonality and long-distance migration of Puccinia striiformis f. sp. tritici in north-west Europe. Plant Pathol. 2002, 51, 24–32. [Google Scholar] [CrossRef]
- Milus, E.A.; Kristensen, K.; Hovmøller, M.S. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 2009, 99, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.M.; Wang, M.N.; Wan, A.M.; Bai, Q.; Li, M.J.; López, P.F.; Maccaferri, M.; Mastrangelo, A.M.; Barnes, C.W.; Cruz, D.F.C.; et al. Virulence characterization of Puccinia striiformis f. sp. tritici collections from six countries in 2013 to 2020. Can. J. Plant. Pathol. 2021, 43, S308–S322. [Google Scholar]
- Wan, A.M.; Chen, X.M. Virulence Characterization of Puccinia striiformis f. sp. tritici Using a new set of Yr single-gene line differentials in the United States in 2010. Plant Dis. 2014, 98, 1534–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, A.M.; Chen, X.M.; Yuen, J. Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and Comparison with Races in 2010. Plant Dis. 2016, 100, 966–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.L.; Wan, A.M.; Liu, D.C.; Chen, X.M. Changes of races and virulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, in the United States from 1968 to 2009. Plant Dis. 2017, 101, 1522–1532. [Google Scholar] [CrossRef] [Green Version]
- Bai, Q.; Wan, A.M.; Wang, M.N.; See, D.R.; Chen, X.M. Molecular characterization of wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) collections from nine countries. Int. J. Mol. Sci. 2021, 22, 9457. [Google Scholar] [CrossRef]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Catanzariti, A.M.; Dodds, P.N.; Lawrence, G.J.; Ayliffe, M.A.; Ellis, J.G. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 2006, 18, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Dodds, P.N.; Lawrence, G.J.; Catanzariti, A.M.; Teh, T.; Wang, C.I.; Ayliffe, M.A.; Kobe, B.; Ellis, J.G. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. USA 2006, 103, 8888–8893. [Google Scholar] [CrossRef] [Green Version]
- Dodds, P.N.; Lawrence, G.J.; Catanzariti, A.M.; Ayliffe, M.A.; Ellis, J.G. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 2004, 16, 755–768. [Google Scholar] [CrossRef] [Green Version]
- Pernaci, M.; De Mita, S.; Andrieux, A.; Pétrowski, J.; Halkett, F.; Duplessis, S.; Frey, P. Genome-wide patterns of segregation and linkage disequilibrium: The construction of a linkage genetic map of the poplar rust fungus Melampsora larici-populina. Front. Plant Sci. 2014, 5, 454. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.J.; Lei, Y.; Wang, M.N.; Chen, W.Q.; Chen, X.M. An avirulence gene cluster in the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) identified through genetic mapping and whole-genome sequencing of a sexual population. Msphere 2020, 5, e00128-20. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.Y.; Wang, M.N.; Skinner, D.Z.; See, D.R.; Xia, C.J.; Guo, X.H.; Chen, X.M. Inheritance of virulence, construction of a linkage map, and mapping dominant virulence genes in Puccinia striiformis f. sp. tritici through characterization of a sexual population with genotyping-by-sequencing. Phytopathology 2018, 108, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamoun, S. Groovy times: Filamentous pathogen effectors revealed. Curr. Opin. Plant Biol. 2007, 10, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Petre, B.; Joly, D.L.; Duplessis, S. Effector proteins of rust fungi. Front. Plant Sci. 2014, 5, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.X.; Xia, C.J.; Wang, M.N.; Yin, C.T.; Chen, X.M. Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates. BMC Genom. 2020, 21, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.X.; Wang, M.N.; See, D.R.; Chen, X.M. Ethyl-methanesulfonate mutagenesis generated diverse isolates of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. World J. Microbiol. Biotechnol. 2019, 35, 28. [Google Scholar] [CrossRef] [PubMed]
- Dagvadorj, B.; Ozketen, A.C.; Andac, A.; Duggan, C.; Bozkurt, T.O.; Akkaya, M.S. A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface. Sci. Rep. 2017, 7, 1141. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.X.; Wang, J.F.; Ji, S.; Chen, Z.J.; Xu, J.H.; Tang, C.L.; Chen, S.T.; Kang, Z.S.; Wang, X.J. Candidate effector Pst_8713 impairs the plant immunity and contributes to virulence of Puccinia striiformis f. sp. tritici. Front. Plant Sci. 2018, 9, 1294. [Google Scholar] [CrossRef]
- Yang, Q.; Huai, B.Y.; Lu, Y.X.; Cai, K.Y.; Guo, J.; Zhu, X.G.; Kang, Z.S.; Guo, J. A stripe rust effector Pst18363 targets and stabilises TaNUDX23 that promotes stripe rust disease. New Phytol. 2020, 225, 880–895. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.M.; Kang, Z.S. Gene sequencing reveals heterokaryotic variations and evolutionary mechanisms in Puccinia striiformis. Open J. Genet. 2012, 1, 253925. [Google Scholar]
- Xia, C.J.; Wan, A.M.; Wang, M.N.; Jiwan, D.A.; See, D.R.; Chen, X.M. Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States. Fungal Biol. 2016, 120, 729–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Wang, M.N.; Wan, A.M.; Xia, C.J.; See, D.R.; Zhang, M.; Chen, X.M. Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination. Phytopathology 2017, 107, 329–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, C.J.; Wang, M.N.; Wan, A.M.; Jiwan, D.A.; See, D.R.; Chen, X.M. Association analysis of SP-SNPs and avirulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. Am. J. Plant Sci. 2016, 7, 126. [Google Scholar] [CrossRef]
- Bai, Q.; Wan, A.M.; Wang, M.N.; See, D.R.; Chen, X.M. Population diversity, dynamics, and differentiation of wheat stripe rust pathogen Puccinia striiformis f. sp. tritici from 2010 to 2017 and comparison with 1968 to 2009 in the United States. Front. Microbiol. 2021, 12, 696835. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.J.; Wang, M.N.; Cornejo, O.E.; Jiwan, D.A.; See, D.R.; Chen, X.M. Secretome characterization and correlation analysis reveal putative pathogenicity mechanisms and identify candidate avirulence genes in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Front. Microbiol. 2017, 8, 2394. [Google Scholar] [CrossRef]
- Wan, A.M.; Wang, X.J.; Kang, Z.S.; Chen, X.M. Variability of the stripe rust pathogen. In Stripe Rust; Springer: New York, NY, USA, 2017; pp. 35–154. [Google Scholar]
- Wang, M.N.; Wan, A.M.; Chen, X.M. Race characterization of Puccinia striiformis f. sp. tritici in the United States from 2013 to 2017. Plant Dis. 2022. [Google Scholar] [CrossRef]
- Li, Y.X.; Xia, C.J.; Wang, M.N.; Yin, C.T.; Chen, X.M. Genome sequence resource of a Puccinia striiformis isolate infecting wheatgrass. Phytopathology 2019, 109, 1509–1512. [Google Scholar] [CrossRef] [Green Version]
- Schwessinger, B.; Sperschneider, J.; Cuddy, W.S.; Garnica, D.P.; Miller, M.E.; Taylor, J.M.; Dodds, P.N.; Figueroa, M.; Park, R.F.; Rathjen, J.P. A near-complete haplotype-phased genome of the dikaryotic wheat stripe rust fungus Puccinia striiformis f. sp. tritici reveals high interhaplotype diversity. mBio 2018, 9, e02275-17. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.J.; Wang, M.N.; Yin, C.T.; Cornejo, O.E.; Hulbert, S.H.; Chen, X.M. Genome sequence resources for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei). Mol. Plant-Microbe Interact. 2018, 31, 1117–1120. [Google Scholar] [CrossRef]
- Balding, D.J. A tutorial on statistical methods for population association studies. Nat. Rev. Genet. 2006, 7, 781–791. [Google Scholar] [CrossRef]
- Liu, T.L.; Bai, Q.; Wang, M.N.; Li, Y.X.; Wan, A.M.; See, D.R.; Xia, C.J.; Chen, X.M. Genotyping Puccinia striiformis f. sp. tritici Isolates with SSR and SP-SNP Markers Reveals Dynamics of the Wheat Stripe Rust Pathogen in the United States from 1968 to 2009 and Identifies Avirulence Associated Markers. Phytopathology 2021, 111, 1828–1839. [Google Scholar] [CrossRef] [PubMed]
- Sharma-Poudyal, D.; Bai, Q.; Wan, A.M.; Wang, M.N.; See, D.; Chen, X.M. Molecular characterization of international collections of the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici reveals high diversity and intercontinental migration. Phytopathology 2020, 110, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Hirschhorn, J.N.; Daly, M.J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 2005, 6, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Flint-Garcia, S.A.; Thornsberry, J.M.; Buckler IV, E.S. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 2003, 54, 357–374. [Google Scholar] [CrossRef] [Green Version]
- Li, M.X.; Yeung, J.M.; Cherny, S.S.; Sham, P.C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 2012, 131, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Chanock, S.J.; Manolio, T.; Boehnke, M.; Boerwinkle, E.; Hunter, D.J.; Thomas, G.; Hirschhorn, J.N.; Abecasis, G.R.; Altshuler, D.; Bailey-Wilson, J.E.; et al. Replicating genotype-phenotype associations. Nature 2007, 447, 655–660. [Google Scholar]
- Record, E.; Moukha, S.; Asther, M. Characterization and expression of the cDNA encoding a new kind of phospholipid transfer protein, the phosphatidylglycerol/phosphatidylinositol transfer protein from Aspergillus oryzae: Evidence of a putative membrane targeted phospholipid transfer protein in fungi. Biochim. Biophys. Acta Gene Regul. Mech. 1999, 1444, 276–282. [Google Scholar]
- Wang, W.Y.; Barratt, B.J.; Clayton, D.G.; Todd, J.A. Genome-wide association studies: Theoretical and practical concerns. Nat. Rev. Genet. 2005, 6, 109–118. [Google Scholar] [CrossRef]
- Mu, J.M.; Liu, L.; Liu, Y.; Wang, M.N.; See, D.R.; Han, D.; Chen, X.M. Genome-wide association study and gene specific markers identified 51 genes or QTL for resistance to stripe rust in US winter wheat cultivars and breeding lines. Front. Plant Sci. 2020, 11, 998. [Google Scholar] [CrossRef]
- Liu, L.; Yuan, C.Y.; Wang, M.N.; See, D.R.; Chen, X.M. Mapping Quantitative Trait Loci for high-temperature adult-plant resistance to stripe rust in spring wheat PI 197734 using a doubled haploid population and genotyping by multiplexed sequencing. Front. Plant Sci. 2020, 11, 596962. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yuan, C.Y.; Wang, M.N.; See, D.R.; Zemetra, R.; Chen, X.M. QTL analysis of durable stripe rust resistance in the North American winter wheat cultivar Skiles. Theor. Appl. Genet. 2019, 132, 1677–1691. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, M.N.; Zhang, Z.W.; See, D.R.; Chen, X.M. Identification of stripe rust resistance loci in US spring wheat cultivars and breeding lines using genome-wide association mapping and Yr gene markers. Plant Dis. 2020, 104, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, M.N.; Feng, J.Y.; See, D.R.; Chao, S.; Chen, X.M. Combination of all-stage and high-temperature adult-plant resistance QTL confers high-level, durable resistance to stripe rust in winter wheat cultivar Madsen. Theor. Appl. Genet. 2018, 131, 1835–1849. [Google Scholar] [CrossRef]
- Line, R.F.; Qayoum, A. Virulence, Aggressiveness, Evolution, and Distribution of Races of Puccinia striiformis (the Cause of Stripe Rust of Wheat) in North America, 1968–1987[Line, Roland F., and Abdul Qayoum]; U.S. Department of Agriculture, Agricultural Research Service and National Technical Information Service: New York, NY, USA, 1992.
- Bernardo, A.; Wang, S.; St. Amand, P.; Bai, G. Using next generation sequencing for multiplexed trait-linked markers in wheat. PLoS ONE 2015, 10, e0143890. [Google Scholar] [CrossRef]
- Ruff, T.M.; Marston, E.J.; Eagle, J.D.; Sthapit, S.R.; Hooker, M.A.; Skinner, D.Z.; See, D.R. Genotyping by multiplexed sequencing (GMS): A customizable platform for genomic selection. PLoS ONE 2020, 15, e0229207. [Google Scholar] [CrossRef]
- Liu, S. Genotyping by Multiplexing Amplicon Sequencing. 2015. Available online: http://schnablelab.plant-genomics.iastate.edu/docs/resources/protocols/pdf/GBMAS-20150706.pdf (accessed on 26 May 2020).
- Tang, Y.; Liu, X.L.; Wang, J.B.; Li, M.; Wang, Q.S.; Tian, F.; Su, Z.B.; Pan, Y.; Liu, D.; Lipka, A.E. GAPIT version 2: An enhanced integrated tool for genomic association and prediction. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.B.; Zhang, Z.W. GAPIT Version 3: Boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef]
- Lipka, A.E.; Tian, F.; Wang, Q.S.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z.W. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef] [Green Version]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Multiple significance tests: The Bonferroni method. BMJ 1995, 310, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Zeng, N.; Wang, N. Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. In NESUG Proceedings; Health Care and Life Sciences: Baltimore, MD, USA, 2010; Volume 19, p. 67. [Google Scholar]
Avirulence Gene a | SNP ID | Supercontig b | Position in Supercontig b | p-Value | MAF c | PVE d | Allele e | Protein ID b |
---|---|---|---|---|---|---|---|---|
AvYr1 | SP.SNP.SC.21.152447 | 21 | 152447 | 0.002144 | 0.38 | 0.15 | C/G | PSTG_04155 |
SP.SNP.SC.252.30471 | 252 | 30471 | 0.005105 | 0.11 | 0.14 | G/T | PSTG_16039 | |
SP.SNP.SC.23.155650 | 23 | 15565 | 0.008536 | 0.42 | 0.13 | T/G | PSTG_04466 | |
SP.SNP.SC.220.72190 | 220 | 7219 | 0.008644 | 0.45 | 0.13 | A/G | PSTG_15512 | |
AvYr6 | SP.SNP.SC.21.152447 | 21 | 152447 | 0.000586 | 0.38 | 0.12 | C/G | PSTG_04155 |
SP.SNP.SC.126.136707 | 126 | 136707 | 0.001405 | 0.05 | 0.11 | T/C | PSTG_12716 | |
AvYr7 | SP.SNP.SC.240.28476 | 240 | 28476 | 0.003675 | 0.49 | 0.06 | G/A | PSTG_15854 |
SP.SNP.SC.126.136707 | 126 | 136707 | 0.001405 | 0.05 | 0.11 | T/C | PSTG_12716 | |
AvYr9 | SP.SNP.SC.21.152447 | 21 | 152447 | 0.000865 | 0.38 | 0.14 | C/G | PSTG_04155 |
SP.SNP.SC.241.57435 | 241 | 57435 | 0.006845 | 0.49 | 0.12 | T/G | PSTG_15874 | |
SP.SNP.SC.17.271382 | 17 | 271382 | 0.009011 | 0.40 | 0.11 | A/T | PSTG_03500 | |
SP.SNP.SC.233.95127 | 233 | 95127 | 0.009733 | 0.48 | 0.11 | A/G | PSTG_15751 | |
AvYr10 | SP.SNP.SC.120.10252 | 120 | 10252 | 0.004658 | 0.25 | 0.07 | C/T | PSTG_12413 |
AvYr24 | SP.SNP.SC.120.10252 | 120 | 10252 | 0.000932 | 0.25 | 0.11 | C/T | PSTG_12413 |
SP.SNP.SC.214.8618 | 214 | 8618 | 0.003183 | 0.24 | 0.09 | T/C | PSTG_15361 | |
AvYr27 | SP.SNP.SC.187.104441 | 187 | 104441 | 0.002582 | 0.10 | 0.10 | A/C | PSTG_14812 |
SP.SNP.SC.221.30654 | 221 | 30654 | 0.00544 | 0.37 | 0.09 | A/T | PSTG_15517 | |
SP.SNP.SC.12.929747 | 12 | 929747 | 0.007666 | 0.33 | 0.09 | G/A | PSTG_02640 | |
SP.SNP.SC.21.152447 | 21 | 152447 | 0.008759 | 0.38 | 0.09 | C/G | PSTG_04155 | |
AvYr32 | SP.SNP.SC.120.10252 | 120 | 10252 | 0.001166 | 0.25 | 0.09 | C/T | PSTG_12413 |
AvYr43 | SP.SNP.SC.14.299197 | 14 | 299197 | 0.002819 | 0.08 | 0.10 | C/T | PSTG_02897 |
SP.SNP.SC.203.51320 | 203 | 5132 | 0.007604 | 0.31 | 0.08 | T/G | PSTG_15141 | |
AvYr44 | SP.SNP.SC.117.206340 | 117 | 20634 | 0.001316 | 0.44 | 0.08 | A/G | PSTG_12281 |
SP.SNP.SC.221.30654 | 221 | 30654 | 0.00191 | 0.37 | 0.07 | A/T | PSTG_15517 | |
SP.SNP.SC.14.299197 | 14 | 299197 | 0.003847 | 0.08 | 0.06 | C/T | PSTG_02897 | |
AvYr76 | SP.SNP.SC.220.75744 | 220 | 75744 | 0.004842 | 0.46 | 0.17 | A/T | PSTG_15513 |
AvYrSP | SP.SNP.SC.121.147828 | 121 | 147828 | 0.00136 | 0.44 | 0.21 | C/A | PSTG_12496 |
Country | No. of Isolates | Year | Races a |
---|---|---|---|
Canada | 2 | 2017 | PSTv-37, PSTv-14 |
China | 12 | 2016 | PSTv-225, PSTv-229, PSTv-230, PSTv-231, PSTv-250, PSTv-259, PSTv-267, PSTv-270, PSTv-274, PSTv-277, PSTv-278, PSTv-280 |
Ecuador | 13 | 2015/2016 | PSTv-20, PSTv-106, PSTv-221, PSTv-285, PSTv-286, PSTv-287, PSTv-289, PSTv-294, PSTv-298, PSTv-303, PSTv-305, PSTv-306, PSTv-327 |
Egypt | 2 | 2018 | PSTv-120, PSTv-15 |
Ethiopia | 11 | 2014 | PSTv-41, PSTv-47, PSTv-76, PSTv-105, PSTv-106, PSTv-107, PSTv-110, PSTv-116 |
Italy | 18 | 2014/2016/2017 | PSTv-121, PSTv-125, PSTv-127, PSTv-129, PSTv-130, PSTv-131, PSTv-132, PSTv-133, PSTv-134, PSTv-135, PSTv-136, PSTv-137, PSTv-192, PSTv-232, PSTv-295, PSTv-317, PSTv-320 |
Mexico | 8 | 2015/2016 | PSTv-53, PSTv-78, PSTv-109, PSTv-198, PSTv-252, PSTv-292, PSTv-296, PSTv-307 |
Pakistan | 4 | 2012 | PSTv-11, New, PSTv-37, New |
USA | 87 | 2010/2011/2012/2013/2014/2015/2016/2017 | PSTv-1, PSTv-2, PSTv-3, PSTv-4, PSTv-6, PSTv-7, PSTv-8, PSTv-11, PSTv-14, PSTv-15, PSTv-16, PSTv-17, PSTv-18, PSTv-19, PSTv-20, PSTv-22, PSTv-23, PSTv-24, PSTv-25, PSTv-27, PSTv-28, PSTv-29, PSTv-31, PSTv-32, PSTv-33, PSTv-34, PSTv-35, PSTv-37, PSTv-39, PSTv-40, PSTv-41, PSTv-42, PSTv-43, PSTv-44, PSTv-45, PSTv-46, PSTv-47, PSTv-48, PSTv-52, PSTv-53, PSTv-64, PSTv-65, PSTv-67, PSTv-71, PSTv-72, PSTv-73, PSTv-74, PSTv-75, PSTv-76, PSTv-77, PSTv-78, PSTv-79, PSTv-101, PSTv-109, PSTv-120, PSTv-121, PSTv-122, PSTv-123, PSTv-144, PSTv-175, PSTv-198, PSTv-201, PSTv-214, PSTv-221, PSTv-239, PSTv-284, PSTv-293, PSTv-321, PSTv-322 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Q.; Wang, M.; Xia, C.; See, D.R.; Chen, X. Identification of Secreted Protein Gene-Based SNP Markers Associated with Virulence Phenotypes of Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen. Int. J. Mol. Sci. 2022, 23, 4114. https://doi.org/10.3390/ijms23084114
Bai Q, Wang M, Xia C, See DR, Chen X. Identification of Secreted Protein Gene-Based SNP Markers Associated with Virulence Phenotypes of Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen. International Journal of Molecular Sciences. 2022; 23(8):4114. https://doi.org/10.3390/ijms23084114
Chicago/Turabian StyleBai, Qing, Meinan Wang, Chongjing Xia, Deven R. See, and Xianming Chen. 2022. "Identification of Secreted Protein Gene-Based SNP Markers Associated with Virulence Phenotypes of Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen" International Journal of Molecular Sciences 23, no. 8: 4114. https://doi.org/10.3390/ijms23084114
APA StyleBai, Q., Wang, M., Xia, C., See, D. R., & Chen, X. (2022). Identification of Secreted Protein Gene-Based SNP Markers Associated with Virulence Phenotypes of Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen. International Journal of Molecular Sciences, 23(8), 4114. https://doi.org/10.3390/ijms23084114