Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants
Abstract
:1. Introduction
2. Results
2.1. Assessment of the Surface-Nanostructure of the Obtained Biomaterials by SEM
2.2. Characterization of the Thermal Properties and Stability of NHAP by DSC
2.3. Monitoring of the Release of Selected Organic Compounds from Tested Composites to the Solvent (CDCl3) of the Obtained Biomaterials by 1H NMR Spectroscopy
2.4. Assessment of Antibacterial Properties of the Obtained Biomaterials
2.5. Biocompatibility Assessment by MTT-Assay
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Sintering of Composite Materials with SHAP Matrix
4.3. Generation of Composite Materials with NHAP Matrix
4.4. Scanning Electron Microscopy
4.5. Differential Scanning Calorimetry
4.6. Nuclear Magnetic Resonance
4.7. Microhardness
4.8. Antimicrobial Tests
4.9. Biocompatibility Assessment
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, M.; Bahari, G.; Markowski, J.; Małecki, A.; Łos, M.J.; Ghavami, S. Association of PDCD6 polymorphisms with the risk of cancer: Evidence from a meta-analysis. Oncotarget 2018, 9, 24857–24868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, M.; Bahari, G.; Tabasi, F.; Markowski, J.; Małecki, A.; Ghavami, S.; Łos, M.J. LAPTM4B gene polymorphism augments the risk of cancer: Evidence from an updated meta-analysis. J. Cell. Mol. Med. 2018, 22, 6396–6400. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Fazaeli, A.; Ghavami, S.; Eskandari, E.; Arbabi, F.; Mashhadi, M.A.; Taheri, M.; Chaabane, W.; Jain, M.V.; Łos, M.J. Functional Polymorphisms of FAS and FASL Gene and Risk of Breast Cancer—Pilot Study of 134 Cases. PLoS ONE 2013, 8, e53075. [Google Scholar] [CrossRef]
- Hombach-Klonisch, S.; Kalantari, F.; Medapati, M.R.; Natarajan, S.; Krishnan, S.N.; Kumar-Kanojia, A.; Thanasupawat, T.; Begum, F.; Xu, F.Y.; Hatch, G.M.; et al. HMGA 2 as a functional antagonist of PARP 1 inhibitors in tumor cells. Mol. Oncol. 2019, 13, 153–170. [Google Scholar] [CrossRef] [Green Version]
- Sharifzad, F.; Ghavami, S.; Verdi, J.; Mardpour, S.; Sisakht, M.M.; Azizi, Z.; Taghikhani, A.; Łos, M.J.; Fakharian, E.; Ebrahimi, M.; et al. Glioblastoma cancer stem cell biology: Potential theranostic targets. Drug Resist. Updat. 2019, 42, 35–45. [Google Scholar] [CrossRef]
- Cieślar-Pobuda, A.; Knoflach, V.; Ringh, M.; Stark, J.; Likus, W.; Siemianowicz, K.; Ghavami, S.; Hudecki, A.; Green, J.; Łos, M.J. Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. Biochim. Biophys. Acta 2017, 1864, 1359–1369. [Google Scholar] [CrossRef]
- Cieślar-Pobuda, A.; Rafat, M.; Knoflach, V.; Skonieczna, M.; Hudecki, A.; Małecki, A.; Urasińska, E.; Ghavami, S.; Łos, M.J. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget 2016, 7, 42314–42329. [Google Scholar] [CrossRef]
- Wasik, A.M.; Grabarek, J.; Pantovic, A.; Cieślar-Pobuda, A.; Asgari, H.R.; Bundgaard-Nielsen, C.; Rafat, M.; Dixon, I.M.; Ghavami, S.; Łos, M.J. Reprogramming and Carcinogenesis—Parallels and Distinctions. Int. Rev. Cell Mol. Biol. 2014, 308, 167–203. [Google Scholar] [CrossRef] [Green Version]
- Kitala, D.; Klama-Baryła, A.; Łabuś, W.; Ples, M.; Misiuga, M.; Kraut, M.; Szapski, M.; Bobiński, R.; Pielesz, A.; Łos, M.J.; et al. Amniotic cells share clusters of differentiation of fibroblasts and keratinocytes, influencing their ability to proliferate and aid in wound healing while impairing their angiogenesis capability. Eur. J. Pharmacol. 2019, 854, 167–178. [Google Scholar] [CrossRef]
- Kitala, D.; Klama-Baryła, A.; Misiuga, M.; Łabuś, W.; Kraut, M.; Szapski, M.; Lesiak, M.; Krakowian, D.; Sieroń, A.L.; Łos, M.J.; et al. Heterogeneous Mixture of Amniotic Cells is Likely a Better Source of Stem Cells than Adipose Tissue. Arch. Immunol. Ther. Exp. 2019, 67, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucharzewski, M.; Rojczyk, E.; Wilemska-Kucharzewska, K.; Wilk, R.; Hudecki, J.; Los, M.J. Novel trends in application of stem cells in skin wound healing. Eur. J. Pharmacol. 2019, 843, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Hudecki, A.; Gola, J.; Ghavami, S.; Skonieczna, M.; Markowski, J.; Likus, W.; Lewandowska, M.; Maziarz, W.; Los, M.J. Structure and properties of slow-resorbing nanofibers obtained by (co-axial) electrospinning as tissue scaffolds in regenerative medicine. PeerJ 2017, 5, e4125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudecki, A.; Łyko-Morawska, D.; Likus, W.; Skonieczna, M.; Markowski, J.; Wilk, R.; Kolano-Burian, A.; Maziarz, W.; Adamska, J.; Łos, M.J. Composite Nanofibers Containing Multiwall Carbon Nanotubes as Biodegradable Membranes in Reconstructive Medicine. Nanomaterials 2019, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef] [Green Version]
- Holmlund, A.; Hanstrom, L.; Lerner, U. Bone resorbing activity and cytokine levels in gingival crevicular fluid before and after treatment of periodontal disease. J. Clin. Periodontol. 2004, 31, 475–482. [Google Scholar] [CrossRef]
- Lekovic, V.; Kenney, E.B.; Weinlaender, M.; Han, T.; Klokkevold, P.; Nedic, M.; Orsini, M. A Bone Regenerative Approach to Alveolar Ridge Maintenance Following Tooth Extraction. Report of 10 Cases. J. Periodontol. 1997, 68, 563–570. [Google Scholar] [CrossRef]
- Rasmussen, L.; Hänström, L.; Lerner, U.H. Characterization of bone resorbing activity in gingival crevicular fluid from patients with periodontitis. J. Clin. Periodontol. 2000, 27, 41–52. [Google Scholar] [CrossRef]
- Sbordone, C.; Toti, P.; Guidetti, F.; Califano, L.; Pannone, G.; Sbordone, L. Volumetric changes after sinus augmentation using blocks of autogenous iliac bone or freeze-dried allogeneic bone. A non-randomized study. J. Cranio-Maxillofac. Surg. 2014, 42, 113–118. [Google Scholar] [CrossRef]
- Bartold, P.; Cantley, M.; Haynes, D.R. Mechanisms and control of pathologic bone loss in periodontitis. Periodontol. 2000 2010, 53, 55–69. [Google Scholar] [CrossRef]
- Zeltner, M.; Flückiger, L.B.; Hämmerle, C.H.F.; Hüsler, J.; Benic, G.I. Volumetric analysis of chin and mandibular retromolar region as donor sites for cortico-cancellous bone blocks. Clin. Oral Implant. Res. 2016, 27, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Santhanakrishnan, M.; Rangarao, S. Mandibular Tori: A source of autogenous bone graft. J. Indian Soc. Periodontol. 2014, 18, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Markx, G.H.; Davey, C.L. The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology. Enzym. Microb. Technol. 1999, 25, 161–171. [Google Scholar] [CrossRef]
- Chiriac, G.; Herten, M.; Schwarz, F.; Rothamel, D.; Becker, J. Autogenous bone chips: Influence of a new piezoelectric device (Piezosurgery®) on chip morphology, cell viability and differentiation. J. Clin. Periodontol. 2005, 32, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.-C.; Tu, Y.-K.; Lin, Y.-H.; Lu, H.-K. Outcomes of autotransplanted teeth with complete root formation: A systematic review and meta-analysis. J. Clin. Periodontol. 2014, 41, 412–423. [Google Scholar] [CrossRef]
- Bauer, T.W.; Muschler, G.F. Bone graft materials. An overview of the basic science. Clin. Orthop. Relat. Res. 2000, 371, 10–27. [Google Scholar] [CrossRef]
- Dominiak, M.; Łysiak, K. Reparation and/or Regeneration of the Intraosseus Defects of Alveolar Process after Cystectomy and Apectomy– Estimation of the Conditions on the Basis of Literature and Own Appearances. Dent. Med. Probl. 2005, 42, 341–350. [Google Scholar]
- Aludden, H.C.; Mordenfeld, A.; Hallman, M.; Dahlin, C.; Jensen, T. Lateral ridge augmentation with Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone graft: A systematic review. Int. J. Oral Maxillofac. Surg. 2017, 46, 1030–1038. [Google Scholar] [CrossRef]
- Troeltzsch, M.; Troeltzsch, M.; Kauffmann, P.; Gruber, R.; Brockmeyer, P.; Moser, N.; Rau, A.; Schliephake, H. Clinical efficacy of grafting materials in alveolar ridge augmentation: A systematic review. J. Cranio-Maxillofacial Surg. 2016, 44, 1618–1629. [Google Scholar] [CrossRef]
- Andersson, L. Patient self-evaluation of intra-oral bone grafting treatment to the maxillary frontal region. Dent. Traumatol. 2008, 24, 164–169. [Google Scholar] [CrossRef]
- Dimofte, M.; Geletu, G.L.; Costan, V.; Benghiac, A.G.; Moscalu, M.; Popescu, E. Considerations of Platelet-Rich Fibrin Use in Oral Surgery. Rev. Med. Chir. A Soc. Med. Si Nat. Iasi 2016, 120, 920–925. [Google Scholar]
- Jensen, S.S.; Terheyden, H. Bone augmentation procedures in localized defects in the alveolar ridge: Clinical results with different bone grafts and bone-substitute materials. Int. J. Oral Maxillofac. Implant. 2009, 24, 218–236. [Google Scholar]
- Nkenke, E.; Schultze-Mosgau, S.; Kloss, F.; Neukam, F.W.; Radespiel-Tröger, M. Morbidity of harvesting of chin grafts: A prospective study. Clin. Oral Implant. Res. 2001, 12, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Sittitavornwong, S.; Gutta, R. Bone Graft Harvesting from Regional Sites. Oral Maxillofac. Surg. Clin. N. Am. 2010, 22, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Weibull, L.; Widmark, G.; Ivanoff, C.-J.; Borg, E.; Rasmusson, L. Morbidity after Chin Bone Harvesting—A Retrospective Long-Term Follow-Up Study. Clin. Implant Dent. Relat. Res. 2009, 11, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Lee, J.; Um, I.-W.; Kim, K.-W.; Murata, M.; Akazawa, T.; Mitsugi, M. Tooth-derived bone graft material. J. Korean Assoc. Oral Maxillofac. Surg. 2013, 39, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polimeni, G.; Koo, K.-T.; Qahash, M.; Xiropaidis, A.V.; Albandar, J.M.; Wikesjö, U.M.E. Prognostic factors for alveolar regeneration: Effect of tissue occlusion on alveolar bone regeneration with guided tissue regeneration. J. Clin. Periodontol. 2004, 31, 730–735. [Google Scholar] [CrossRef]
- Pang, K.-M.; Um, I.-W.; Kim, Y.-K.; Woo, J.-M.; Kim, S.M.; Lee, J.-H. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: A prospective randomized clinical trial in comparison with anorganic bovine bone. Clin. Oral Implant. Res. 2017, 28, 809–815. [Google Scholar] [CrossRef]
- Schwarz, F.; Ferrari, D.; Balic, E.; Buser, D.; Becker, J.; Sager, M. Lateral ridge augmentation using equine- and bovine-derived cancellous bone blocks: A feasibility study in dogs. Clin. Oral Implant. Res. 2010, 21, 904–912. [Google Scholar] [CrossRef]
- Garver, D.G.; Muir, T.E. The retention of vital submucosal roots under immediate dentures: A surgical procedure. J. Prosthet. Dent. 1983, 50, 753–756. [Google Scholar] [CrossRef]
- Fareed, K.; Khayat, R.; Salins, P. Vital root retention: A clinical procedure. J. Prosthet. Dent. 1989, 62, 430–434. [Google Scholar] [CrossRef]
- Freedman, G.L. Intentional partial odontectomy: Report of case. J. Oral Maxillofac. Surg. 1992, 50, 419–421. [Google Scholar] [CrossRef]
- Schwarz, F.; Golubovic, V.; Mihatovic, I.; Becker, J. Periodontally diseased tooth roots used for lateral alveolar ridge augmentation. A proof-of-concept study. J. Clin. Periodontol. 2016, 43, 797–803. [Google Scholar] [CrossRef]
- Verweij, J.P.; Toxopeus, E.E.; Fiocco, M.; Mensink, G.; Van Merkesteyn, J.R. Success and survival of autotransplanted premolars and molars during short-term clinical follow-up. J. Clin. Periodontol. 2016, 43, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Brzezińska-Miecznik, J.; Kasprzyk, E.; Haberko, K.; Pyda, A.; Bućko, M.; Mozgawa, W.; Zych, Ł.; Trybalska, B.; Reczyński, W. Sintering of natural orygin hydroxyapatite in air and carbon dioxide atmospheres. Mater. Ceram. 2008, 60, 274–277. [Google Scholar]
- Choi, G.; Cha, H.J. Recent advances in the development of nature-derived photocrosslinkable biomaterials for 3D printing in tissue engineering. Biomater. Res. 2019, 23, 18. [Google Scholar] [CrossRef] [Green Version]
- Aoki, K.; Saito, N. Biodegradable Polymers as Drug Delivery Systems for Bone Regeneration. Pharmaceutics 2020, 12, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, W.; Pontoriero, F.; Taratula, O.; Chen, A.M.; He, H. DNA and carbon nanotubes as medicine. Adv. Drug Deliv. Rev. 2010, 62, 633–649. [Google Scholar] [CrossRef]
- Li, H.; Sun, X.; Li, Y.; Li, B.; Liang, C.; Wang, H. Preparation and properties of carbon nanotube (Fe)/hydroxyapatite composite as magnetic targeted drug delivery carrier. Mater. Sci. Eng. C 2019, 97, 222–229. [Google Scholar] [CrossRef]
- Zhao, Q.; Shen, Y.; Ji, M.; Zhang, L.; Jiang, T.; Li, C. Effect of carbon nanotube addition on friction coefficient of nanotubes/hydroxyapatite composites. J. Ind. Eng. Chem. 2014, 20, 544–548. [Google Scholar] [CrossRef]
- Zhou, Y.; Lei, L.; Yang, B.; Li, J.; Ren, J. Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polym. Test. 2018, 68, 34–38. [Google Scholar] [CrossRef]
- Tamayo, L.; Azócar, M.; Kogan, M.; Riveros, A.; Páez, M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater. Sci. Eng. C 2016, 69, 1391–1409. [Google Scholar] [CrossRef] [PubMed]
- Na, W.; Lee, J.; Jun, J.; Kim, W.; Kim, Y.K.; Jang, J. Highly sensitive copper nanowire conductive electrode for nonenzymatic glucose detection. J. Ind. Eng. Chem. 2018, 69, 358–363. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Chen, Z.; Yan, S.; Qin, L.; Zeng, J.; Wang, S.; Xu, J.; Zhao, L.; Zhou, W.; et al. Copper nanowires/cellulose biodegradable flexible transparent conductor with improved thermal stability and its application. Org. Electron. 2018, 63, 392–397. [Google Scholar] [CrossRef]
- Malina, D.; Biernat, K.; Sobczak-Kupiec, A. Studies on sintering process of synthetic hydroxyapatite. Acta Biochim. Pol. 2013, 60, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Sofronia, A.M.; Baies, R.; Anghel, E.M.; Marinescu, C.A.; Tanasescu, S. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Mater. Sci. Eng. C 2014, 43, 153–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.; Yu, J.; He, H. Impact of strain rate on the hardness and elastic modulus of human tooth enamel. J. Mech. Behav. Biomed. Mater. 2018, 78, 491–495. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Y.; Shi, M.Y.; Zhang, Y.F.; Qian, L.M.; Zhou, Z.R. Microtribological behaviour of human tooth enamel and artificial hydroxyapatite. Tribol. Int. 2013, 63, 177–185. [Google Scholar] [CrossRef]
- Fadeeva, I.V.; Lazoryak, B.I.; Davidova, G.A.; Murzakhanov, F.F.; Gabbasov, B.F.; Petrakova, N.V.; Fosca, M.; Barinov, S.M.; Vadalà, G.; Uskoković, V.; et al. Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications. Mater. Sci. Eng. C 2021, 129, 112410. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Yao, Q. Copper-based biomaterials for bone and cartilage tissue engineering. J. Orthop. Transl. 2021, 29, 60–71. [Google Scholar] [CrossRef]
- Švecová, B.; Vařák, P.; Vytykáčová, S.; Nekvindová, P.; Mackova, A.; Malinský, P.; Böttger, R. A study of the behaviour of copper in different types of silicate glasses implanted with Cu + and O + ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 406, 193–198. [Google Scholar] [CrossRef]
- Elsherbiny, D.A.; Abdelgawad, A.M.; El-Naggar, M.E.; Hemdan, B.A.; Ghazanfari, S.; Jockenhövel, S.; Rojas, O.J. Bioactive tri-component nanofibers from cellulose acetate/lignin//N-vanillidene-phenylthiazole copper-(II) complex for potential diaper dermatitis control. Int. J. Biol. Macromol. 2022, 205, 703–718. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-C.; Lin, T.-Y.; Huang, S.-C.; Yang, T.-Y.; Shih, C.-J. Copper-enhanced silver releasing from bimetal-containing bioactive glass (AgCu/80S) elicits antibacterial efficacy against drug-resistant Staphylococcus aureus. J. Non-Cryst. Solids 2022, 584, 121509. [Google Scholar] [CrossRef]
- Kiadeh, S.Z.H.; Ghaee, A.; Farokhi, M.; Nourmohammadi, J.; Bahi, A.; Ko, F.K. Electrospun pectin/modified copper-based metal–organic framework (MOF) nanofibers as a drug delivery system. Int. J. Biol. Macromol. 2021, 173, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yuan, Y.; Xu, K.; Zhong, H.; Yang, Y.; Jin, S.; Yang, K.; Qi, X. Biological applications of copper-containing materials. Bioact. Mater. 2020, 6, 916–927. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, J.; Quan, H.; Zhang, P.; Xu, K.; He, J.; Fang, Y.; Wang, J.; Chen, P. Antibacterial Effect of Copper Sulfide Nanoparticles on Infected Wound Healing. Surg. Infect. 2021, 22, 894–902. [Google Scholar] [CrossRef]
- Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M.; Dou, Q.P.; Franz, K.J.; Gohil, V.M.; Gupta, S.; et al. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Cancer 2022, 22, 102–113. [Google Scholar] [CrossRef]
- Bosi, S.; Da Ros, T.; Castellano, S.; Banfi, E.; Prato, M. Antimycobacterial activity of ionic fullerene derivatives. Bioorganic Med. Chem. Lett. 2000, 10, 1043–1045. [Google Scholar] [CrossRef]
- Da Ros, T.; Prato, M.; Novello, F.; Maggini, M.; Banfi, E. Easy Access to Water-Soluble Fullerene Derivatives via 1,3-Dipolar Cycloadditions of Azomethine Ylides to C60. J. Org. Chem. 1996, 61, 9070–9072. [Google Scholar] [CrossRef]
- Reyes-Gasga, J.; García-García, R.; Arellano-Jiménez, M.J.; Sanchez-Pastenes, E.; Tiznado-Orozco, G.E.; Gil-Chavarria, I.M.; Gómez-Gasga, G. Structural and thermal behaviour of human tooth and three synthetic hydroxyapatites from 20 to 600 °C. J. Phys. D Appl. Phys. 2008, 41, 225407. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudecki, A.; Łyko-Morawska, D.; Kasprzycka, A.; Kazek-Kęsik, A.; Likus, W.; Hybiak, J.; Jankowska, K.; Kolano-Burian, A.; Włodarczyk, P.; Wolany, W.; et al. Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants. Int. J. Mol. Sci. 2022, 23, 4692. https://doi.org/10.3390/ijms23094692
Hudecki A, Łyko-Morawska D, Kasprzycka A, Kazek-Kęsik A, Likus W, Hybiak J, Jankowska K, Kolano-Burian A, Włodarczyk P, Wolany W, et al. Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants. International Journal of Molecular Sciences. 2022; 23(9):4692. https://doi.org/10.3390/ijms23094692
Chicago/Turabian StyleHudecki, Andrzej, Dorota Łyko-Morawska, Anna Kasprzycka, Alicja Kazek-Kęsik, Wirginia Likus, Jolanta Hybiak, Kornelia Jankowska, Aleksandra Kolano-Burian, Patryk Włodarczyk, Weronika Wolany, and et al. 2022. "Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants" International Journal of Molecular Sciences 23, no. 9: 4692. https://doi.org/10.3390/ijms23094692
APA StyleHudecki, A., Łyko-Morawska, D., Kasprzycka, A., Kazek-Kęsik, A., Likus, W., Hybiak, J., Jankowska, K., Kolano-Burian, A., Włodarczyk, P., Wolany, W., Markowski, J., Maziarz, W., Niedzielska, I., Pakieła, W., Nowak, M., & Łos, M. J. (2022). Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants. International Journal of Molecular Sciences, 23(9), 4692. https://doi.org/10.3390/ijms23094692