Diagnostic Performance of Circulating miRNAs and Extracellular Vesicles in Acute Ischemic Stroke
Abstract
:1. Introduction
2. Results
2.1. Patient Demographics
2.2. Platelet Function
2.3. Association between Analysed miRNAs, EVs and Platelet Function
2.4. Alteration and Diagnostic Potential of Analysed miRNAs Expressions and EVs Concentrations
2.5. Baseline miR-19a-3p Expression Predicts Severity of Stroke
3. Discussion
4. Methodology
4.1. Participants
4.2. Samples Collection and Handling
4.3. Platelet Function Analysis
4.4. Extracellular Vesicles Determination
4.5. RNA Preparation, Detection and Quantification of miRNAs by Quantitative PCR
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kernan, W.N.; Ovbiagele, B.; Black, H.R.; Bravata, D.M.; Chimowitz, M.I.; Ezekowitz, M.D.; Fang, M.C.; Fisher, M.; Furie, K.L.; Heck, D.V.; et al. Guidelines for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2014, 45, 2160–2236. [Google Scholar] [CrossRef] [PubMed]
- Furie, K.L.; Kasner, S.E.; Adams, R.J.; Albers, G.W.; Bush, R.L.; Fagan, S.C.; Halperin, J.L.; Johnston, S.C.; Katzan, I.; Kernan, W.N.; et al. Guidelines for the Prevention of Stroke in Patients with Stroke or Transient Ischemic Attack: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2011, 42, 227–276. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; et al. Heart Disease and Stroke Statistics—2014 Update: A Report from the American Heart Association. Circulation 2014, 129, e28–e292. [Google Scholar] [CrossRef] [Green Version]
- Chalela, J.A.; Kidwell, C.S.; Nentwich, L.M.; Luby, M.; Butman, J.A.; Demchuk, A.M.; Hill, M.D.; Patronas, N.; Latour, L.; Warach, S. Magnetic Resonance Imaging and Computed Tomography in Emergency Assessment of Patients with Suspected Acute Stroke: A Prospective Comparison. Lancet 2007, 369, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Ben-Yosef, Y.; Miller, A.; Shapiro, S.; Lahat, N. Hypoxia of Endothelial Cells Leads to MMP-2-Dependent Survival and Death. Am. J. Physiol. Cell Physiol. 2005, 289, C1321–C1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimino, F.; Balestra, C.; Germonpré, P.; De Bels, D.; Tillmans, F.; Saija, A.; Speciale, A.; Virgili, F. Pulsed High Oxygen Induces a Hypoxic-like Response in Human Umbilical Endothelial Cells and in Humans. J. Appl. Physiol. 2012, 113, 1684–1689. [Google Scholar] [CrossRef] [Green Version]
- Simats, A.; García-Berrocoso, T.; Montaner, J. Neuroinflammatory Biomarkers: From Stroke Diagnosis and Prognosis to Therapy. Biochim. Biophys. Acta 2016, 1862, 411–424. [Google Scholar] [CrossRef]
- Katan, M.; Elkind, M.S.V. The Potential Role of Blood Biomarkers in Patients with Ischemic Stroke: An Expert Opinion. Clin. Transl. Neurosci. 2018, 2, 2514183X18768050. [Google Scholar] [CrossRef] [Green Version]
- Postula, M.; Janicki, P.K.; Milanowski, L.; Pordzik, J.; Eyileten, C.; Karlinski, M.; Wylezol, P.; Solarska, M.; Czlonkowka, A.; Kurkowska-Jastrzebka, I.; et al. Association of Frequent Genetic Variants in Platelet Activation Pathway Genes with Large-Vessel Ischemic Stroke in Polish Population. Platelets 2017, 28, 66–73. [Google Scholar] [CrossRef]
- Milanowski, L.; Pordzik, J.; Janicki, P.K.; Postula, M. Common Genetic Variants in Platelet Surface Receptors and Its Association with Ischemic Stroke. Pharmacogenomics 2016, 17, 953–971. [Google Scholar] [CrossRef]
- Janicki, P.K.; Eyileten, C.; Ruiz-Velasco, V.; Sedeek, K.A.; Pordzik, J.; Czlonkowska, A.; Kurkowska-Jastrzebska, I.; Sugino, S.; Imamura-Kawasawa, Y.; Mirowska-Guzel, D.; et al. Population-Specific Associations of Deleterious Rare Variants in Coding Region of P2RY1-P2RY12 Purinergic Receptor Genes in Large-Vessel Ischemic Stroke Patients. Int. J. Mol. Sci. 2017, 18, 2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bladowski, M.; Gawrys, J.; Gajecki, D.; Szahidewicz-Krupska, E.; Sawicz-Bladowska, A.; Doroszko, A. Role of the Platelets and Nitric Oxide Biotransformation in Ischemic Stroke: A Translative Review from Bench to Bedside. Oxid. Med. Cell. Longev. 2020, 2020, 2979260. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, N.; Skroblin, P.; Barwari, T.; Huntley, R.P.; Lu, R.; Joshi, A.; Lovering, R.C.; Mayr, M. MicroRNA Biomarkers and Platelet Reactivity: The Clot Thickens. Circ. Res. 2017, 120, 418–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenz, K.T.; Just, J.; Blauenfeldt, R.A.; Drasbek, K.R. Extracellular Vesicles in Acute Stroke Diagnostics. Biomedicines 2020, 8, 248. [Google Scholar] [CrossRef]
- Eyileten, C.; Sharif, L.; Wicik, Z.; Jakubik, D.; Jarosz-Popek, J.; Soplinska, A.; Postula, M.; Czlonkowska, A.; Kaplon-Cieslicka, A.; Mirowska-Guzel, D. The Relation of the Brain-Derived Neurotrophic Factor with MicroRNAs in Neurodegenerative Diseases and Ischemic Stroke. Mol. Neurobiol. 2020, 58, 329–347. [Google Scholar] [CrossRef]
- Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int. J. Mol. Sci. 2016, 17, 1712. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Coller, J. What Comes First: Translational Repression or mRNA Degradation? The Deepening Mystery of microRNA Function. Cell Res. 2012, 22, 1322–1324. [Google Scholar] [CrossRef] [Green Version]
- Sangokoya, C.; LaMonte, G.; Chi, J.-T. Isolation and Characterization of microRNAs of Human Mature Erythrocytes. Methods Mol. Biol. 2010, 667, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.; Atreya, C. Blood Cell microRNAs: What Are They and What Future Do They Hold? Transfus. Med. Rev. 2011, 25, 247–251. [Google Scholar] [CrossRef]
- Czajka, P.; Fitas, A.; Jakubik, D.; Eyileten, C.; Gasecka, A.; Wicik, Z.; Siller-Matula, J.M.; Filipiak, K.J.; Postula, M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front. Physiol. 2021, 12, 652579. [Google Scholar] [CrossRef]
- Bhalala, O.G.; Srikanth, M.; Kessler, J.A. The Emerging Roles of microRNAs in CNS Injuries. Nat. Rev. Neurol. 2013, 9, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zuo, X.; Ji, A. Stroke-Induced microRNAs: The Potential Therapeutic Role for Stroke. Exp. Ther. Med. 2012, 3, 571–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vemuganti, R. The MicroRNAs and Stroke: No Need to Be Coded to Be Counted. Transl. Stroke Res. 2010, 1, 158–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.-W.; Wang, Y.-L.; Lin, J.-X.; Li, N.; Zhao, X.-Q.; Liu, G.-F.; Liu, L.-P.; Jiao, Y.; Gu, W.-K.; Wang, D.Z.; et al. Circulating MicroRNAs as Potential Risk Biomarkers for Hematoma Enlargement after Intracerebral Hemorrhage. CNS Neurosci. Ther. 2012, 18, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Pordzik, J.; Eyileten-Postuła, C.; Jakubik, D.; Czajka, P.; Nowak, A.; De Rosa, S.; Gąsecka, A.; Cieślicka-Kapłon, A.; Sulikowski, P.; Filipiak, K.J.; et al. MiR-126 Is an Independent Predictor of Long-Term All-Cause Mortality in Patients with Type 2 Diabetes Mellitus. J. Clin. Med. Res. 2021, 10, 2371. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, E.; Coumans, F.; Varga, Z.; Krumrey, M.; Nieuwland, R. Innovation in Detection of Microparticles and Exosomes. J. Thromb. Haemost. 2013, 11 (Suppl. S1), 36–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thom, S.R.; Bennett, M.; Banham, N.D.; Chin, W.; Blake, D.F.; Rosen, A.; Pollock, N.W.; Madden, D.; Barak, O.; Marroni, A.; et al. Association of Microparticles and Neutrophil Activation with Decompression Sickness. J. Appl. Physiol. 2015, 119, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Candelario, K.M.; Steindler, D.A. The Role of Extracellular Vesicles in the Progression of Neurodegenerative Disease and Cancer. Trends Mol. Med. 2014, 20, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Puhm, F.; Boilard, E.; Machlus, K.R. Platelet Extracellular Vesicles: Beyond the Blood. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 87–96. [Google Scholar] [CrossRef]
- Angelillo-Scherrer, A. Leukocyte-Derived Microparticles in Vascular Homeostasis. Circ. Res. 2012, 110, 356–369. [Google Scholar] [CrossRef] [Green Version]
- Eyileten, C.; Wicik, Z.; De Rosa, S.; Mirowska-Guzel, D.; Soplinska, A.; Indolfi, C.; Jastrzebska-Kurkowska, I.; Czlonkowska, A.; Postula, M. MicroRNAs as Diagnostic and Prognostic Biomarkers in Ischemic Stroke-A Comprehensive Review and Bioinformatic Analysis. Cells 2018, 7, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolarek, W.; Kasprzak, M.; Sikora, J.; Siemińska, E.; Grześk, G. High on-Treatment Platelet Reactivity to Aspirin in Patients after Myocardial Infarction. Biomed. Pharmacother. 2022, 147, 112618. [Google Scholar] [CrossRef] [PubMed]
- Chiva-Blanch, G.; Suades, R.; Crespo, J.; Peña, E.; Padró, T.; Jiménez-Xarrié, E.; Martí-Fàbregas, J.; Badimon, L. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke. PLoS ONE 2016, 11, e0148176. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiao, Y.; Lin, Z.; Xiao, X.; He, C.; Bihl, J.C.; Zhao, B.; Ma, X.; Chen, Y. The Role of Circulating Platelets Microparticles and Platelet Parameters in Acute Ischemic Stroke Patients. J. Stroke Cerebrovasc. Dis. 2015, 24, 2313–2320. [Google Scholar] [CrossRef] [Green Version]
- Kuriyama, N.; Nagakane, Y.; Hosomi, A.; Ohara, T.; Kasai, T.; Harada, S.; Takeda, K.; Yamada, K.; Ozasa, K.; Tokuda, T.; et al. Evaluation of Factors Associated with Elevated Levels of Platelet-Derived Microparticles in the Acute Phase of Cerebral Infarction. Clin. Appl. Thromb. Hemost. 2010, 16, 26–32. [Google Scholar] [CrossRef]
- He, Z.; Tang, Y.; Qin, C. Increased Circulating Leukocyte-Derived Microparticles in Ischemic Cerebrovascular Disease. Thromb. Res. 2017, 154, 19–25. [Google Scholar] [CrossRef]
- Huo, S.; Kränkel, N.; Nave, A.H.; Sperber, P.S.; Rohmann, J.L.; Piper, S.K.; Heuschmann, P.U.; Landmesser, U.; Endres, M.; Siegerink, B.; et al. Endothelial and Leukocyte-Derived Microvesicles and Cardiovascular Risk After Stroke: PROSCIS-B. Neurology 2021, 96, e937–e946. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, L.; Wu, X.; Zhao, L.; Chi, C.; Guo, L.; Tong, D.; Yang, X.; Dong, Z.; Deng, R.; et al. Enhanced Procoagulant Activity on Blood Cells after Acute Ischemic Stroke. Transl. Stroke Res. 2017, 8, 83–91. [Google Scholar] [CrossRef]
- Sarlon-Bartoli, G.; Bennis, Y.; Lacroix, R.; Piercecchi-Marti, M.D.; Bartoli, M.A.; Arnaud, L.; Mancini, J.; Boudes, A.; Sarlon, E.; Thevenin, B.; et al. Plasmatic Level of Leukocyte-Derived Microparticles Is Associated with Unstable Plaque in Asymptomatic Patients with High-Grade Carotid Stenosis. J. Am. Coll. Cardiol. 2013, 62, 1436–1441. [Google Scholar] [CrossRef] [Green Version]
- Shirafuji, T.; Hamaguchi, H.; Kanda, F. Measurement of Platelet-Derived Microparticle Levels in the Chronic Phase of Cerebral Infarction Using an Enzyme-Linked Immunosorbent Assay. Kobe J. Med. Sci. 2008, 54, E55–E61. [Google Scholar]
- Pawelczyk, M.; Baj, Z.; Chmielewski, H.; Kaczorowska, B.; Klimek, A. The Influence of Hyperlipidemia on Platelet Activity Markers in Patients after Ischemic Stroke. Cerebrovasc. Dis. 2009, 27, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Lackner, P.; Dietmann, A.; Beer, R.; Fischer, M.; Broessner, G.; Helbok, R.; Marxgut, J.; Pfausler, B.; Schmutzhard, E. Cellular Microparticles as a Marker for Cerebral Vasospasm in Spontaneous Subarachnoid Hemorrhage. Stroke 2010, 41, 2353–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landry, P.; Plante, I.; Ouellet, D.L.; Perron, M.P.; Rousseau, G.; Provost, P. Existence of a microRNA Pathway in Anucleate Platelets. Nat. Struct. Mol. Biol. 2009, 16, 961–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gollmann-Tepeköylü, C.; Pölzl, L.; Graber, M.; Hirsch, J.; Nägele, F.; Lobenwein, D.; Hess, M.W.; Blumer, M.J.; Kirchmair, E.; Zipperle, J.; et al. miR-19a-3p Containing Exosomes Improve Function of Ischaemic Myocardium upon Shock Wave Therapy. Cardiovasc. Res. 2020, 116, 1226–1236. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, X.; Wang, Y.; Liu, J. Dysregulation Serum miR-19a-3p Is a Diagnostic Biomarker for Asymptomatic Carotid Artery Stenosis and a Promising Predictor of Cerebral Ischemia Events. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211039287. [Google Scholar] [CrossRef]
- Chai, Z.; Gong, J.; Zheng, P.; Zheng, J. Inhibition of miR-19a-3p Decreases Cerebral Ischemia/reperfusion Injury by Targeting IGFBP3 in Vivo and in Vitro. Biol. Res. 2020, 53, 17. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Teng, J.F. Association between Adiponectin Receptor 2 Gene Polymorphisms and Cerebral Infarction. Genet. Mol. Res. 2014, 13, 7808–7814. [Google Scholar] [CrossRef]
- Zimmermann, K.; Baldinger, J.; Mayerhofer, B.; Atanasov, A.G.; Dirsch, V.M.; Heiss, E.H. Activated AMPK Boosts the Nrf2/HO-1 Signaling axis—A Role for the Unfolded Protein Response. Free Radic. Biol. Med. 2015, 88, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.-J.; Zhao, X.-S.; Fan, T.-P.; Qi, H.-X.; Li, D. Glycine Improves Ischemic Stroke Through miR-19a-3p/AMPK/GSK-3β/HO-1 Pathway. Drug Des. Devel. Ther. 2020, 14, 2021–2031. [Google Scholar] [CrossRef]
- Bosco, G.; Paganini, M.; Giacon, T.A.; Oppio, A.; Vezzoli, A.; Dellanoce, C.; Moro, T.; Paoli, A.; Zanotti, F.; Zavan, B.; et al. Oxidative Stress and Inflammation, MicroRNA, and Hemoglobin Variations after Administration of Oxygen at Different Pressures and Concentrations: A Randomized Trial. Int. J. Environ. Res. Public Health 2021, 18, 9755. [Google Scholar] [CrossRef]
- Lan, W.; Chen, S.; Tong, L. MicroRNA-215 Regulates Fibroblast Function: Insights from a Human Fibrotic Disease. Cell Cycle 2015, 14, 1973–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-Y.; Choong, O.K.; Liu, L.-W.; Cheng, Y.-C.; Li, S.-C.; Yen, C.Y.T.; Wu, M.-R.; Chiang, M.-H.; Tsang, T.-J.; Wu, Y.-W.; et al. MicroRNA Let-7-TGFBR3 Signalling Regulates Cardiomyocyte Apoptosis after Infarction. EBioMedicine 2019, 46, 236–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Hao, J.; Sun, X.; Zhang, Y.; Wei, Q. Circulating pro-Angiogenic Micro-Ribonucleic Acid in Patients with Coronary Heart Disease. Interact. Cardiovasc. Thorac. Surg. 2018, 27, 336–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Chang, C.; Ma, J.; Feng, Q. Potential of Circulating Proangiogenic MicroRNAs for Predicting Major Adverse Cardiac and Cerebrovascular Events in Unprotected Left Main Coronary Artery Disease Patients Who Underwent Coronary Artery Bypass Grafting. Cardiology 2021, 146, 400–408. [Google Scholar] [CrossRef]
- Messmer-Blust, A.; Li, J. Hypoxia-Regulated Pro- and Anti-Angiogenesis in the Heart. In Coronary Artery Disease; Squeri, A., Ed.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Dhahri, W.; Dussault, S.; Haddad, P.; Turgeon, J.; Tremblay, S.; Rolland, K.; Desjarlais, M.; Cáceres-Gorriti, K.Y.; Mathieu, R.; Rivard, A. Reduced Expression of Let-7f Activates TGF-β/ALK5 Pathway and Leads to Impaired Ischaemia-Induced Neovascularization after Cigarette Smoke Exposure. J. Cell. Mol. Med. 2017, 21, 2211–2222. [Google Scholar] [CrossRef]
- Li, P.; Teng, F.; Gao, F.; Zhang, M.; Wu, J.; Zhang, C. Identification of Circulating microRNAs as Potential Biomarkers for Detecting Acute Ischemic Stroke. Cell. Mol. Neurobiol. 2015, 35, 433–447. [Google Scholar] [CrossRef]
- Wang, W.; Sun, G.; Zhang, L.; Shi, L.; Zeng, Y. Circulating microRNAs as Novel Potential Biomarkers for Early Diagnosis of Acute Stroke in Humans. J. Stroke Cerebrovasc. Dis. 2014, 23, 2607–2613. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, Atherosclerosis, and Coronary Artery Disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.S.; Armugam, A.; Sepramaniam, S.; Lim, K.Y.; Setyowati, K.D.; Wang, C.W.; Jeyaseelan, K. Expression Profile of MicroRNAs in Young Stroke Patients. PLoS ONE 2009, 4, e7689. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Zhao, S.; Zhang, J.; Xu, X.; Guan, W.; Jing, L.; Liu, P.; Lu, J.; Teng, J.; Peng, T.; et al. Initial Research on the Relationship between Let-7 Family Members in the Serum and Massive Cerebral Infarction. J. Neurol. Sci. 2016, 361, 150–157. [Google Scholar] [CrossRef]
- Shi, J.; He, W.; Wang, Y.; Hua, J. Tagging Functional Polymorphism in 3’ Untranslated Region of Methylene Tetrahydrofolate Reductase and Risk of Ischemic Stroke. Cell. Physiol. Biochem. 2018, 46, 1019–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasecka, A.; Böing, A.N.; Filipiak, K.J.; Nieuwland, R. Platelet Extracellular Vesicles as Biomarkers for Arterial Thrombosis. Platelets 2017, 28, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Stroke—1989. Recommendations on Stroke Prevention, Diagnosis, and Therapy. Report of the WHO Task Force on Stroke and Other Cerebrovascular Disorders. Stroke 1989, 20, 1407–1431. [CrossRef] [Green Version]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of Subtype of Acute Ischemic Stroke. Definitions for Use in a Multicenter Clinical Trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.P., Jr.; Davis, P.H.; Leira, E.C.; Chang, K.C.; Bendixen, B.H.; Clarke, W.R.; Woolson, R.F.; Hansen, M.D. Baseline NIH Stroke Scale Score Strongly Predicts Outcome after Stroke: A Report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology 1999, 53, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Albanese, M.A.; Clarke, W.R.; Adams, H.P., Jr.; Woolson, R.F. Ensuring Reliability of Outcome Measures in Multicenter Clinical Trials of Treatments for Acute Ischemic Stroke. The Program Developed for the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Stroke 1994, 25, 1746–1751. [Google Scholar] [CrossRef] [Green Version]
- Gąsecka, A.; Pluta, K.; Solarska, K.; Rydz, B.; Eyileten, C.; Postula, M.; van der Pol, E.; Nieuwland, R.; Budnik, M.; Kochanowski, J.; et al. Plasma Concentrations of Extracellular Vesicles Are Decreased in Patients with Post-Infarct Cardiac Remodelling. Biology 2021, 10, 97. [Google Scholar] [CrossRef]
- Gasecka, A.; Nieuwland, R.; Budnik, M.; Dignat-George, F.; Eyileten, C.; Harrison, P.; Lacroix, R.; Leroyer, A.; Opolski, G.; Pluta, K.; et al. Ticagrelor Attenuates the Increase of Extracellular Vesicle Concentrations in Plasma after Acute Myocardial Infarction Compared to Clopidogrel. J. Thromb. Haemost. 2020, 18, 609–623. [Google Scholar] [CrossRef] [Green Version]
- van der Pol, E.; de Rond, L.; Coumans, F.A.W.; Gool, E.L.; Böing, A.N.; Sturk, A.; Nieuwland, R.; van Leeuwen, T.G. Absolute Sizing and Label-Free Identification of Extracellular Vesicles by Flow Cytometry. Nanomedicine 2018, 14, 801–810. [Google Scholar] [CrossRef]
- Gąsecka, A.; Szwed, P.; Jasińska, K.; Fidali, O.; Kłębukowska, A.; Eyileten, C.; Postula, M.; Szarpak, Ł.; Mazurek, T.; Opolski, G.; et al. Symmetric Dimethylarginine Is Altered in Patients After Myocardial Infarction and Predicts Adverse Outcomes. J. Inflamm. Res. 2021, 14, 3797–3808. [Google Scholar] [CrossRef]
- Buntsma, N.C.; Gąsecka, A.; Roos, Y.B.W.E.M.; van Leeuwen, T.G.; van der Pol, E.; Nieuwland, R. EDTA Stabilizes the Concentration of Platelet-Derived Extracellular Vesicles during Blood Collection and Handling. Platelets 2021, 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- de Rond, L.; Libregts, S.F.W.M.; Rikkert, L.G.; Hau, C.M.; van der Pol, E.; Nieuwland, R.; van Leeuwen, T.G.; Coumans, F.A.W. Refractive Index to Evaluate Staining Specificity of Extracellular Vesicles by Flow Cytometry. J. Extracell. Vesicles 2019, 8, 1643671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsh, J.A.; Van Der Pol, E.; Arkesteijn, G.J.A.; Bremer, M.; Brisson, A.; Coumans, F.; Dignat-George, F.; Duggan, E.; Ghiran, I.; Giebel, B.; et al. MIFlowCyt-EV: A Framework for Standardized Reporting of Extracellular Vesicle Flow Cytometry Experiments. J. Extracell. Vesicles 2020, 9, 1713526. [Google Scholar] [CrossRef] [PubMed]
- Eyileten, C.; Fitas, A.; Jakubik, D.; Czajka, P.; Mróz, A.; Czajkowska, A.; Witek, K.; Bakalarski, W.; De Rosa, S.; Postuła, M.; et al. Alterations in Circulating MicroRNAs and the Relation of MicroRNAs to Maximal Oxygen Consumption and Intima–Media Thickness in Ultra-Marathon Runners. Int. J. Environ. Res. Public Health 2021, 18, 7234. [Google Scholar] [CrossRef]
Control (N = 35) | Acute IS (N = 28) | p Value | ||
Baseline characteristics | ||||
Gender (female, n, %) | 14 (40%) | 13 (46.4%) | 0.608 | |
Age (years) | 65.09 ± 8.01 | 66.39 ± 15.92 | 0.681 | |
Body Mass Index kg/m2 | 26.12 ± 2.31 | 24.5 ± 3.87 | 0.101 | |
Comorbidities | ||||
Hypertension | 22 (63%) | 18 (64%) | 0.907 | |
History of heart failure | 4 (11%) | 3 (10.7%) | 0.369 | |
History of atrial fibrillation | 0 (0%) | 3 (10.7%) | 0.162 | |
History of type 2 diabetes mellitus | 7 (20%) | 5 (17%) | 0.778 | |
Current smoking | 8 (23%) | 11 (39.3%) | 0.933 | |
Prior myocardial infarction | 4 (11.4%) | 4 (14%) | 0.926 | |
Prior transient ischemic attack | 0 (0%) | 6 (21%) | 0.004 | |
Prior coronary artery disease | 35 (100%) | 8 (28%) | <0.001 | |
Laboratory data | ||||
HCT | 41.86 ± 3.49 | 39.68 ± 4.92 | 0.064 | |
WBC (×109/L) | 7.53 ± 0.44 | 8.61 ± 3.34 | 0.168 | |
High-sensitivity C-reactive Protein (mg/dL) | 1.10 [0.40–2.90] | 2.25 [1.4–5.48] | 0.016 | |
Fibrinogen (mg/dL) | 376.70 ± 126.70 | 326.25 ± 90.64 | 0.094 | |
INR | 1.05 ± 0.07 | 1.08 ± 0.31 | 0.582 | |
Total cholesterol | - | 186.00 ± 59.65 | - | |
HDL | - | 53.36 ± 17.21 | - | |
LDL | - | 102.37 ± 49.27 | - | |
TG | - | 118.50 ± 61.42 | - | |
Infarct size | - | 2.07 ± 1.58 | - | |
NIHSS at admission (1–4) (5–15) | - | 15 (54%) 13 (46%) | - | |
Concomitant treatment before the acute IS | ||||
ASA | 35 (100%) | 22 (76%) | 0.004 | |
Diuretics | 26 (74%) | 8 (28%) | <0.001 | |
Statins | 32 (91%) | 27 (93%) | 0.419 | |
ACEi/ARB | 26 (74%) | 19 (66%) | 0.575 | |
Oral anticoagulants | 1 (3%) | 4 (14%) | 0.095 | |
B-blockers | 28 (80%) | 11 (38%) | 0.001 | |
MiRNAs expressions and EVs concentrations | ||||
Control (N = 35) | Stroke day-1 (N = 28) | Stroke day-7 (N = 20) | p value * | |
miR-19a-3p ** | 5.77 [5.02–6.34] | 6.55 [6.28–8.18] | 5.83 [4.98–5.96] | <0.001 |
miR-186-5p ** | 4.87 [4.45–7.19] | 5.12 [4.84–6.88] | 4.70 [4.40–5.45] | 0.053 |
Let-7f-5p ** | 6.82 [6.30–7.21] | 4.76 [3.94–5.81] | 4.03 [3.76–5.46] | <0.001 |
CD61+ | 35 × 106 [21 × 106–52 × 106] | 56 × 106 [46 × 106–85 × 106] | 50 × 106 [39 × 106–67 × 106] | 0.003 |
CD62+ | - | 65 × 104 [14 × 104–13 × 105] | 92 × 104 [18 × 104–12 × 105] | - |
CD61, CD62+ | - | 32 × 104 [9 × 104–74 × 104] | 38 × 104 [18 × 104–76 × 104] | - |
CD45+ | 74 × 105 [60 × 105–102 × 105] | 22 × 106 [7 × 106–38 × 106] | 92 × 105 [64 × 105–348 × 105] | 0.019 |
CD146+ | 63 × 104 [21 × 104–106 × 104] | 65 × 104 [28 × 104–141 × 104] | 75 × 104 [55 × 104–130 × 104] | 0.391 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eyileten, C.; Jakubik, D.; Shahzadi, A.; Gasecka, A.; van der Pol, E.; De Rosa, S.; Siwik, D.; Gajewska, M.; Mirowska-Guzel, D.; Kurkowska-Jastrzebska, I.; et al. Diagnostic Performance of Circulating miRNAs and Extracellular Vesicles in Acute Ischemic Stroke. Int. J. Mol. Sci. 2022, 23, 4530. https://doi.org/10.3390/ijms23094530
Eyileten C, Jakubik D, Shahzadi A, Gasecka A, van der Pol E, De Rosa S, Siwik D, Gajewska M, Mirowska-Guzel D, Kurkowska-Jastrzebska I, et al. Diagnostic Performance of Circulating miRNAs and Extracellular Vesicles in Acute Ischemic Stroke. International Journal of Molecular Sciences. 2022; 23(9):4530. https://doi.org/10.3390/ijms23094530
Chicago/Turabian StyleEyileten, Ceren, Daniel Jakubik, Andleeb Shahzadi, Aleksandra Gasecka, Edwin van der Pol, Salvatore De Rosa, Dominika Siwik, Magdalena Gajewska, Dagmara Mirowska-Guzel, Iwona Kurkowska-Jastrzebska, and et al. 2022. "Diagnostic Performance of Circulating miRNAs and Extracellular Vesicles in Acute Ischemic Stroke" International Journal of Molecular Sciences 23, no. 9: 4530. https://doi.org/10.3390/ijms23094530
APA StyleEyileten, C., Jakubik, D., Shahzadi, A., Gasecka, A., van der Pol, E., De Rosa, S., Siwik, D., Gajewska, M., Mirowska-Guzel, D., Kurkowska-Jastrzebska, I., Czlonkowska, A., & Postula, M. (2022). Diagnostic Performance of Circulating miRNAs and Extracellular Vesicles in Acute Ischemic Stroke. International Journal of Molecular Sciences, 23(9), 4530. https://doi.org/10.3390/ijms23094530