Comparative Study of Starch Phosphorylase Genes and Encoded Proteins in Various Monocots and Dicots with Emphasis on Maize
Abstract
:1. Introduction
2. Results
2.1. Gene Sequence and Structure
2.1.1. Identification of Orthologs of PHO1 and PHO2
2.1.2. Gene Structure Comparison
2.1.3. Synteny and Collinearity Analysis
2.1.4. SSRs and Retro-Elements in PHO1 and PHO2
2.1.5. Promoter Analysis of PHO1 and PHO2
2.2. Protein Sequence and Structure
2.2.1. Comparison of Protein Sequence
2.2.2. Sequence Variation in PHO1 and PHO2
2.2.3. Three Dimensional (3D) Structure Comparison of PHO1 and PHO2
2.2.4. Ligand Binding Sites Analysis
2.3. Phylogenetic Analysis
2.4. Expression Analysis of PHO1 and PHO2
Effect of ABA Treatment on the Level of Expression of PHO1 and PHO2
3. Discussion
4. Materials and Methods
4.1. Identification of “True” Orthologs of PHO1 and PHO2 Encoding Genes
4.2. Gene Structure Analysis
4.3. Protein Sequence Analysis
4.4. 3D Structure Analysis of the PHO1 and the PHO2
4.5. Ligand-Binding Site Analysis
4.6. Phylogenetic, Synteny and Collinearity Analysis
4.7. Preparation of Plant Material
4.8. Expression Analysis
4.9. ABA Treatment Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tetlow, I.J.; Wait, R.; Lu, Z.; Akkasaeng, R.; Bowsher, C.G.; Esposito, S.; Kosar-Hashemi, B.; Morell, M.K.; Emes, M.J. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 2004, 16, 694–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crofts, N.; Nakamura, Y.; Fujita, N. Critical and speculative review of the roles of multi-protein complexes in starch biosynthesis in cereals. Plant Sci. 2017, 262, 1–8. [Google Scholar] [CrossRef] [PubMed]
- James, M.G.; Denyer, K.; Myers, A.M. Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 2003, 6, 215–222. [Google Scholar] [CrossRef]
- Schupp, N.; Ziegler, P. The relation of starch phosphorylases to starch metabolism in wheat. Plant Cell Physiol. 2004, 45, 1471–1484. [Google Scholar] [CrossRef]
- Dauvillee, D.; Chochois, V.; Steup, M.; Haebel, S.; Eckermann, N.; Ritte, G.; Ral, J.P.; Colleoni, C.; Hicks, G.; Wattebled, F.; et al. Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J. 2006, 48, 274–285. [Google Scholar] [CrossRef]
- Young, G.H.; Chen, H.M.; Lin, C.T.; Tseng, K.C.; Wu, J.S.; Juang, R.H. Site-specific phosphorylation of L-form starch phosphorylase by the protein kinase activity from sweet potato roots. Planta 2006, 223, 468–478. [Google Scholar] [CrossRef]
- Nakamura, Y.; Ono, M.; Utsumi, C.; Steup, M. Functional interaction between plastidial starch phosphorylase and starch branching enzymes from rice during the synthesis of branched maltodextrins. Plant Cell Physiol. 2012, 53, 869–878. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Chen, H.M.; Chou, I.M.; Chen, A.N.; Chen, C.P.; Young, G.H.; Lin, C.T.; Cheng, C.H.; Chang, S.C.; Juang, R.H. Plastidial starch phosphorylase in sweet potato roots is proteolytically modified by protein-protein interaction with the 20S proteasome. PLoS ONE 2012, 7, e35336. [Google Scholar] [CrossRef]
- Hwang, S.K.; Singh, S.; Cakir, B.; Satoh, H.; Okita, T.W. The plastidial starch phosphorylase from rice endosperm: Catalytic properties at low temperature. Planta 2016, 243, 999–1009. [Google Scholar] [CrossRef]
- Tickle, P.; Burrell, M.M.; Coates, S.A.; Emes, M.J.; Tetlow, I.J.; Bowsher, C.G. Characterization of plastidial starch phosphorylase in Triticum aestivum L. endosperm. J. Plant Physiol. 2009, 166, 1465–1478. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Nelson, O.E. Two additional phosphorylases in developing maize seeds. Plant Physiol. 1969, 44, 159–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subasinghe, R.M.; Liu, F.; Polack, U.C.; Lee, E.A.; Emes, M.J.; Tetlow, I.J. Multimeric states of starch phosphorylase determine protein-protein interactions with starch biosynthetic enzymes in amyloplasts. Plant Physiol. Biochem. 2014, 83, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Brisson, N.; Giroux, H.; Zollinger, M.; Camirand, A.; Simard, C. Maturation and subcellular compartmentation of potato starch phosphorylase. Plant Cell 1989, 1, 559–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newgard, C.B.; Hwang, P.K.; Fletterick, R.J. The family of glycogen phosphorylases: Structure and function. Crit. Rev. Biochem. Mol. Biol. 1989, 24, 69–99. [Google Scholar] [CrossRef] [PubMed]
- Zeeman, S.C.; Delatte, T.; Messerli, G.; Umhang, M.; Stettler, M.; Mettler, T.; Streb, S.; Reinhold, H.; Kotting, O. Starch breakdown: Recent discoveries suggest distinct pathways and novel mechanisms. Funct. Plant Biol. 2007, 34, 465–473. [Google Scholar] [CrossRef]
- Orzechowski, S. Starch metabolism in leaves. Acta Biochim. Pol. 2008, 55, 435–445. [Google Scholar] [CrossRef]
- Fettke, J.; Eckermann, N.; Kotting, O.; Ritte, G.; Steup, M. Novel starch-related enzymes and carbohydrates. Cell. Mol. Biol. 2007, 52, OL883-904. [Google Scholar]
- Yu, Y.; Mu, H.H.; Wasserman, B.P.; Carman, G.M. Identification of the maize amyloplast stromal 112-kD protein as a plastidic starch phosphorylase. Plant Physiol. 2001, 125, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Satoh, H.; Shibahara, K.; Tokunaga, T.; Nishi, A.; Tasaki, M.; Hwang, S.K.; Okita, T.W.; Kaneko, N.; Fujita, N.; Yoshida, M.; et al. Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 2008, 20, 1833–1849. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Jiang, Q.T.; Zhang, X.W.; Lan, X.J.; Pu, Z.E.; Wei, Y.M.; Liu, C.; Lu, Z.X.; Zheng, Y.L. Structure and expression of barley starch phosphorylase genes. Planta 2013, 238, 1081–1093. [Google Scholar] [CrossRef]
- Albrecht, T.; Greve, B.; Pusch, K.; Kossmann, J.; Buchner, P.; Wobus, U.; Steup, M. Homodimers and heterodimers of Pho1-type phosphorylase isoforms in Solanum tuberosum L. as revealed by sequence-specific antibodies. Eur. J. Biochem. 1998, 251, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steup, M.; Robenek, H.; Melkonian, M. In-vitro degradation of starch granules isolated from spinach chloroplasts. Planta 1983, 158, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Rathore, R.S.; Garg, N.; Garg, S.; Kumar, A. Starch phosphorylase: Role in starch metabolism and biotechnological applications. Crit. Rev. Biotechnol. 2009, 29, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.T.; Chang, J.Y.; Lee, Y.T.; Wu, Y.H. The identification of starch phosphorylase in the developing mungbean (Vigna radiata L.). J. Agric. Food Chem. 2005, 53, 5708–5715. [Google Scholar] [CrossRef]
- Hwang, S.K.; Koper, K.; Satoh, H.; Okita, T.W. Rice Endosperm Starch Phosphorylase (Pho1) Assembles with Disproportionating Enzyme (Dpe1) to Form a Protein Complex That Enhances Synthesis of Malto-oligosaccharides. J. Biol. Chem. 2016, 291, 19994–20007. [Google Scholar] [CrossRef] [Green Version]
- Cuesta-Seijo, J.A.; Ruzanski, C.; Krucewicz, K.; Meier, S.; Hagglund, P.; Svensson, B.; Palcic, M.M. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development. PLoS ONE 2017, 12, e0175488. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.Y.; Nelson, O.E. Phosphorylases I and II of Maize Endosperm. Plant Physiol. 1968, 43, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Mori, H.; Tanizawa, K.; Fukui, T. A chimeric alpha-glucan phosphorylase of plant type L and H isozymes. Functional role of 78-residue insertion in type L isozyme. J. Biol. Chem. 1993, 268, 5574–5581. [Google Scholar] [CrossRef]
- Zeeman, S.C.; Thorneycroft, D.; Schupp, N.; Chapple, A.; Weck, M.; Dunstan, H.; Haldimann, P.; Bechtold, N.; Smith, A.M.; Smith, S.M. Plastidial alpha-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiol. 2004, 135, 849–858. [Google Scholar] [CrossRef] [Green Version]
- Young, N.D.; Debelle, F.; Oldroyd, G.E.; Geurts, R.; Cannon, S.B.; Udvardi, M.K.; Benedito, V.A.; Mayer, K.F.; Gouzy, J.; Schoof, H.; et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011, 480, 520–524. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.K.; Koper, K.; Okita, T.W. The plastid phosphorylase as a multiple-role player in plant metabolism. Plant Sci. 2020, 290, 110303. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, N.; Liu, L.; Ali, A.; Mughal, N.; Yu, G.; Huang, Y. Molecular Functions and Pathways of Plastidial Starch Phosphorylase (PHO1) in Starch Metabolism: Current and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 10450. [Google Scholar] [CrossRef]
- Liu, F.; Makhmoudova, A.; Lee, E.A.; Wait, R.; Emes, M.J.; Tetlow, I.J. The amylose extender mutant of maize conditions novel protein-protein interactions between starch biosynthetic enzymes in amyloplasts. J. Exp. Bot. 2009, 60, 4423–4440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tetlow, I.J.; Davies, E.J.; Vardy, K.A.; Bowsher, C.G.; Burrell, M.M.; Emes, M.J. Subcellular localization of ADPglucose pyrophosphorylase in developing wheat endosperm and analysis of the properties of a plastidial isoform. J. Exp. Bot. 2003, 54, 715–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morell, M.K.; Blennow, A.; Kosar-Hashemi, B.; Samuel, M.S. Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiol. 1997, 113, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Ono, M.; Sawada, T.; Crofts, N.; Fujita, N.; Steup, M. Characterization of the functional interactions of plastidial starch phosphorylase and starch branching enzymes from rice endosperm during reserve starch biosynthesis. Plant Sci. 2017, 264, 83–95. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, Q.T.; Zhao, Q.Z.; Zhao, S.; Lan, X.J.; Dai, S.F.; Lu, Z.X.; Liu, C.; Wei, Y.M.; Zheng, Y.L. Characterization and expression analysis of waxy alleles in barley accessions. Genetica 2013, 141, 227–238. [Google Scholar] [CrossRef]
- Walley, J.W.; Shen, Z.; Sartor, R.; Wu, K.J.; Osborn, J.; Smith, L.G.; Briggs, S.P. Reconstruction of protein networks from an atlas of maize seed proteotypes. Proc. Natl. Acad. Sci. USA 2013, 110, E4808–E4817. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Lv, Y.; Shen, L.; Wang, Y.; Qing, Y.; Wu, N.; Li, Y.; Huang, H.; Zhang, N.; Liu, Y.; et al. The Proteomic Analysis of Maize Endosperm Protein Enriched by Phos-tag(tm) Reveals the Phosphorylation of Brittle-2 Subunit of ADP-Glc Pyrophosphorylase in Starch Biosynthesis Process. Int. J. Mol. Sci. 2019, 20, 986. [Google Scholar] [CrossRef] [Green Version]
- Chaw, S.M.; Chang, C.C.; Chen, H.L.; Li, W.H. Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J. Mol. Evol. 2004, 58, 424–441. [Google Scholar] [CrossRef]
- Roy, S.W.; Gilbert, W. The evolution of spliceosomal introns: Patterns, puzzles and progress. Nat. Rev. Genet. 2006, 7, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Salse, J.; Piegu, B.; Cooke, R.; Delseny, M. New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J. 2004, 38, 396–409. [Google Scholar] [CrossRef]
- Pfeifer, M.; Martis, M.; Asp, T.; Mayer, K.F.; Lubberstedt, T.; Byrne, S.; Frei, U.; Studer, B. The perennial ryegrass GenomeZipper: Targeted use of genome resources for comparative grass genomics. Plant Physiol. 2013, 161, 571–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorrells, M.E.; La Rota, M.; Bermudez-Kandianis, C.E.; Greene, R.A.; Kantety, R.; Munkvold, J.D.; Miftahudin; Mahmoud, A.; Ma, X.; Gustafson, P.J.; et al. Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 2003, 13, 1818–1827. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Anderson, J.A.; Sorrells, M.E.; Tanksley, S.D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol. Gen. Genet. 1993, 241, 483–490. [Google Scholar] [CrossRef]
- Tarchini, R.; Biddle, P.; Wineland, R.; Tingey, S.; Rafalski, A. The complete sequence of 340 kb of DNA around the rice Adh1-adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 2000, 12, 381–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vision, T.J. Gene order in plants: A slow but sure shuffle. New Phytol. 2005, 168, 51–60. [Google Scholar] [CrossRef]
- Hwang, S.K.; Nishi, A.; Satoh, H.; Okita, T.W. Rice endosperm-specific plastidial alpha-glucan phosphorylase is important for synthesis of short-chain malto-oligosaccharides. Arch. Biochem. Biophys. 2010, 495, 82–92. [Google Scholar] [CrossRef]
- Stitt, M.; Wirtz, W.; Gerhardt, R.; Heldt, H.; Spencer, C.; Walker, D.; Foyer, C. A comparative study of metabolite levels in plant leaf material in the dark. Planta 1985, 166, 354–364. [Google Scholar] [CrossRef]
- da Silva, P.M.; Eastmond, P.J.; Hill, L.M.; Smith, A.M.; Rawsthorne, S. Starch metabolism in developing embryos of oilseed rape. Planta 1997, 203, 480–487. [Google Scholar] [CrossRef]
- Lao, N.T.; Schoneveld, O.; Mould, R.M.; Hibberd, J.M.; Gray, J.C.; Kavanagh, T.A. An Arabidopsis gene encoding a chloroplast-targeted β-amylase. Plant J. 1999, 20, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhaliwal, A.K.; Mohan, A.; Gill, K.S. Comparative analysis of ABCB1 reveals novel structural and functional conservation between monocots and dicots. Front. Plant Sci. 2014, 5, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lescot, M.; Dehais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouze, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Z.; Wang, J.; Wang, M.; Zhao, L.; Wang, G. Isolation and characterization of Brittle2 promoter from Zea Mays and its comparison with Ze19 promoter in transgenic tobacco plants. Plant Cell 2007, 88, 11–20. [Google Scholar] [CrossRef]
- Navarro, C.; Moore, J.; Ott, A.; Baumert, E.; Mohan, A.; Gill, K.S.; Sandhu, D. Evolutionary, Comparative and Functional Analyses of the Brassinosteroid Receptor Gene, BRI1, in Wheat and Its Relation to Other Plant Genomes. PLoS ONE 2015, 10, e0127544. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, R.A.; Rullmannn, J.A.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [Google Scholar] [CrossRef]
- Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, D.; Luthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997, 277, 396–404. [Google Scholar] [CrossRef]
- Wass, M.N.; Kelley, L.A.; Sternberg, M.J. 3DLigandSite: Predicting ligand-binding sites using similar structures. Nucleic Acids Res. 2010, 38, W469–W473. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Muffato, M.; Louis, A.; Poisnel, C.E.; Roest Crollius, H. Genomicus: A database and a browser to study gene synteny in modern and ancestral genomes. Bioinformatics 2010, 26, 1119–1121. [Google Scholar] [CrossRef] [PubMed]
Species PHO1 | cDNA | CDS | Gene | * Protein | ||||
---|---|---|---|---|---|---|---|---|
Length (bp) | % Identical | Length (bp) | % Identical | Length (bp) | % Identical | Length (aa) | % Identical | |
S. bicolor | 3445 | 79.0 | 2958 | 91.9 | 6536 | 62.6 | 985 | 86.2 |
Z. mays | 3523 | 78.1 | 2955 | 91.9 | 9022 | 49.2 | 984 | 85.8 |
S. italica | 3385 | 80.9 | 2943 | 92.4 | 6909 | 62.8 | 980 | 87.2 |
P. halli | 3351 | 80.7 | 29.64 | 91.9 | 6671 | 63.0 | 987 | 85.8 |
B. distachyon | 3410 | 81.7 | 2937 | 92.5 | 7498 | 62.9 | 978 | 87.5 |
T. aestivum | 3312 | 80.0 | 2917 | 90.4 | 7461 | 58.4 | 971 | 84.3 |
O. sativa | 3408 | 100 | 2937 | 100 | 7239 | 100 | 978 | 100 |
H. vulgare | 3305 | 77.3 | 2907 | 90.6 | 7441 | 61.1 | 968 | 84.9 |
A. thaliana | 3180 | 64.5 | 2889 | 81.5 | 5008 | 45.9 | 962 | 69.3 |
S. lycopersicum | 3332 | 65.0 | 2901 | 80.9 | 8718 | 46.3 | 966 | 67.0 |
S. tuberosem | 4942 | 42.2 | 2901 | 81.6 | 4942 | 42.2 | 966 | 67.4 |
C. annuum | 3456 | 63.2 | 2937 | 80.5 | 8233 | 45.9 | 978 | 68.5 |
Species PHO2 | cDNA | CDS | Gene | * Protein | ||||
---|---|---|---|---|---|---|---|---|
Length (bp) | % Identical | Length (bp) | % Identical | Length (bp) | % Identical | Length (aa) | % Identical | |
S. bicolor | 3167 | 80.8 | 2517 | 92.5 | 6227 | 60.6 | 838 | 89.5 |
Z. mays | 2868 | 80.4 | 2517 | 92.6 | 12,006 | 36.7 | 838 | 89.9 |
S. italica | 2937 | 81.7 | 2514 | 92.4 | 6312 | 61.6 | 837 | 89.2 |
P. halli | 2979 | 81.2 | 2664 | 86.0 | 5902 | 59.4 | 897 | 83.2 |
B. distachyon | 2909 | 82.5 | 2502 | 93.4 | 6891 | 62.4 | 833 | 90.3 |
T. aestivum | 2856 | 80.4 | 2499 | 93.2 | 6114 | 62.2 | 832 | 90.3 |
O. sativa | 3036 | 100 | 2526 | 100 | 6275 | 100 | 841 | 100 |
H. vulgare | 2857 | 79.4 | 2499 | 93.5 | 5569 | 59.6 | 832 | 90.4 |
A. thaliana | 3168 | 62.9 | 2526 | 85.1 | 5240 | 47.6 | 841 | 77.6 |
S. lycopersicum | 2908 | 65.4 | 2514 | 84.9 | 15,109 | 23.7 | 837 | 77.1 |
S. tuberosem | 2833 | 65.9 | 2517 | 85.1 | 13,343 | 29.7 | 838 | 77.8 |
C. annuum | 2965 | 65.0 | 2544 | 82.8 | 34,548 | 11.8 | 847 | 75.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, G.; Shoaib, N.; Xie, Y.; Liu, L.; Mughal, N.; Li, Y.; Huang, H.; Zhang, N.; Zhang, J.; Liu, Y.; et al. Comparative Study of Starch Phosphorylase Genes and Encoded Proteins in Various Monocots and Dicots with Emphasis on Maize. Int. J. Mol. Sci. 2022, 23, 4518. https://doi.org/10.3390/ijms23094518
Yu G, Shoaib N, Xie Y, Liu L, Mughal N, Li Y, Huang H, Zhang N, Zhang J, Liu Y, et al. Comparative Study of Starch Phosphorylase Genes and Encoded Proteins in Various Monocots and Dicots with Emphasis on Maize. International Journal of Molecular Sciences. 2022; 23(9):4518. https://doi.org/10.3390/ijms23094518
Chicago/Turabian StyleYu, Guowu, Noman Shoaib, Ying Xie, Lun Liu, Nishbah Mughal, Yangping Li, Huanhuan Huang, Na Zhang, Junjie Zhang, Yinghong Liu, and et al. 2022. "Comparative Study of Starch Phosphorylase Genes and Encoded Proteins in Various Monocots and Dicots with Emphasis on Maize" International Journal of Molecular Sciences 23, no. 9: 4518. https://doi.org/10.3390/ijms23094518
APA StyleYu, G., Shoaib, N., Xie, Y., Liu, L., Mughal, N., Li, Y., Huang, H., Zhang, N., Zhang, J., Liu, Y., Hu, Y., Liu, H., & Huang, Y. (2022). Comparative Study of Starch Phosphorylase Genes and Encoded Proteins in Various Monocots and Dicots with Emphasis on Maize. International Journal of Molecular Sciences, 23(9), 4518. https://doi.org/10.3390/ijms23094518