APOB CRISPR-Cas9 Engineering in Hypobetalipoproteinemia: A Promising Tool for Functional Studies of Novel Variants
Abstract
:1. Introduction
2. Results
2.1. Clinical Phenotyping and Genotyping
2.2. Identification of APOB Variant
2.3. Leu351Arg Modeling
2.4. CRISPR/Cas9 Engineering
2.5. Leu351Arg Impaired apoB-100 Production and Secretion
3. Discussion
4. Materials and Methods
4.1. Subjects, Biochemical and Genetic Analysis
4.2. Variants Selection
4.3. Whole-Genome Sequencing
4.4. Polygenic Risk Score
4.5. Protein Modeling
4.6. CRISPR-Cas9 Engineered Allelic Series
4.7. ApoB-100 Quantification
4.8. APOB Expression
4.9. Statistics and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kane, J.R.H. Disorders of the Biogenesis and Secretion of Lipoproteins Containing the B Apolipoproteins. In The Metabolic and Molecular Bases of Inherited Disease; Scriver, C., Beaudet, A., Valle, D., Sly, W., Eds.; McGraw Hill: New York, NY, USA, 2001; pp. 1853–1886. [Google Scholar]
- Balder, J.-W.; Rimbert, A.; Zhang, X.; Viel, M.; Kanninga, R.; van Dijk, R.; Lansberg, P.; Sinke, R.; Kuivenhoven, J.A. Genetics, Lifestyle, and Low-Density Lipoprotein Cholesterol in Young and Apparently Healthy Women. Circulation 2018, 137, 820–831. [Google Scholar] [CrossRef] [PubMed]
- Rimbert, A.; Vanhoye, X.; Coulibaly, D.; Marrec, M.; Pichelin, M.; Charrière, S.; Peretti, N.; Valéro, R.; Wargny, M.; Carrié, A.; et al. Phenotypic Differences Between Polygenic and Monogenic Hypobetalipoproteinemia. Arter. Thromb. Vasc. Biol. 2021, 41, e63–e71. [Google Scholar] [CrossRef] [PubMed]
- Tarugi, P.; Averna, M. Hypobetalipoproteinemia. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2011; Volume 54, pp. 81–107. ISBN 978-0-12-387025-4. [Google Scholar]
- Chester, A.; Scott, J.; Anant, S.; Navaratnam, N. RNA Editing: Cytidine to Uridine Conversion in Apolipoprotein B MRNA. Biochim. Biophys. Acta 2000, 1494, 1–13. [Google Scholar] [CrossRef]
- Rutledge, A.C.; Su, Q.; Adeli, K. Apolipoprotein B100 Biogenesis: A Complex Array of Intracellular Mechanisms Regulating Folding, Stability, and Lipoprotein Assembly. Biochem. Cell Biol. 2010, 88, 251–267. [Google Scholar] [CrossRef]
- Innerarity, T.L.; Weisgraber, K.H.; Arnold, K.S.; Mahley, R.W.; Krauss, R.M.; Vega, G.L.; Grundy, S.M. Familial Defective Apolipoprotein B-100: Low Density Lipoproteins with Abnormal Receptor Binding. Proc. Natl. Acad. Sci. USA 1987, 84, 6919–6923. [Google Scholar] [CrossRef] [Green Version]
- Elbitar, S.; Susan-Resiga, D.; Ghaleb, Y.; El Khoury, P.; Peloso, G.; Stitziel, N.; Rabès, J.-P.; Carreau, V.; Hamelin, J.; Ben-Djoudi-Ouadda, A.; et al. New Sequencing Technologies Help Revealing Unexpected Mutations in Autosomal Dominant Hypercholesterolemia. Sci. Rep. 2018, 8, 1943. [Google Scholar] [CrossRef]
- Schonfeld, G.; Lin, X.; Yue, P. Familial Hypobetalipoproteinemia: Genetics and Metabolism. Cell. Mol. Life Sci. 2005, 62, 1372–1378. [Google Scholar] [CrossRef]
- Segrest, J.P.; Jones, M.K.; De Loof, H.; Dashti, N. Structure of Apolipoprotein B-100 in Low Density Lipoproteins. J. Lipid Res. 2001, 42, 1346–1367. [Google Scholar] [CrossRef]
- Burnett, J.R.; Shan, J.; Miskie, B.A.; Whitfield, A.J.; Yuan, J.; Tran, K.; McKnight, C.J.; Hegele, R.A.; Yao, Z. A Novel Nontruncating APOB Gene Mutation, R463W, Causes Familial Hypobetalipoproteinemia. J. Biol. Chem. 2003, 278, 13442–13452. [Google Scholar] [CrossRef] [Green Version]
- Burnett, J.R.; Zhong, S.; Jiang, Z.G.; Hooper, A.J.; Fisher, E.A.; McLeod, R.S.; Zhao, Y.; Barrett, P.H.R.; Hegele, R.A.; van Bockxmeer, F.M.; et al. Missense Mutations in APOB within the Βα1 Domain of Human APOB-100 Result in Impaired Secretion of ApoB and ApoB-Containing Lipoproteins in Familial Hypobetalipoproteinemia. J. Biol. Chem. 2007, 282, 24270–24283. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Magnolo, A.L.; Sundaram, M.; Zhou, H.; Yao, E.F.; Leo, E.D.; Loria, P.; Wang, S.; Bamji-Mirza, M.; Wang, L.; et al. Nonsynonymous Mutations within APOB in Human Familial Hypobetalipoproteinemia: Evidence for Feedback Inhibition of Lipogenesis and Postendoplasmic Reticulum Degradation of Apolipoprotein B. J. Biol. Chem. 2010, 285, 6453–6464. [Google Scholar] [CrossRef] [Green Version]
- Di Filippo, M.; Moulin, P.; Roy, P.; Samson-Bouma, M.E.; Collardeau-Frachon, S.; Chebel-Dumont, S.; Peretti, N.; Dumortier, J.; Zoulim, F.; Fontanges, T.; et al. Homozygous MTTP and APOB Mutations May Lead to Hepatic Steatosis and Fibrosis despite Metabolic Differences in Congenital Hypocholesterolemia. J. Hepatol. 2014, 61, 891–902. [Google Scholar] [CrossRef]
- Hussain, M.M.; Bakillah, A.; Nayak, N.; Shelness, G.S. Amino Acids 430–570 in Apolipoprotein B Are Critical for Its Binding to Microsomal Triglyceride Transfer Protein. J. Biol. Chem. 1998, 273, 25612–25615. [Google Scholar] [CrossRef] [Green Version]
- Segrest, J.P.; Jones, M.K.; Dashti, N. N-Terminal Domain of Apolipoprotein B Has Structural Homology to Lipovitellin and Microsomal Triglyceride Transfer Protein: A “Lipid Pocket” Model for Self-Assembly of Apob-Containing Lipoprotein Particles. J. Lipid Res. 1999, 40, 1401–1416. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Z.G.; McKnight, C.J.; Small, D.M. The Interfacial Properties of Apolipoprotein B292–593 (B6.4–13) and B611–782 (B13–17). Insights into the Structure of the Lipovitellin Homology Region in ApoB. Biochemistry 2010, 49, 3898–3907. [Google Scholar] [CrossRef] [Green Version]
- Mitsche, M.A.; Packer, L.E.; Brown, J.W.; Jiang, Z.G.; Small, D.M.; McKnight, C.J. Surface Tensiometry of Apolipoprotein B Domains at Lipid Interfaces Suggests a New Model for the Initial Steps in Triglyceride-Rich Lipoprotein Assembly. J. Biol. Chem. 2014, 289, 9000–9012. [Google Scholar] [CrossRef] [Green Version]
- Peloso, G.M.; Nomura, A.; Khera, A.V.; Chaffin, M.; Won, H.-H.; Ardissino, D.; Danesh, J.; Schunkert, H.; Wilson, J.G.; Samani, N.; et al. Rare Protein-Truncating Variants in APOB, Lower Low-Density Lipoprotein Cholesterol, and Protection Against Coronary Heart Disease. Circ. Genom. Precis. Med. 2019, 12, e002376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanoli, T.; Yue, P.; Yablonskiy, D.; Schonfeld, G. Fatty Liver in Familial Hypobetalipoproteinemia: Roles of the APOB Defects, Intra-Abdominal Adipose Tissue, and Insulin Sensitivity. J. Lipid Res. 2004, 45, 941–947. [Google Scholar] [CrossRef] [Green Version]
- Kotowski, I.K.; Pertsemlidis, A.; Luke, A.; Cooper, R.S.; Vega, G.L.; Cohen, J.C.; Hobbs, H.H. A Spectrum of PCSK9 Alleles Contributes to Plasma Levels of Low-Density Lipoprotein Cholesterol. Am. J. Hum. Genet. 2006, 78, 410–422. [Google Scholar] [CrossRef] [Green Version]
- Tarugi, P.; Lonardo, A. Heterozygous Familial Hypobetalipoproteinemia Associated with Fatty Liver. Am. J. Gastroenterol. 1997, 92, 1400–1402. [Google Scholar]
- Lonardo, A.; Tarugi, P.; Ballarini, G.; Bagni, A. Familial Heterozygous Hypobetalipoproteinemia, Extrahepatic Primary Malignancy, and Hepatocellular Carcinoma. Dig. Dis. Sci. 1998, 43, 2489–2492. [Google Scholar] [CrossRef] [PubMed]
- Bonnefont-Rousselot, D.; Condat, B.; Sassolas, A.; Chebel, S.; Bittar, R.; Federspiel, M.-C.; Cazals-Hatem, D.; Bruckert, E. Cryptogenic Cirrhosis in a Patient with Familial Hypocholesterolemia Due to a New Truncated Form of Apolipoprotein B. Eur. J. Gastroenterol. Hepatol. 2009, 21, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.F.; Noto, D.; Seip, R.; Shaish, A.; Schonfeld, G. Organ Loci of Catabolism of Short Truncations of ApoB. Arter. Thromb. Vasc. Biol. 1997, 17, 1032–1038. [Google Scholar] [CrossRef]
- Heeks, L.V.; Hooper, A.J.; Adams, L.A.; Robbins, P.; Barrett, P.H.R.; van Bockxmeer, F.M.; Burnett, J.R. Non-Alcoholic Steatohepatitis-Related Cirrhosis in a Patient with APOB L343V Familial Hypobetalipoproteinaemia. Clin. Chim. Acta 2013, 421, 121–125. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, P.; Yuan, B.; Gerhard, D.S.; Neuman, R.J.; Isley, W.L.; Harris, W.S.; Schonfeld, G. Novel Mutations of APOB Cause ApoB Truncations Undetectable in Plasma and Familial Hypobetalipoproteinemia. Hum. Mutat. 2002, 20, 110–116. [Google Scholar] [CrossRef]
- Aguilar-Salinas, C.A.; Barrett, P.H.R.; Parhofer, K.G.; Young, S.G.; Tessereau, D.; Bateman, J.; Quinn, C.; Schonfeld, G. Apoprotein B-100 Production Is Decreased in Subjects Heterozygous for Truncations of Apoprotein B. Arter. Thromb. Vasc. Biol. 1995, 15, 71–80. [Google Scholar] [CrossRef]
- Srivastava, R.A.; Srivastava, N.; Averna, M.; Cefalu, A.B.; Schonfeld, G. Molecular Bases of Low Production Rates of Apolipoprotein B-100 and Truncated ApoB-82 in a Mutant HepG2 Cell Line Generated by Targeted Modification of the Apolipoprotein B Gene. J. Lipid Res. 1999, 40, 901–912. [Google Scholar] [CrossRef]
- Kim, E.; Cham, C.M.; Véniant, M.M.; Ambroziak, P.; Young, S.G. Dual Mechanisms for the Low Plasma Levels of Truncated Apolipoprotein B Proteins in Familial Hypobetalipoproteinemia. Analysis of a New Mouse Model with a Nonsense Mutation in the Apob Gene. J. Clin. Investig. 1998, 101, 1468–1477. [Google Scholar] [PubMed]
- Ambros, V. The Functions of Animal MicroRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Liu, Y. A Code within the Genetic Code: Codon Usage Regulates Co-Translational Protein Folding. Cell Commun. Signal. 2020, 18, 145. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Li, H.-F.; Chen, H.-H.; Lin, H. Emergent Roles of Circular RNAs in Metabolism and Metabolic Disorders. Int. J. Mol. Sci. 2022, 23, 1032. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.M.; Bakillah, A.; Jamil, H. Apolipoprotein B Binding to Microsomal Triglyceride Transfer Protein Decreases with Increases in Length and Lipidation: Implications in Lipoprotein Biosynthesis. Biochemistry 1997, 36, 13060–13067. [Google Scholar] [CrossRef] [PubMed]
- Christian, P.; Sacco, J.; Adeli, K. Autophagy: Emerging Roles in Lipid Homeostasis and Metabolic Control. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2013, 1831, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Athar, M.; Al-Allaf, F.; Alnouri, F.; Mohiuddin, T.; Bouazzaoui, A.; Bogari, N.; Elbjeirami, W.; Faidah, H.; Abduljaleel, Z.; Correspondence, F.; et al. Whole Exome Sequencing Reveals Multiple Mutations in Uncommon Genes of Familial Hypercholesterolaemia. J. Cardiovasc. Dis. Res. 2019, 10, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Ge, W.; Song, Y.; Chu, M.; Liu, Y.; Yang, B.; Wang, K.; Yu, B.; Song, C.; Wang, Y.; Yang, J. Generation of a Human IPSC Line CIBi009-A from a Patient with Familial Hypercholesterolemia Carrying Variants of LDLR c.T1241G and APOB c.G1618T. Stem Cell Res. 2021, 53, 102347. [Google Scholar] [CrossRef] [PubMed]
- Furgurson, M.; Lagor, W.R. CRISPR: A Promising Tool for Lipid Physiology and Therapeutics. Curr. Opin. Lipidol. 2019, 30, 172–176. [Google Scholar] [CrossRef]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef] [Green Version]
- Leman, R.; Parfait, B.; Vidaud, D.; Girodon, E.; Pacot, L.; Gérald, L.E.; Ka, C.; Ferec, C.; Fichou, Y.; Quesnelle, C.; et al. SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effect on mRNA splicing. Authorea 2022. [Google Scholar] [CrossRef]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24. [Google Scholar] [CrossRef] [Green Version]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the Deleteriousness of Variants throughout the Human Genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A Program for Annotating and Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff: SNPs in the Genome of Drosophila Melanogaster Strain W1118; Iso-2; Iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Schulz-Trieglaff, O.; Shaw, R.; Barnes, B.; Schlesinger, F.; Källberg, M.; Cox, A.J.; Kruglyak, S.; Saunders, C.T. Manta: Rapid Detection of Structural Variants and Indels for Germline and Cancer Sequencing Applications. Bioinformatics 2016, 32, 1220–1222. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Lindenbaum, P.; Redon, R. Bioalcidae, Samjs and Vcffilterjs: Object-Oriented Formatters and Filters for Bioinformatics Files. Bioinformatics 2018, 34, 1224–1225. [Google Scholar] [CrossRef] [PubMed]
- Talmud, P.J.; Shah, S.; Whittall, R.; Futema, M.; Howard, P.; Cooper, J.A.; Harrison, S.C.; Li, K.; Drenos, F.; Karpe, F.; et al. Use of Low-Density Lipoprotein Cholesterol Gene Score to Distinguish Patients with Polygenic and Monogenic Familial Hypercholesterolaemia: A Case-Control Study. Lancet 2013, 381, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Ittisoponpisan, S.; Islam, S.A.; Khanna, T.; Alhuzimi, E.; David, A.; Sternberg, M.J.E. Can Predicted Protein 3D Structures Provide Reliable Insights into whether Missense Variants Are Disease Associated. J. Mol. Biol. 2019, 431, 2197–2212. [Google Scholar] [CrossRef]
- Schrödinger LLC. The PyMOL Molecular Graphics System; Version 1.8; Schrödinger: New York, NY, USA, 2015. [Google Scholar]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome Engineering Using the CRISPR-Cas9 System. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmontel, O.; Rollat-Farnier, P.A.; Wozny, A.-S.; Charrière, S.; Vanhoye, X.; Simonet, T.; Chatron, N.; Collin-Chavagnac, D.; Nony, S.; Dumont, S.; et al. Development of a New Expanded Next-Generation Sequencing Panel for Genetic Diseases Involved in Dyslipidemia. Clin. Genet. 2020, 98, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Jammart, B.; Michelet, M.; Pécheur, E.-I.; Parent, R.; Bartosch, B.; Zoulim, F.; Durantel, D. Very-Low-Density Lipoprotein (VLDL)-Producing and Hepatitis C Virus-Replicating HepG2 Cells Secrete No More Lipoviroparticles than VLDL-Deficient Huh7.5 Cells. J. Virol. 2013, 87, 5065–5080. [Google Scholar] [CrossRef] [Green Version]
Individuals | I.1 | II.1 | II.2 |
---|---|---|---|
Sex | F | M | F |
Age range (year) | 50–60 | 30–40 | 20–30 |
TG (mmol/L) | 2.19 (↑) | 1.36 | 0.44 |
Total cholesterol (mmol/L) | 3.40 (↓) | 3.43 (↓) | 2.61 (↓) |
HDL-c (mmol/L) | 1.11 | 1.54 | 1.47 |
LDL-c (mmol/l) | 1.30 (↓) | 1.27 (↓) | 0.94 (↓) |
ApoB-100 (g/L) | 0.45 (↓) | 0.39 (↓) | 0.23 (↓) |
TC/apoB | 2.92 | 3.4 (↑) | 4.38 (↑) |
AST (ULN) | 0.95 | 1.11 | 0.60 |
ALT (ULN) | 0.88 | 1.78 | 0.45 |
GGT (ULN) | 2.22 | 0.30 | 0.42 |
Vit A (µmol/L) | 2.92 | 2.93 | 1.77 |
Vit D (µmol/L) | 19 (↓) | 85 | 44 |
Vit E (µmol/L) | 15.2 (↓) | 21.7 | 15.6 (↓) |
Vit K1 (ng/L) | 94 | NA | NA |
Prothrombine time | 100% | 100% | 97% |
Liver elastometry: | |||
CAP (dB/m) (steatosis score) | 359 [S3] | NA | NA |
LSM (kPa) (fibrosis score) | 5.5 [F0–F1] | 5.3 [F0–F1] | 5.5 [F0–F1] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanhoye, X.; Janin, A.; Caillaud, A.; Rimbert, A.; Venet, F.; Gossez, M.; Dijk, W.; Marmontel, O.; Nony, S.; Chatelain, C.; et al. APOB CRISPR-Cas9 Engineering in Hypobetalipoproteinemia: A Promising Tool for Functional Studies of Novel Variants. Int. J. Mol. Sci. 2022, 23, 4281. https://doi.org/10.3390/ijms23084281
Vanhoye X, Janin A, Caillaud A, Rimbert A, Venet F, Gossez M, Dijk W, Marmontel O, Nony S, Chatelain C, et al. APOB CRISPR-Cas9 Engineering in Hypobetalipoproteinemia: A Promising Tool for Functional Studies of Novel Variants. International Journal of Molecular Sciences. 2022; 23(8):4281. https://doi.org/10.3390/ijms23084281
Chicago/Turabian StyleVanhoye, Xavier, Alexandre Janin, Amandine Caillaud, Antoine Rimbert, Fabienne Venet, Morgane Gossez, Wieneke Dijk, Oriane Marmontel, Séverine Nony, Charlotte Chatelain, and et al. 2022. "APOB CRISPR-Cas9 Engineering in Hypobetalipoproteinemia: A Promising Tool for Functional Studies of Novel Variants" International Journal of Molecular Sciences 23, no. 8: 4281. https://doi.org/10.3390/ijms23084281
APA StyleVanhoye, X., Janin, A., Caillaud, A., Rimbert, A., Venet, F., Gossez, M., Dijk, W., Marmontel, O., Nony, S., Chatelain, C., Durand, C., Lindenbaum, P., Rieusset, J., Cariou, B., Moulin, P., & Di Filippo, M. (2022). APOB CRISPR-Cas9 Engineering in Hypobetalipoproteinemia: A Promising Tool for Functional Studies of Novel Variants. International Journal of Molecular Sciences, 23(8), 4281. https://doi.org/10.3390/ijms23084281