Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas
Abstract
:1. Introduction
2. Importance of Nutrients in Pseudomonas Biofilms
3. L-arginine as a Pleiotropic Nutrient
4. L-arginine Sensing and Biofilm Regulation in Pseudomonas
5. Beyond Nutriment: L-arginine, Electrons and Oxygen
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial Biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial Biofilms: From the Natural Environment to Infectious Diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Stalder, T.; Top, E. Plasmid Transfer in Biofilms: A Perspective on Limitations and Opportunities. npj Biofilms Microbiomes 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, L.; Li, X.; Halverson, L.J. Cell-Cell and Cell-Surface Interactions Mediated by Cellulose and a Novel Exopolysaccharide Contribute to Pseudomonas Putida Biofilm Formation and Fitness under Water-Limiting Conditions. Environ. Microbiol. 2011, 13, 1342–1356. [Google Scholar] [CrossRef] [PubMed]
- Crouzet, M.; Claverol, S.; Lomenech, A.M.; Le Sénéchal, C.; Costaglioli, P.; Barthe, C.; Garbay, B.; Bonneu, M.; Vilain, S. Pseudomonas Aeruginosa Cells Attached to a Surface Display a Typical Proteome Early as 20 Minutes of Incubation. PLoS ONE 2017, 12, e0180341. [Google Scholar] [CrossRef] [Green Version]
- Dötsch, A.; Eckweiler, D.; Schniederjans, M.; Zimmermann, A.; Jensen, V.; Scharfe, M.; Geffers, R.; Häussler, S. The Pseudomonas Aeruginosa Transcriptome in Planktonic Cultures and Static Biofilms Using Rna Sequencing. PLoS ONE 2012, 7, e31092. [Google Scholar] [CrossRef]
- Heacock-Kang, Y.; Sun, Z.; Zarzycki-Siek, J.; McMillan, I.A.; Norris, M.H.; Bluhm, A.P.; Cabanas, D.; Fogen, D.; Vo, H.; Donachie, S.P.; et al. Spatial Transcriptomes within the Pseudomonas Aeruginosa Biofilm Architecture. Mol. Microbiol. 2017, 106, 976–985. [Google Scholar] [CrossRef] [Green Version]
- O’Toole, G.A.; Kolter, R. Initiation of Biofilm Formation in Pseudomonas Fluorescens WCS365 Proceeds via Multiple, Convergent Signalling Pathways: A Genetic Analysis. Mol. Microbiol. 1998, 28, 449–461. [Google Scholar] [CrossRef]
- Monds, R.D.; Newell, P.D.; Gross, R.H.; O’Toole, G.A. Phosphate-Dependent Modulation of c-Di-GMP Levels Regulates Pseudomonas Fluorescens Pf0-1 Biofilm Formation by Controlling Secretion of the Adhesin LapA. Mol. Microbiol. 2007, 63, 656–679. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gil, M.; Romero, D.; Kolter, R.; Espinosa-Urgel, M. Calcium Causes Multimerization of the Large Adhesin LapF and Modulates Biofilm Formation by Pseudomonas Putida. J. Bacteriol. 2012, 194, 6782–6789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hengge, R. Principles of C-Di-GMP Signalling in Bacteria. Nat. Rev. Microbiol. 2009, 7, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Jenal, U.; Reinders, A.; Lori, C. Cyclic Di-GMP: Second Messenger Extraordinaire. Nat. Rev. Microbiol. 2017, 15, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Ha, D.-G.; O’Toole, G.A. C-Di-GMP and Its Effects on Biofilm Formation and Dispersion: A Pseudomonas Aeruginosa Review. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Gil, M.; Ramos-González, M.I.; Espinosa-Urgel, M. Roles of Cyclic Di-GMP and the Gac System in Transcriptional Control of the Genes Coding for the Pseudomonas Putida Adhesins LapA and LapF. J. Bacteriol. 2014, 196, 1484–1495. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.; Cámara, M. Quorum Sensing and Environmental Adaptation in Pseudomonas Aeruginosa: A Tale of Regulatory Networks and Multifunctional Signal Molecules. Curr. Opin. Microbiol. 2009, 12, 182–191. [Google Scholar] [CrossRef]
- O’Loughlin, C.T.; Miller, L.C.; Siryaporn, A.; Drescher, K.; Semmelhack, M.F.; Bassler, B.L. A Quorum-Sensing Inhibitor Blocks Pseudomonas Aeruginosa Virulence and Biofilm Formation. Proc. Natl. Acad. Sci. USA 2013, 110, 17981–17986. [Google Scholar] [CrossRef] [Green Version]
- Gjermansen, M.; Ragas, P.; Sternberg, C.; Molin, S.; Tolker-Nielsen, T. Characterization of Starvation-Induced Dispersion in Pseudomonas Putida Biofilms. Environ. Microbiol. 2005, 7, 894–904. [Google Scholar] [CrossRef]
- Díaz-Salazar, C.; Calero, P.; Espinosa-Portero, R.; Jiménez-Fernández, A.; Wirebrand, L.; Velasco-Domínguez, M.G.; López-Sánchez, A.; Shingler, V.; Govantes, F. The Stringent Response Promotes Biofilm Dispersal in Pseudomonas Putida. Sci. Rep. 2017, 7, 18055. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, A.; Dehghany, J.; Schwebs, T.; Müsken, M.; Häussler, S.; Meyer-Hermann, M. Inoculation Density and Nutrient Level Determine the Formation of Mushroom-Shaped Structures in Pseudomonas Aeruginosa Biofilms. Sci. Rep. 2016, 6, 32097. [Google Scholar] [CrossRef] [PubMed]
- Corral-Lugo, A.; De la Torre, J.; Matilla, M.A.; Fernández, M.; Morel, B.; Espinosa-Urgel, M.; Krell, T. Assessment of the Contribution of Chemoreceptor-Based Signalling to Biofilm Formation. Environ. Microbiol. 2016, 18, 3355–3372. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.A.S.; Subramoni, S.; Poh, W.H.; Hasnuddin, N.T.B.; Tay, M.; Givskov, M.; Tolker-Nielsen, T.; Kjelleberg, S.; McDougald, D.; Rice, S.A. Carbon Starvation of Pseudomonas Aeruginosa Biofilms Selects for Dispersal Insensitive Mutants. BMC Microbiol. 2021, 21, 255. [Google Scholar] [CrossRef] [PubMed]
- Dahlstrom, K.M.; Collins, A.J.; Doing, G.; Taroni, J.N.; Gauvin, T.J.; Greene, C.S.; Hogan, D.A.; O’Toole, G.A. A Multimodal Strategy Used by a Large C-Di-GMP Network. J. Bacteriol. 2018, 200, e00703-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commichau, F.M.; Forchhammer, K.; Stülke, J. Regulatory Links between Carbon and Nitrogen Metabolism. Curr. Opin. Microbiol. 2006, 9, 167–172. [Google Scholar] [CrossRef]
- Mercenier, A.; Simon, J.P.; Vander Wauven, C.; Haas, D.; Stalon, V. Regulation of Enzyme Synthesis in the Arginine Deiminase Pathway of Pseudomonas Aeruginosa. J. Bacteriol. 1980, 144, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Cunin, R.; Glansdorff, N.; Pierard, A.; Stalon, V. Biosynthesis and Metabolism of Arginine in Bacteria. Microbiol. Rev. 1986, 50, 314–352. [Google Scholar] [CrossRef]
- Morris, S.M. Arginine Metabolism Revisited. J. Nutr. 2016, 146, 2579S–2586S. [Google Scholar] [CrossRef]
- Richter, A.M.; Possling, A.; Malysheva, N.; Yousef, K.P.; Herbst, S.; von Kleist, M.; Hengge, R. Local C-Di-GMP Signaling in the Control of Synthesis of the E. Coli Biofilm Exopolysaccharide PEtN-Cellulose. J. Mol. Biol. 2020, 432, 4576–4595. [Google Scholar] [CrossRef]
- Morris, S.M. Enzymes of Arginine Metabolism. J. Nutr. 2004, 134, 2743S–2747S. [Google Scholar] [CrossRef]
- Lu, C.D.; Yang, Z.; Li, W. Transcriptome Analysis of the ArgR Regulon in Pseudomonas Aeruginosa. J. Bacteriol. 2004, 186, 3855–3861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishijyo, T.; Haas, D.; Itoh, Y. The CbrA-CbrB Two-Component Regulatory System Controls the Utilization of Multiple Carbon and Nitrogen Sources in Pseudomonas Aeruginosa. Mol. Microbiol. 2001, 40, 917–931. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Lu, C.D.; Abdelal, A.T. Purification and Characterization of an Arginine Regulatory Protein, ArgR, from Pseudomonas Aeruginosa and Its Interactions with the Control Regions for the Car, ArgF, and Aru Operons. J. Bacteriol. 1997, 179, 5309–5317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.D. Pathways and Regulation of Bacterial Arginine Metabolism and Perspectives for Obtaining Arginine Overproducing Strains. Appl. Microbiol. Biotechnol. 2006, 70, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Wauven, C.V.; Pierard, A.; Kley-Raymann, M.; Haas, D. Pseudomonas Aeruginosa Mutants Affected in Anaerobic Growth on Arginine: Evidence for a Four-Gene Cluster Encoding the Arginine Deiminase Pathway. J. Bacteriol. 1984, 160, 928–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galimand, M.; Gamper, M.; Zimmerman, A.; Haas, D. Positive FNR-like Control of Anaerobic Arginine Degradation and Nitrate Respiration in Pseudomonas Aeruginosa. J. Bacteriol. 1991, 173, 1598–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.D.; Winteler, H.; Abdelal, A.; Haas, D. The ArgR Regulatory Protein, a Helper to the Anaerobic Regulator ANR during Transcriptional Activation of the ArcD Promoter in Pseudomonas Aeruginosa. J. Bacteriol. 1999, 181, 2459–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giardina, G.; Castiglione, N.; Caruso, M.; Cutruzzolà, F.; Rinaldo, S. The Pseudomonas Aeruginosa DNR Transcription Factor: Light and Shade of Nitric Oxide-Sensing Mechanisms. Biochem. Soc. Trans. 2011, 39, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Rinaldo, S.; Castiglione, N.; Giardina, G.; Caruso, M.; Arcovito, A.; Longa, S.D.; D’Angelo, P.; Cutruzzolà, F. Unusual Heme Binding Properties of the Dissimilative Nitrate Respiration Regulator, a Bacterial Nitric Oxide Sensor. Antioxid. Redox Signal. 2012, 17, 1178–1189. [Google Scholar] [CrossRef] [Green Version]
- Gaimster, H.; Alston, M.; Richardson, D.J.; Gates, A.J.; Rowley, G. Transcriptional and Environmental Control of Bacterial Denitrification and N2O Emissions. FEMS Microbiol. Lett. 2018, 365, fnx277. [Google Scholar] [CrossRef]
- Benkert, B.; Quäck, N.; Schreiber, K.; Jaensch, L.; Jahn, D.; Schobert, M. Nitrate-Responsive NarX-NarL Represses Arginine-Mediated Induction of the Pseudomonas Aeruginosa Arginine Fermentation ArcDABC Operon. Microbiology 2008, 154, 3053–3060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bringel, F.; Frey, L.; Boivin, S.; Hubert, J.C. Arginine Biosynthesis and Regulation in Lactobacillus Plantarum: The CarA Gene and the ArgCJBDF Cluster Are Divergently Transcribed. J. Bacteriol. 1997, 179, 2697–2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenis, Y.Y.; Elmetwally, M.A.; Maldonado-Estrada, J.G.; Bazer, F.W. Physiological Importance of Polyamines. Zygote 2017, 25, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Barrientos-Moreno, L.; Molina-Henares, M.A.; Ramos-González, M.I.; Espinosa-Urgel, M. Arginine as an Environmental and Metabolic Cue for Cyclic Diguanylate Signalling and Biofilm Formation in Pseudomonas Putida. Sci. Rep. 2020, 10, 13623. [Google Scholar] [CrossRef]
- Moncada, S.; Higgs, E.A. The Discovery of Nitric Oxide and Its Role in Vascular Biology. Br. J. Pharmacol. 2006, 147, S193–S201. [Google Scholar] [CrossRef] [Green Version]
- Stuehr, D.J.; Haque, M.M. Nitric Oxide Synthase Enzymology in the 20 Years after the Nobel Prize. Br. J. Pharmacol. 2019, 176, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric Oxide Synthases: Structure, Function and Inhibition. Biochem. J. 2001, 357, 593–615. [Google Scholar] [CrossRef]
- Wu, G.; Meininger, C.J. Arginine Nutrition and Cardiovascular Function. J. Nutr. 2000, 130, 2626–2629. [Google Scholar] [CrossRef] [Green Version]
- Stechmiller, J.K.; Childress, B.; Cowan, L. Arginine Supplementation and Wound Healing. Nutr. Clin. Pract. 2005, 20, 52–61. [Google Scholar] [CrossRef]
- Popovic, P.J.; Iii, H.J.Z.; Ochoa, J.B. Arginine and Immunity. J. Nutr. 2007, 137, 1681–1686. [Google Scholar] [CrossRef] [Green Version]
- Albaugh, V.L.; Pinzon-Guzman, C.; Barbul, A. Arginine—Dual Roles as an Onconutrient and Immunonutrient. J. Surg. Oncol. 2017, 115, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Jahani, M.; Noroznezhad, F.; Mansouri, K. Arginine: Challenges and Opportunities of This Two-Faced Molecule in Cancer Therapy. Biomed. Pharmacother. 2018, 102, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, S.; Giardina, G.; Mantoni, F.; Paone, A.; Cutruzzolà, F. Beyond Nitrogen Metabolism: Nitric Oxide, Cyclic-Di-GMP and Bacterial Biofilms. FEMS Microbiol. Lett. 2018, 365, fny029. [Google Scholar] [CrossRef] [PubMed]
- Crane, B.R.; Sudhamsu, J.; Patel, B.A. Bacterial Nitric Oxide Synthases. Annu. Rev. Biochem. 2010, 79, 445–470. [Google Scholar] [CrossRef]
- Shin, J.H.; Lee, S.Y. Metabolic Engineering of Microorganisms for the Production of L-Arginine and Its Derivatives. Microb. Cell Fact. 2014, 13, 166. [Google Scholar] [CrossRef]
- Donaldson, T.; Iozzino, L.; Deacon, L.J.; Billones, H.; Ausili, A.; D’Auria, S.; Dattelbaum, J.D. Engineering a Switch-Based Biosensor for Arginine Using a Thermotoga Maritima Periplasmic Binding Protein. Anal. Biochem. 2017, 525, 60–66. [Google Scholar] [CrossRef]
- Vieira Colombo, A.P.; Magalhães, C.B.; Hartenbach, F.A.R.R.; Martins do Souto, R.; Maciel da Silva-Boghossian, C. Periodontal-Disease-Associated Biofilm: A Reservoir for Pathogens of Medical Importance. Microb. Pathog. 2015, 94, 27–34. [Google Scholar] [CrossRef]
- Kuang, X.; Chen, V.; Xu, X. Novel Approaches to the Control of Oral Microbial Biofilms. Biomed Res. Int. 2018, 2018, 6498932. [Google Scholar] [CrossRef] [Green Version]
- Bernier, S.P.; Ha, D.G.; Khan, W.; Merritt, J.H.; O’Toole, G.A. Modulation of Pseudomonas Aeruginosa Surface-Associated Group Behaviors by Individual Amino Acids through c-Di-GMP Signaling. Res. Microbiol. 2011, 162, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Ramos-González, M.I.; Travieso, M.L.; Soriano, M.I.; Matilla, M.A.; Huertas-Rosales, Ó.; Barrientos-Moreno, L.; Tagua, V.G.; Espinosa-Urgel, M. Genetic Dissection of the Regulatory Network Associated with High C-Di-GMP Levels in Pseudomonas Putida KT2440. Front. Microbiol. 2016, 7, 1093. [Google Scholar] [CrossRef] [Green Version]
- Mills, E.; Petersen, E.; Kulasekara, B.R.; Miller, S.I. A Direct Screen for C-Di-GMP Modulators Reveals a Salmonella Typhimurium Periplasmic L-Arginine-Sensing Pathway. Sci. Signal. 2015, 8, fs12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Römling, U. Small Molecules with Big Effects: Cyclic Di-GMP-Mediated Stimulation of Cellulose Production by the Amino Acid L-Arginine. Sci. Signal. 2015, 8, fs12. [Google Scholar] [CrossRef] [PubMed]
- Barrientos-Moreno, L.; Molina-Henares, M.A.; Ramos-González, M.I.; Espinosa-Urgel, M. Role of the Transcriptional Regulator ArgR in the Connection between Arginine Metabolism and C-Di-GMP Signaling in Pseudomonas Putida. Appl. Environ. Microbiol. 2022, 88, e00064-22. [Google Scholar] [CrossRef] [PubMed]
- Paiardini, A.; Mantoni, F.; Giardina, G.; Paone, A.; Janson, G.; Leoni, L.; Rampioni, G.; Cutruzzolà, F.; Rinaldo, S. A Novel Bacterial L-Arginine Sensor Controlling c-Di-GMP Levels in Pseudomonas Aeruginosa. Proteins Struct. Funct. Bioinform. 2018, 86, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Mantoni, F.; Paiardini, A.; Brunotti, P.; D’Angelo, C.; Cervoni, L.; Paone, A.; Cappellacci, L.; Petrelli, R.; Ricciutelli, M.; Leoni, L.; et al. Insights into the GTP-Dependent Allosteric Control of c-Di-GMP Hydrolysis from the Crystal Structure of PA0575 Protein from Pseudomonas Aeruginosa. FEBS J. 2018, 285, 3815–3834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katharios-Lanwermeyer, S.; Whitfield, G.B.; Howell, P.L.; O’toole, G.A. Pseudomonas Aeruginosa Uses C-Di-Gmp Phosphodiesterases Rmca and Mora to Regulate Biofilm Maintenance. MBio 2021, 12, e03384-20. [Google Scholar] [CrossRef] [PubMed]
- Okegbe, C.; Fields, B.L.; Cole, S.J.; Beierschmitt, C.; Morgan, C.J.; Price-Whelan, A.; Stewart, R.C.; Lee, V.T.; Dietrich, L.E.P. Electron-Shuttling Antibiotics Structure Bacterial Communities by Modulating Cellular Levels of c-Di-GMP. Proc. Natl. Acad. Sci. USA 2017, 114, E5236–E5245. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Wang, Y.Z.; Yang, X.A.; Jiang, T.; Xie, W. Structural Studies of the Periplasmic Portion of the Diguanylate Cyclase CdgH from Vibrio Cholera. Sci. Rep. 2017, 7, 1861. [Google Scholar] [CrossRef] [Green Version]
- Sadikot, R.T.; Blackwell, T.S.; Christman, J.W.; Prince, A.S. Pathogen-Host Interactions in Pseudomonas Aeruginosa Pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 1209–1223. [Google Scholar] [CrossRef] [Green Version]
- Moreau-Marquis, S.; Stanton, B.A.; O’Toole, G.A. Pseudomonas Aeruginosa Biofilm Formation in the Cystic Fibrosis Airway. Pulm. Pharmacol. Ther. 2008, 21, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.L.; Aye, L.M.; Whiteley, M. Nutritional Cues Control Pseudomonas Aeruginosa Multicellular Behavior in Cystic Fibrosis Sputum. J. Bacteriol. 2007, 189, 8079–8087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfgang, M.C.; Jyot, J.; Goodman, A.L.; Ramphal, R.; Lory, S. Pseudomonas Aeruginosa Regulates Flagellin Expression as Part of a Global Response to Airway Fluid from Cystic Fibrosis Patients. Proc. Natl. Acad. Sci. USA 2004, 101, 6664–6668. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, K.; Boes, N.; Eschbach, M.; Jaensch, L.; Wehland, J.; Bjarnsholt, T.; Givskov, M.; Hentzer, M.; Schobert, M. Anaerobic Survival of Pseudomonas Aeruginosa by Pyruvate Fermentation Requires an Usp-Type Stress Protein. J. Bacteriol. 2006, 188, 659–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, M.S.; Matthews, W.J.; Kang, Y.; Nguyen, D.T.; Hoang, T.T. In Vivo Evidence of Pseudomonas Aeruginosa Nutrient Acquisition and Pathogenesis in the Lungs of Cystic Fibrosis Patients. Infect. Immun. 2007, 75, 5313–5324. [Google Scholar] [CrossRef] [Green Version]
- Barbier, M.; Damron, F.H.; Bielecki, P.; Suárez-Diez, M.; Puchałka, J.; Albertí, S.; Dos Santos, V.M.; Goldberg, J.B. From the Environment to the Host: Re-Wiring of the Transcriptome of Pseudomonas Aeruginosa from 22 °C to 37 °C. PLoS ONE 2014, 9, e89941. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Cao, J.; Ng, F.M.; Hill, J. Pseudomonas Aeruginosa Develops Ciprofloxacin Resistance from Low to High Level with Distinctive Proteome Changes. J. Proteomics 2017, 152, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Müsken, M.; Di Fiore, S.; Dötsch, A.; Fischer, R.; Häussler, S. Genetic Determinants of Pseudomonas Aeruginosa Biofilm Establishment. Microbiology 2010, 156, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, M.; Datey, A.; Wilson, K.T.; Chakravortty, D. Dual Role of Arginine Metabolism in Establishing Pathogenesis. Curr. Opin. Microbiol. 2016, 29, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Agnello, M.; Cen, L.; Tran, N.C.; Shi, W.; McLean, J.S.; He, X. Arginine Improves PH Homeostasis via Metabolism and Microbiome Modulation. J. Dent. Res. 2017, 96, 924–930. [Google Scholar] [CrossRef]
- Everett, J.; Turner, K.; Cai, Q.; Gordon, V.; Whiteley, M.; Rumbaugh, K. Arginine Is a Critical Substrate for the Pathogenesis of Pseudomonas Aeruginosa in Burn Wound Infections. MBio 2017, 8, e02160-16. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Hossain, S.S.; Moreira, Z.M.; Haney, C.H. Putrescine and Its Metabolic Precursor Arginine Promote Biofilm and C-Di-GMP Synthesis in Pseudomonas Aeruginosa. J. Bacteriol. 2022, 204. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.J.; Du, R.H.; Calcutt, M.W.; Abdolrasulnia, R.; Christman, B.W.; Blackwell, T.S. Discovery of an Operon That Participates in Agmatine Metabolism and Regulates Biofilm Formation in Pseudomonas Aeruginosa. Mol. Microbiol. 2010, 76, 104–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogardt, M.; Heesemann, J. Microevolution of Pseudomonas Aeruginosa to a Chronic Pathogen of the Cystic Fibrosis Lung. Curr. Top. Microbiol. Immunol. 2013, 358, 91–118. [Google Scholar] [CrossRef] [PubMed]
- Pulukkody, A.C.; Yung, Y.P.; Donnarumma, F.; Murray, K.K.; Carlson, R.P.; Hanley, L. Spatially Resolved Analysis of Pseudomonas Aeruginosa Biofilm Proteomes Measured by Laser Ablation Sample Transfer. PLoS ONE 2021, 16, e0250911. [Google Scholar] [CrossRef] [PubMed]
- Grasemann, H.; Ratjen, F. Nitric Oxide and L-Arginine Deficiency in Cystic Fibrosis. Curr. Pharm. Des. 2012, 18, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Tribelli, P.M.; Lujan, A.M.; Pardo, A.; Ibarra, J.G.; Fernández Do Porto, D.; Smania, A.; López, N.I. Core Regulon of the Global Anaerobic Regulator Anr Targets Central Metabolism Functions in Pseudomonas Species. Sci. Rep. 2019, 9, 9065. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, S.; Carrubba, R.; Santoro, S.; Bertoni, G. The Small RNA ErsA Impacts the Anaerobic Metabolism of Pseudomonas Aeruginosa Through Post-Transcriptional Modulation of the Master Regulator Anr. Front. Microbiol. 2021, 12, 691608. [Google Scholar] [CrossRef]
- Eschbach, M.; Schreiber, K.; Trunk, K.; Buer, J.; Jahn, D.; Schobert, M. Long-Term Anaerobic Survival of the Opportunistic Pathogen Pseudomonas Aeruginosa via Pyruvate Fermentation. J. Bacteriol. 2004, 186, 4596–4604. [Google Scholar] [CrossRef] [Green Version]
- Glasser, N.R.; Kern, S.E.; Newman, D.K. Phenazine Redox Cycling Enhances Anaerobic Survival in Pseudomonas Aeruginosa by Facilitating Generation of ATP and a Proton-Motive Force. Mol. Microbiol. 2014, 92, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Das, T.; Kutty, S.K.; Tavallaie, R.; Ibugo, A.I.; Panchompoo, J.; Sehar, S.; Aldous, L.; Yeung, A.W.S.; Thomas, S.R.; Kumar, N.; et al. Phenazine Virulence Factor Binding to Extracellular DNA Is Important for Pseudomonas Aeruginosa Biofilm Formation. Sci. Rep. 2015, 5, 8398. [Google Scholar] [CrossRef]
- Saunders, S.H.; Tse, E.C.M.; Yates, M.D.; Otero, F.J.; Trammell, S.A.; Stemp, E.D.A.; Barton, J.K.; Tender, L.M.; Newman, D.K. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas Aeruginosa Biofilms. Cell 2020, 182, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Schiessl, K.T.; Hu, F.; Jo, J.; Nazia, S.Z.; Wang, B.; Price-Whelan, A.; Min, W.; Dietrich, L.E.P. Phenazine Production Promotes Antibiotic Tolerance and Metabolic Heterogeneity in Pseudomonas Aeruginosa Biofilms. Nat. Commun. 2019, 10, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, D.G.; Merritt, J.H.; Hampton, T.H.; Hodgkinson, J.T.; Janecek, M.; Spring, D.R.; Welch, M.; O’Toole, G.A. 2-Heptyl-4-Quinolone, a Precursor of the Pseudomonas Quinolone Signal Molecule, Modulates Swarming Motility in Pseudomonas Aeruginosa. J. Bacteriol. 2011, 193, 6770–6780. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, N.; Perumal, G.; Doble, M. Bacterial Resistance in Biofilm-Associated Bacteria. Future Microbiol. 2015, 10, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.C.; Levy, S.B.; Jackson, R.W. Pseudomonas Genomes: Diverse and Adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef] [Green Version]
- Maes, S.; De Reu, K.; Van Weyenberg, S.; Lories, B.; Heyndrickx, M.; Steenackers, H. Pseudomonas Putida as a Potential Biocontrol Agent against Salmonella Java Biofilm Formation in the Drinking Water System of Broiler Houses. BMC Microbiol. 2020, 20, 373. [Google Scholar] [CrossRef]
- Lieese, A.; Seelbach, K.; Wandrey, C. Industrial Biotransformations, 2nd Completely Revised and Extended Edition. A. Liese, K. Seelbach, and C. Wandrey, Eds. Wiley-VCH: Weinheim. 2006. 556 + xiv pp. £149.00. ISBN 3-527-31001-0. Org. Process Res. Dev. 2007, 11, 925–926. [Google Scholar] [CrossRef]
- Pollard, D.J.; Woodley, J.M. Biocatalysis for Pharmaceutical Intermediates: The Future Is Now. Trends Biotechnol. 2007, 25, 66–73. [Google Scholar] [CrossRef]
- Espeso, D.R.; Martínez-García, E.; Carpio, A.; de Lorenzo, V. Dynamics of Pseudomonas Putida Biofilms in an Upscale Experimental Framework. J. Ind. Microbiol. Biotechnol. 2018, 45, 899–911. [Google Scholar] [CrossRef]
- Sauer, K.; Cullen, M.C.; Rickard, A.H.; Zeef, L.A.H.; Davies, D.G.; Gilbert, P. Characterization of Nutrient-Induced Dispersion in Pseudomonas Aeruginosa PAO1 Biofilm. J. Bacteriol. 2004, 186, 7312–7326. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Wang, S.; Chen, G.; Wang, G.; Liu, L. Nutrient Starvation Intensifies Chlorine Disinfection-Stressed Biofilm Formation. Chemosphere 2022, 295, 133827. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Panda, A.K.; De Mandal, S.; Shakeel, M.; Bisht, S.S.; Khan, J. Natural Anti-Biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Front. Microbiol. 2020, 11, 2640. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scribani Rossi, C.; Barrientos-Moreno, L.; Paone, A.; Cutruzzolà, F.; Paiardini, A.; Espinosa-Urgel, M.; Rinaldo, S. Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas. Int. J. Mol. Sci. 2022, 23, 4386. https://doi.org/10.3390/ijms23084386
Scribani Rossi C, Barrientos-Moreno L, Paone A, Cutruzzolà F, Paiardini A, Espinosa-Urgel M, Rinaldo S. Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas. International Journal of Molecular Sciences. 2022; 23(8):4386. https://doi.org/10.3390/ijms23084386
Chicago/Turabian StyleScribani Rossi, Chiara, Laura Barrientos-Moreno, Alessio Paone, Francesca Cutruzzolà, Alessandro Paiardini, Manuel Espinosa-Urgel, and Serena Rinaldo. 2022. "Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas" International Journal of Molecular Sciences 23, no. 8: 4386. https://doi.org/10.3390/ijms23084386
APA StyleScribani Rossi, C., Barrientos-Moreno, L., Paone, A., Cutruzzolà, F., Paiardini, A., Espinosa-Urgel, M., & Rinaldo, S. (2022). Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas. International Journal of Molecular Sciences, 23(8), 4386. https://doi.org/10.3390/ijms23084386