Adverse Events in NMOSD Therapy
Abstract
:1. Introduction
2. Neuromyelitis Optica Spectrum Disease: Diagnosis and Treatment
3. Classical Immunosuppressive Drugs
3.1. Azathioprine
3.2. Mycophenolate Mofetil
4. Rituximab
5. Tocilizumab
6. Eculizumab
7. Satralizumab
8. Inebilizumab
Drug | Adverse Events of High Frequency | ||||
---|---|---|---|---|---|
Infections | Gastrointestinal Side Effects | Leukopenia | Arthralgia | Other | |
Azathioprine * [16] | - | ≥10% | ≥10% | - | - |
MMF [20] | ≥20% | ≥20% | ≥20% | - | - |
Rituximab * [26] | ≥10% | - | - | - | - |
Tocilizumab [39] | ≥5% | - | - | - | Headache, hypertension, increased liver enzymes, injection site reactions (≥5%) |
Eculizumab [51] | ≥10% | ≥10% | - | ≥10% | Back pain, contusion, dizziness (≥10%) |
Satralizumab [59] | ≥15% | ≥15% | - | ≥15% | Extremity pain, fatigue, headache, rash (≥15%) |
Inebilizumab [61] | ≥10% | - | - | ≥10% | - |
9. Comparative Data on Safety
10. Drug Interactions
11. Pregnancy
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jarius, S.; Paul, F.; Weinshenker, B.G.; Levy, M.; Kim, H.J.; Wildemann, B. Neuromyelitis optica. Nat. Rev. Dis. Primers 2020, 6, 85. [Google Scholar] [CrossRef] [PubMed]
- Lennon, V.A.; Wingerchuk, D.M.; Kryzer, T.J.; Pittock, S.J.; Lucchinetti, C.F.; Fujihara, K.; Nakashima, I.; Weinshenker, B.G. A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. Lancet 2004, 364, 2106–2112. [Google Scholar] [CrossRef]
- Jarius, S.; Ruprecht, K.; Wildemann, B.; Kuempfel, T.; Ringelstein, M.; Geis, C.; Kleiter, I.; Kleinschnitz, C.; Berthele, A.; Brettschneider, J.; et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients. J. Neuroinflamm. 2012, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Marignier, R.; Hacohen, Y.; Cobo-Calvo, A.; Pröbstel, A.K.; Aktas, O.; Alexopoulos, H.; Amato, M.P.; Asgari, N.; Banwell, B.; Bennett, J.; et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol. 2021, 20, 762–772. [Google Scholar] [CrossRef]
- Chang, V.; Chang, H.M. Review: Recent advances in the understanding of the pathophysiology of neuromyelitis optica spectrum disorder. Neuropathol. Appl. Neurobiol. 2020, 46, 199–218. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Banwell, B.; Bennett, J.L.; Cabre, P.; Carroll, W.; Chitnis, T.; de Seze, J.; Fujihara, K.; Greenberg, B.; Jacob, A.; et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015, 85, 177–189. [Google Scholar] [CrossRef]
- Pittock, S.J.; Zekeridou, A.; Weinshenker, B.G. Hope for patients with neuromyelitis optica spectrum disorders—From mechanisms to trials. Nat. Rev. Neurol. 2021, 17, 759–773. [Google Scholar] [CrossRef]
- Costanzi, C.; Matiello, M.; Lucchinetti, C.F.; Weinshenker, B.G.; Pittock, S.J.; Mandrekar, J.; Thapa, P.; McKeon, A. Azathioprine: Tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology 2011, 77, 659–666. [Google Scholar] [CrossRef]
- Elsone, L.; Kitley, J.; Luppe, S.; Lythgoe, D.; Mutch, K.; Jacob, S.; Brown, R.; Moss, K.; McNeillis, B.; Goh, Y.Y.; et al. Long-term efficacy, tolerability and retention rate of Azathioprine in 103 aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder patients: A multicentre retrospective observational study from the UK. Mult. Scler. 2014, 20, 1533–1540. [Google Scholar] [CrossRef]
- Espiritu, A.I.; Pasco, P.M.D. Efficacy and tolerability of Azathioprine for neuromyelitis optica spectrum disorder: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2019, 33, 22–32. [Google Scholar] [CrossRef]
- Gomes, A.; Pitombeira, M.S.; Sato, D.K.; Callegaro, D.; Apostolos-Pereira, S.L. Long-term safety of Azathioprine for treatment of neuromyelitis optica spectrum disorders. Arq. Neuropsiquiatr. 2021, 79, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Wei, R.; Tian, X.; Chen, C.; Ma, L.; Li, M.; Dong, X.; Zhang, E.; Zhou, Y.; Cui, Y. Efficacy and safety of Azathioprine for neuromyelitis optica spectrum disorders: A meta-analysis of real-world studies. Mult. Scler. Relat. Disord. 2020, 46, 102484. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, M.; Ordas, I.; Cabre, E.; Garcia-Sanchez, V.; Bastida, G.; Penalva, M.; Gomollon, F.; Garcia-Planella, E.; Merino, O.; Gutierrez, A.; et al. Safety of thiopurine therapy in inflammatory bowel disease: Long-term follow-up study of 3931 patients. Inflamm. Bowel Dis. 2013, 19, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, K.; Scott, D.G.I. Azathioprine and Cyclophosphamide in the treatment of Rheumatoid Arthritis. Br. J. Rheumatol. 1998, 37, 824–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Zhang, H.; Li, Y.; Wei, Q.; Li, H.; Yang, Y.; Lu, Y. Safety of mycophenolate mofetil versus Azathioprine in renal transplantation: A systematic review. Transplant. Proc. 2004, 36, 2068–2070. [Google Scholar] [CrossRef]
- Food and Drug Administration, US IMURAN Product Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/016324s039lbl.pdf (accessed on 2 March 2022).
- Schmedt, N.; Andersohn, F.; Garbe, E. Signals of progressive multifocal leukoencephalopathy for immunosuppressants: A disproportionality analysis of spontaneous reports within the US Adverse Event Reporting System (AERS). Pharmacoepidemiol. Drug Saf. 2012, 21, 1216–1220. [Google Scholar] [CrossRef]
- Flanagan, E.P.; Aksamit, A.J.; Kumar, N.; Morparia, N.P.; Keegan, B.M.; Weinshenker, B.G. Simultaneous PML-IRIS and myelitis in a patient with neuromyelitis optica spectrum disorder. Neurol. Clin. Pract. 2013, 3, 448–451. [Google Scholar] [CrossRef] [Green Version]
- McWilliam, M.; Khan, U. Azathioprine and the neurologist. Pract. Neurol. 2020, 20, 69–74. [Google Scholar] [CrossRef]
- Food and Drug Administration, US CELLCEPT Product Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/050722s040,050723s041,050758s037,050759s045lbl.pdf (accessed on 2 March 2022).
- Songwisit, S.; Kosiyakul, P.; Jitprapaikulsan, J.; Prayoonwiwat, N.; Ungprasert, P.; Siritho, S. Efficacy and safety of mycophenolate mofetil therapy in neuromyelitis optica spectrum disorders: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 16727. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, J.; Zhou, Y.; Yang, H.; Wang, Z.; Yan, Z.; Long, Y.; Yin, J.; Feng, H.; Li, C.; et al. Low-Dose Mycophenolate Mofetil for Treatment of Neuromyelitis Optica Spectrum Disorders: A Prospective Multicenter Study in South China. Front. Immunol. 2018, 9, 2066. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, Y.; Shi, Z.; Feng, H.; Yao, S.; Xie, J.; Zhou, H. The Efficacy and Tolerability of Mycophenolate Mofetil in Treating Neuromyelitis Optica and Neuromyelitis Optica Spectrum Disorder in Western China. Clin. Neuropharmacol. 2016, 39, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Poupart, J.; Giovannelli, J.; Deschamps, R.; Audoin, B.; Ciron, J.; Maillart, E.; Papeix, C.; Collongues, N.; Bourre, B.; Cohen, M.; et al. Evaluation of efficacy and tolerability of first-line therapies in NMOSD. Neurology 2020, 94, e1645–e1656. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.Y.; Kim, S.H.; Hyun, J.W.; Joung, A.R.; Park, M.S.; Kim, B.J.; Kim, H.J. Mycophenolate mofetil in the treatment of neuromyelitis optica spectrum disorder. JAMA Neurol. 2014, 71, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration, US RITUXAN Product Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/103705s5465lbl.pdf#page=56 (accessed on 2 March 2022).
- Collongues, N.; de Seze, J. An update on the evidence for the efficacy and safety of Rituximab in the management of neuromyelitis optica. Ther. Adv. Neurol. Disord. 2016, 9, 180–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damato, V.; Evoli, A.; Iorio, R. Efficacy and Safety of Rituximab Therapy in Neuromyelitis Optica Spectrum Disorders: A Systematic Review and Meta-analysis. JAMA Neurol 2016, 73, 1342–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Chai, B.; Gu, C.; Wu, R.; Dong, T.; Yao, Y.; Zhang, Y. Effectiveness of Rituximab in neuromyelitis optica: A meta-analysis. BMC Neurol. 2019, 19, 36. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhou, J.; Li, Y.; Wei, L.; Xu, X.; Zhang, J.; Yang, K.; Wei, S.; Zhang, W. Adverse events of Rituximab in neuromyelitis optica spectrum disorder: A systematic review and meta-analysis. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211056710. [Google Scholar] [CrossRef]
- Kim, S.H.; Jeong, I.H.; Hyun, J.W.; Joung, A.; Jo, H.J.; Hwang, S.H.; Yun, S.; Joo, J.; Kim, H.J. Treatment Outcomes With Rituximab in 100 Patients With Neuromyelitis Optica: Influence of FCGR3A Polymorphisms on the Therapeutic Response to Rituximab. JAMA Neurol. 2015, 72, 989–995. [Google Scholar] [CrossRef] [Green Version]
- Nikoo, Z.; Badihian, S.; Shaygannejad, V.; Asgari, N.; Ashtari, F. Comparison of the efficacy of Azathioprine and Rituximab in neuromyelitis optica spectrum disorder: A randomised clinical trial. J. Neurol. 2017, 264, 2003–2009. [Google Scholar] [CrossRef]
- Tahara, M.; Oeda, T.; Okada, K.; Kiriyama, T.; Ochi, K.; Maruyama, H.; Fukaura, H.; Nomura, K.; Shimizu, Y.; Mori, M.; et al. Safety and efficacy of Rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020, 19, 298–306. [Google Scholar] [CrossRef]
- Banerjee, S.; Butcher, R. Rituximab for the Treatment of Neuromyelitis Optica Spectrum Disorder. Can. Agency Drugs Technol. Health 2021, 1, 1–50. [Google Scholar] [CrossRef]
- Clifford, D.B.; Ances, B.; Costello, C.; Rosen-Schmidt, S.; Andersson, M.; Parks, D.; Perry, A.; Yerra, R.; Schmidt, R.; Alvarez, E.; et al. Rituximab-associated progressive multifocal leukoencephalopathy in rheumatoid arthritis. Arch. Neurol. 2011, 68, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Jacob, A.; Weinshenker, B.G.; Violich, I.; McLinskey, N.; Krupp, L.; Fox, R.J.; Wingerchuk, D.M.; Boggild, M.; Constantinescu, C.S.; Miller, A.; et al. Treatment of Neuromyelitis Optica With Rituximab. Arch. Neurol. 2008, 65, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Pellkofer, H.L.; Krumbholz, M.; Berthele, A.; Hemmer, B.; Gerdes, L.A.; Havla, J.; Bittner, R.; Canis, M.; Meinl, E.; Hohlfeld, R.; et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology 2011, 76, 1310–1315. [Google Scholar] [CrossRef]
- Avouac, A.; Maarouf, A.; Stellmann, J.P.; Rico, A.; Boutiere, C.; Demortiere, S.; Marignier, R.; Pelletier, J.; Audoin, B. Rituximab-Induced Hypogammaglobulinemia and Infections in AQP4 and MOG Antibody-Associated Diseases. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e977. [Google Scholar] [CrossRef]
- Food and Drug Administration, US ACTEMRA Product Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125276s114lbl.pdf (accessed on 2 March 2022).
- Araki, M.; Matsuoka, T.; Miyamoto, K.; Kusunoki, S.; Okamoto, T.; Murata, M.; Miyake, S.; Aranami, T.; Yamamura, T. Efficacy of the anti–IL-6 receptor antibody tocilizumab in neuromyelitis optica. Neurology 2014, 82, 1302–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotan, I.; Charlson, R.W.; Ryerson, L.Z.; Levy, M.; Kister, I. Effectiveness of subcutaneous Tocilizumab in neuromyelitis optica spectrum disorders. Mult. Scler. Relat. Disord. 2019, 39, 101920. [Google Scholar] [CrossRef]
- Rigal, J.; Pugnet, G.; Ciron, J.; Lepine, Z.; Biotti, D. Off-label use of Tocilizumab in neuromyelitis optica spectrum disorders and MOG-antibody-associated diseases: A case-series. Mult. Scler. Relat. Disord. 2020, 46, 102483. [Google Scholar] [CrossRef]
- Ringelstein, M.; Ayzenberg, I.; Lindenblatt, G.; Fischer, K.; Gahlen, A.; Novi, G.; Hayward-Könnecke, H.; Schippling, S.; Rommer, P.S.; Kornek, B.; et al. Interleukin-6 Receptor Blockade in Treatment-Refractory MOG-IgG-Associated Disease and Neuromyelitis Optica Spectrum Disorders. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1100. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Qiu, W.; Ma, H.; Zhang, X.; Zhu, Z.; Yang, C.-S.; Jia, D.; Zhang, T.-X.; Yuan, M.; et al. Safety and efficacy of Tocilizumab versus Azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): An open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 2020, 19, 391–401. [Google Scholar] [CrossRef]
- Lotan, I.; McGowan, R.; Levy, M. Anti-IL-6 Therapies for Neuromyelitis Optica Spectrum Disorders: A Systematic Review of Safety and Efficacy. Curr. Neuropharmacol. 2021, 19, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Zheng, T.; Sun, M.; Sun, J.; Wang, M. A meta-analysis to determine the efficacy and safety of Tocilizumab in neuromyelitis optica spectrum disorders. Mult. Scler. Relat. Disord. 2020, 45, 102421. [Google Scholar] [CrossRef] [PubMed]
- Pittock, S.J.; Berthele, A.; Fujihara, K.; Kim, H.J.; Levy, M.; Palace, J.; Nakashima, I.; Terzi, M.; Totolyan, N.; Viswanathan, S.; et al. Eculizumab in Aquaporin-4-Positive Neuromyelitis Optica Spectrum Disorder. N. Engl. J. Med. 2019, 381, 614–625. [Google Scholar] [CrossRef]
- Pittock, S.J.; Lennon, V.A.; McKeon, A.; Mandrekar, J.; Weinshenker, B.G.; Lucchinetti, C.F.; O’Toole, O.; Wingerchuk, D.M. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: An open-label pilot study. Lancet Neurol. 2013, 12, 554–562. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Fujihara, K.; Palace, J.; Berthele, A.; Levy, M.; Kim, H.J.; Nakashima, I.; Oreja-Guevara, C.; Wang, K.C.; Miller, L.; et al. Long-Term Safety and Efficacy of Eculizumab in Aquaporin-4 IgG-Positive NMOSD. Ann. Neurol. 2021, 89, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Palace, J.; Wingerchuk, D.M.; Fujihara, K.; Berthele, A.; Oreja-Guevara, C.; Kim, H.J.; Nakashima, I.; Levy, M.; Terzi, M.; Totolyan, N.; et al. Benefits of Eculizumab in AQP4+ neuromyelitis optica spectrum disorder: Subgroup analyses of the randomised controlled phase 3 PREVENT trial. Mult. Scler. Relat. Disord. 2021, 47, 102641. [Google Scholar] [CrossRef]
- Food and Drug Administration, US SOLIRIS Product Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125166s431lbledt.pdf (accessed on 2 March 2022).
- McNamara, L.A.; Topaz, N.; Wang, X.; Hariri, S.; Fox, L.A.; MacNeil, J.R. High Risk for Invasive Meningococcal Disease Among Patients Receiving Eculizumab (Soliris) Despite Receipt of Meningococcal Vaccine. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 734–737. [Google Scholar] [CrossRef] [Green Version]
- Rondeau, E.; Cataland, S.R.; Al-Dakkak, I.; Miller, B.; Webb, N.J.A.; Landau, D. Eculizumab Safety: Five-Year Experience From the Global Atypical Hemolytic Uremic Syndrome Registry. Kidney Int. Rep. 2019, 4, 1568–1576. [Google Scholar] [CrossRef] [Green Version]
- Traboulsee, A.; Greenberg, B.M.; Bennett, J.L.; Szczechowski, L.; Fox, E.; Shkrobot, S.; Yamamura, T.; Terada, Y.; Kawata, Y.; Wright, P.; et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: A randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 2020, 19, 402–412. [Google Scholar] [CrossRef]
- Yamamura, T.; Kleiter, I.; Fujihara, K.; Palace, J.; Greenberg, B.; Zakrzewska-Pniewska, B.; Patti, F.; Tsai, C.P.; Saiz, A.; Yamazaki, H.; et al. Trial of Satralizumab in Neuromyelitis Optica Spectrum Disorder. N. Engl. J. Med. 2019, 381, 2114–2124. [Google Scholar] [CrossRef]
- Greenberg, B.M.; de Seze, J.; Fox, E.; Saiz, A.; Yamamura, T.; Yeaman, M.R.; Marcillat, C.; Kou, X.; Weber, K.; Blondeau, K.; et al. Safety of satralizumab based on pooled data from phase 3 studies in patients with neuromyelitis optica spectrum disorder. Neurology 2020, 94 (Suppl. S15), 1281. [Google Scholar]
- Greenberg, B.M.; de Seze, J.; Saiz, A.; Yamamura, T.; Yeaman, M.R.; Marcillat, C.; Kou, X.; Weber, K.; Blondeau, K.; Weinshenker, B.G.; et al. Long-term safety of satralizumab in neuromyelitis optica spectrum disorder: Results from the open open-label extension periods of SAkuraSky and SAkuraStar. In Proceedings of the ECTRIMS 2021, Vienna, Austria, 13–15 October 2021. [Google Scholar]
- Weinshenker, B.G.; Blondeau, K.; Kou, X.; Marcillat, C.; Weber, K.; Greenberg, B.M. Infection rates with satralizumab in patients with neuromyelitis optica spectrum disorder (NMOSD): Results from the phase 3 SAkura studies. In Proceedings of the ACTRIMS/ECTRIMS 2020, Online, 11–13 September 2020. [Google Scholar]
- Food and Drug Administration, US ENSPRYNG Product Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761149s000lbl.pdf (accessed on 2 March 2022).
- Cree, B.A.C.; Bennett, J.L.; Kim, H.J.; Weinshenker, B.G.; Pittock, S.J.; Wingerchuk, D.M.; Fujihara, K.; Paul, F.; Cutter, G.R.; Marignier, R.; et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): A double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019, 394, 1352–1363. [Google Scholar] [CrossRef]
- Food and Drug Administration, US UPLIZNA Product Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761142s000lbl.pdf (accessed on 2 March 2022).
- Cree, B.A.C.; Bennett, J.L.; Kim, H.J.; Weinshenker, B.G.; Pittock, S.J.; Wingerchuk, D.M.; Fujihara, K.; Paul, F.; Cutter, G.; Marignier, R.; et al. Long-term Efficacy and Safety of Inebilizumab for Neuromyelitis Optica Spectrum Disorder in the Randomised, Double-blind N-MOmentum Study and Extension. Neurology 2020, 94 (Suppl. S15), 3998. [Google Scholar]
- Rensel, M.; Zabeti, A.; Mealy, M.A.; Cimbora, D.; She, D.; Drappa, J.; Katz, E. Long-term efficacy and safety of inebilizumab in neuromyelitis optica spectrum disorder: Analysis of aquaporin-4-immunoglobulin G-seropositive participants taking inebilizumab for ≥4 years in the N-MOmentum trial. Mult. Scler. 2021. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Yu, H.; Wang, H.; Zhang, X.; Feng, K. Evaluation of effect of empirical attack-preventive immunotherapies in neuromyelitis optica spectrum disorders: An update systematic review and meta -analysis. J. Neuroimmunol. 2022, 363, 577790. [Google Scholar] [CrossRef] [PubMed]
- Wingerchuk, D.M.; Zhang, I.; Kielhorn, A.; Royston, M.; Levy, M.; Fujihara, K.; Nakashima, I.; Tanvir, I.; Paul, F.; Pittock, S.J. Network Meta-analysis of Food and Drug Administration-approved Treatment Options for Adults with Aquaporin-4 Immunoglobulin G-positive Neuromyelitis Optica Spectrum Disorder. Neurol. Ther. 2022, 11, 123–135. [Google Scholar] [CrossRef]
- Xue, T.; Yang, Y.; Lu, Q.; Gao, B.; Chen, Z.; Wang, Z. Efficacy and Safety of Monoclonal Antibody Therapy in Neuromyelitis Optica Spectrum Disorders: Evidence from Randomized Controlled Trials. Mult. Scler. Relat. Disord. 2020, 43, 102166. [Google Scholar] [CrossRef]
- Giovannelli, J.; Ciron, J.; Cohen, M.; Kim, H.J.; Kim, S.H.; Stellmann, J.P.; Kleiter, I.; McCreary, M.; Greenberg, B.M.; Deschamps, R. A meta-analysis comparing first-line immunosuppressants in neuromyelitis optica. Ann. Clin. Translat. Neurol. 2021, 8, 2025–2037. [Google Scholar] [CrossRef]
- Huang, W.; Wang, L.; Zhang, B.; Zhou, L.; Zhang, T.; Quan, C. Effectiveness and tolerability of immunosuppressants and monoclonal antibodies in preventive treatment of neuromyelitis optica spectrum disorders: A systematic review and network meta-analysis. Mult. Scler. Relat. Disord. 2019, 35, 246–252. [Google Scholar] [CrossRef]
- Kong, F.; Wang, J.; Zheng, H.; Cai, H.; Hua, J.; Li, L. Monoclonal Antibody Therapy in Neuromyelitis Optica Spectrum Disorders: A Meta-analysis of Randomized Control Trials. Front. Pharmacol. 2021, 12, 652759. [Google Scholar] [CrossRef]
- Mao-Draayer, Y.; Thiel, S.; Mills, E.A.; Chitnis, T.; Fabian, M.; Katz Sand, I.; Leite, M.I.; Jarius, S.; Hellwig, K. Neuromyelitis optica spectrum disorders and pregnancy: Therapeutic considerations. Nat. Rev. Neurol. 2020, 16, 154–170. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Shah, S.; Velayos, F.S.; Mahadevan, U.; Cheifetz, A.S. Systematic review and meta-analysis on the effects of thiopurines on birth outcomes from female and male patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2013, 19, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Kuempfel, T.; Thiel, S.; Meinl, I.; Ciplea, A.I.; Bayas, A.; Hoffmann, F.; Hofstadt-van Oy, U.; Hoshi, M.; Kluge, J.; Ringelstein, M.; et al. Anti-CD20 therapies and pregnancy in neuroimmunologic disorders: A cohort study from Germany. Neurol. Neuroimmunol. Neuroinflamm. 2020, 8, e913. [Google Scholar] [CrossRef] [PubMed]
Drug | Use in Specific Populations: Pregnancy |
---|---|
Azathioprine [16] | Can cause fetal harm when administered to a pregnant woman. Should not be given during pregnancy without careful weighing of risk versus benefit. |
Mycophenolate mofetil [20] | Use of MMF during pregnancy is associated with an increased risk of first trimester pregnancy loss and an increased risk of multiple congenital malformations in multiple organ systems. |
Rituximab [26] | Can cause fetal harm when administered to a pregnant woman. Rituximab can cause adverse developmental outcomes including B-cell lymphocytopenia in infants exposed to Rituximab in-utero. |
Tocilizumab [39] | The limited available data with Tocilizumab in pregnant women are not sufficient to determine whether there is a drug-associated risk for major birth defects and miscarriage. Monoclonal antibodies, such as Tocilizumab, are actively transported across the placenta during the third trimester of pregnancy and may affect immune response in the in utero exposed infant. |
Eculizumab [51] | Limited data on outcomes of pregnancies that have occurred following Eculizumab use in pregnant women have not identified a concern for specific adverse developmental outcomes. Animal studies using a mouse analogue of the Eculizumab molecule (murine anti-C5 antibody) showed increased rates of developmental abnormalities and an increased rate of dead and moribund offspring at doses 2–8 times the human dose. |
Satralizumab [59] | There are no adequate data on the developmental risk associated with the use of Satralizumab in pregnant women. |
Inebilizumab [61] | Inebilizumab is a humanised IgG1 monoclonal antibody and immunoglobulins are known to cross the placental barrier. There are no adequate data on the developmental risk associated with the use of Inebilizumab in pregnant women. However, transient peripheral B-cell depletion and lymphocytopenia have been reported in infants born to mothers exposed to other B-cell depleting antibodies during pregnancy. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giglhuber, K.; Berthele, A. Adverse Events in NMOSD Therapy. Int. J. Mol. Sci. 2022, 23, 4154. https://doi.org/10.3390/ijms23084154
Giglhuber K, Berthele A. Adverse Events in NMOSD Therapy. International Journal of Molecular Sciences. 2022; 23(8):4154. https://doi.org/10.3390/ijms23084154
Chicago/Turabian StyleGiglhuber, Katrin, and Achim Berthele. 2022. "Adverse Events in NMOSD Therapy" International Journal of Molecular Sciences 23, no. 8: 4154. https://doi.org/10.3390/ijms23084154
APA StyleGiglhuber, K., & Berthele, A. (2022). Adverse Events in NMOSD Therapy. International Journal of Molecular Sciences, 23(8), 4154. https://doi.org/10.3390/ijms23084154