NVCL-Based Hydrogels and Composites for Biomedical Applications: Progress in the Last Ten Years
Abstract
:1. Introduction
2. Thermo-Sensitive NVCL-Based Hydrogels
2.1. Poly(N-vinylcaprolactam)
2.2. PNVCL-Based Hydrogels by Chemically Crosslinking Methods
2.2.1. Free-Radical Cross-Linking Polymerization
Photopolymerization
2.2.2. Radiation Polymerization
2.2.3. Frontal Polymerization
2.2.4. Sequential Polymerization
2.2.5. Sol–Gel Technology
3. Nanomaterials Used in Composite PNVCL Hydrogels
Composite Hydrogel | Nanoparticles Type | Effects | TVPT | Reference |
---|---|---|---|---|
PNVCL/Graphene | Inorganic |
| 32–33 °C | [19] |
PNVCL/CNC | Polymeric |
| 33–34 °C | [101] |
PAV-PC/Ag | Metallic |
| --- | [102] |
SA-PAVA/Ag | Metallic |
| 30 °C | [103] |
(PNVCL)81/Au | Metallic |
| 20–50 °C | [104] |
PNVCL/NanoClay | Inorganic |
| 35 °C | [63] |
HPG-g-PNVCL/n-HA/DVS | Inorganic |
| 34 °C | [107] |
A/PNVCL | Inorganic |
| --- | [109] |
PNVCL/Titania | Inorganic |
| 20–50 °C | [110] |
PNVCL/Nanogel PNVCL/Nanoclay | Polymeric Inorganic |
| 32 °C 37 °C | [64] |
4. Biomedical Applications of PNVCL-Based Hydrogels
4.1. Antibacterial and Drug Delivery Systems
4.2. Tissue Engineering, Diagnostics and Bioimaging
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laftah, W.A.; Hashim, S.; Ibrahim, A.N. Polymer Hydrogels: A Review. Polym. Plast. Technol. Eng. 2011, 50, 1475–1486. [Google Scholar] [CrossRef]
- Rebers, L.; Reichsöllner, R.; Regett, S.; Tovar, G.E.M.; Borchers, K.; Baudis, S.; Southan, A. Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels. Sci. Rep. 2021, 11, 3256. [Google Scholar] [CrossRef]
- Lee, J.H. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater. Res. 2018, 22, 27. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, Z.; Liu, H.; Ma, L.; Huang, X.; Cai, Z.; Xu, X.; Shang, S.; Song, Z. Cellulose-based polymeric emulsifier stabilized poly(N-vinylcaprolactam) hydrogel with temperature and pH responsiveness. Int. J. Biol. Macromol. 2020, 143, 190–199. [Google Scholar] [CrossRef]
- Gaharwar, A.; Peppas, N.A.; Khademhosseini, A. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 2014, 111, 441–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caló, E.; Khutoryanskiy, V. Biomedical applications of hydrogels: A review of patents and comercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Madhusudana-Rao, K.; Krishna-Rao, K.S.V.; Ha, C.S. Stimuli responsive poly(vinylcaprolactam) gels for biomedical applications. Gels 2016, 2, 6. [Google Scholar]
- Ramos, J.; Imaz, A.; Forcada, J. Temperature-sensitive nanogels: Poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym. Chem. 2012, 3, 852–856. [Google Scholar] [CrossRef]
- Solomon, O.F.; Corciovei, M.; Ciută, I.; Boghină, C. Properties of solutions of poly-N-vinylcaprolactam. J. Appl. Polym. Sci. 1968, 12, 1835–1842. [Google Scholar] [CrossRef]
- Makhaeva, E.E.; Thang, L.T.M.; Starodubzev, S.G.; Khohlov, A.R. Thermo shrinking behavior of poly(N-vinylcaprolactam) gels in aqueous solutions. Macromol. Chem. Phys. 1996, 197, 1973–1982. [Google Scholar] [CrossRef]
- Cakal, E.; Çavuş, S. Novel Poly(N-vinylcaprolactam-co-2-(diethylamino)ethyl methacrylate) Gels: Characterization and Detailed Investigation on Their Stimuli-Sensitive Behaviors and Network Structure. Ind. Eng. Chem. Res. 2010, 49, 11741–11751. [Google Scholar] [CrossRef]
- Çavuş, S.; Cakal, E. Synthesis and Characterization of Novel Poly(N-vinylcaprolactam-co-itaconic Acid) Gels and Analysis of pH and Temperature Sensitivity. Ind. Eng. Chem. Res. 2012, 51, 1218–1226. [Google Scholar] [CrossRef]
- Gaballa, H.A.; Geever, L.M.; Killion, J.A.; Higginbotham, C.L. Synthesis and characterization of physically crosslinked N-vinylcaprolactam, acrylic acid, methacrylic acid, and N,N-dimethylacrylamide hydrogels. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 1555–1564. [Google Scholar] [CrossRef]
- Mamytbekov, G.; Bouchal, K.; Ilavsky, M. Phase transition in swollen gels:26. Effect of charge concentration on temperature dependence of swelling and mechanical behavior of poly(N-vinylcaprolactam) gels. Eur. Polym. J. 1999, 35, 1925–1933. [Google Scholar] [CrossRef]
- Cheng, S.C.; Feng, W.; Pashikin, I.I.; Yuan, L.H.; Deng, H.C.; Zhou, Y. Radiation polymerization of thermos-sensitive poly (N-vinylcaprolactam). Radiat. Phys. Chem. 2002, 63, 517–519. [Google Scholar] [CrossRef]
- Ilavský, M.; Mamytbekov, G.; Sedláková, Z.; Bekturov, E.A. Phase Transition in Swollen Gels XXVIII. Swelling and Mechanical Behavior of Poly(1-vinyl-2-pyrrolidone-co-N-vinylcaprolactam) Gels in Water/Acetone Mixtures. Polym. J. 2001, 33, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.-F.; Yu, C.; Wang, X.-Q.; Tang, W.-Q.; Wang, C.-F.; Chen, S. Facile access to poly(NMA-co-VCL) hydrogels via long range laser ignited frontal polymerization. J. Mater. Chem. A 2013, 1, 7326–7331. [Google Scholar] [CrossRef]
- Sanna, R.; Sanna, D.; Alzari, V.; Malucelli, G.; Mariani, A. Synthesis and characterization of Graphene-containing Thermoresponsive nanocomposite hydrogels of poly(N-vinylcaprolactam) prepared by frontal polymerization. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4110–4118. [Google Scholar] [CrossRef]
- Alzari, V.; Monticelli, O.; Nuvoli, D.; Kenny, J.M.; Mariani, A. Stimuli Responsive Hydrogels Prepared by Frontal Polymerization. Biomacromolecules 2009, 10, 2672–2677. [Google Scholar] [CrossRef] [PubMed]
- Binh, P.T.; Hsu, H.C.; Zhao, Z. Stimuli sensitive interpenetrating network. Int. J. Sci. Eng. Res. 2012, 3, 138–143. [Google Scholar]
- Bakeevaa, V.; Ozerinab, L.A.; Ozerinb, A.N.; Zubova, V.P. Structure and characteristics of organic-inorganic hybrid hydrogels based on poly(N-vinylcaprolactam)-SiO2. Polym. Sci. Ser. A 2010, 52, 496–505. [Google Scholar] [CrossRef]
- Zhao, Z.; Vizetto-Duarte, C.; Moay, Z.K.; Setyawati, M.I.; Rakshit, M.; Kathawala, M.H.; Ng, K.W. Composite Hydrogels in Three-Dimensional in vitro Models. Front. Bioeng. Biotechnol. 2020, 8, 611. [Google Scholar] [CrossRef] [PubMed]
- Mehrali, M.; Thakur, A.; Pennisi, C.P.; Talebian, S.; Arpanaei, A.; Nikkhah, M.; Dolatshahi-Pirouz, A. Nanoreinforced hydrogels for tissue engineering: Biomaterials that are compatible with load-bearing: Biomaterials that are compatible with load-bearing electroactive tissue. Adv. Mater. 2017, 9, 1603612. [Google Scholar] [CrossRef] [PubMed]
- Biondi, M.; Borzacchiello, A.; Mayol, L.; Ambroxio, L. Nanoparticle-integrated hydrogels as multifunctional composite materials for biomedical applications. Gels 2015, 1, 162–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahid, F.; Zhong, C.; Wang, H.-S.; Hu, X.-H.; Chu, L.-Q. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles. Polymers 2017, 9, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Dong, S.; Xu, W.; Tu, S.; Yan, L.; Zhao, C.; Ding, J.; Chen, X. Antibacterial hydrogels. Adv. Sci. 2018, 5, 1700527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjali, J.; Jose, V.K.; Lee, J.-M. Carbon-based hydrogels: Synthesis and their recent energy applications. J. Mater. Chem. A 2019, 7, 15491–15518. [Google Scholar] [CrossRef]
- Ravanbakhsh, H.; Bao, G.; Mongeau, L. Carbon nanotubes promote cell migration in hydrogels. Sci. Rep. 2020, 10, 2543. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Ibarra, P.A.; Sanchez-Valdes, S.; Yañez-Flores, I.G.; Graciano-Verdugo, A.Z.; Espinoza-Ibarra, D.F.; Fernandez-Tavizon, S.; Ledezma-Perez, A.S.; Espinoza-Martinez, A.B.; Rodriguez-Fernandez, O.S.; Betancourt-Galindo, R.; et al. Preparation and characterization of cotton fibers coated with AA-IA hydrogel containig silver/Graphene or Graphene oxide nanoparticles. Polym. Plast. Technol. Eng. 2019, 58, 753–764. [Google Scholar]
- Pereira, A.G.; Rodrigues, F.H.; Paulino, A.T.; Martins, A.F.; Fajardo, A.R. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. J. Clean. Prod. 2021, 284, 124703. [Google Scholar] [CrossRef]
- Kausar, A. Nanocarbon in Polymeric Nanocomposite Hydrogel—Design and Multi-Functional Tendencies. Polym. Plast. Technol. Mater. 2020, 59, 1505–1521. [Google Scholar] [CrossRef]
- Cerda-Sumbarda, Y.D.; Zapata-Gonzalez, I.; Licea-Claverie, A.; Zizumbo-López, A.; Valle, L.F.R.-D.; Espinoza-Martínez, A. Poly(hexylacrylate)Core-poly(ethyleneglycol methacrylate)Shell nanogels as fillers for poly(2-hydroxyethyl methacrylate) nanocomposite hydrogels. Polym. Eng. Sci. 2018, 59, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Xiao, X.; Hu, Y.; Wang, H.; Yang, Y. Reinforcement of phenylalanine-based supramolecular hydrogels by hybridizing poly(N-isopropylacrylamide) nanogels. RSC Adv. 2014, 4, 22380–22386. [Google Scholar] [CrossRef]
- Liu, J.; Detrembleur, C.; Hurtgen, M.; Debuigne, A.; De Pauw-Gillet, M.C.; Mornet, S.; Duguet, E.; Jerome, C. Thermo-responsive gold/poly(vinyl alcohol)-b-poly(N-vinylcaprolactam) core-corona nanoparticles as a drug delivery system. Polym. Chem. 2014, 5, 5289–5299. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, B.; Ma, P.X. Injectable alginate microsphere/PLGA–PEG–PLGA composite hydrogels for sustained drug release. RSC Adv. 2014, 4, 17736–17742. [Google Scholar] [CrossRef]
- Cambria, E.; Brunner, S.; Heusser, S.; Fisch, P.; Hitzl, W.; Ferguson, S.J.; Wertz-Kozak, K. Cell-laden agarose-collagen composite hydrogels for mechanotransduction studies. Front. Bioeng. Biotechnol. 2020, 8, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, N.; Xu, J.; Zheng, X.; Hui, J. Preparation of injectable composite hydrogels by blending poloxamers with calcium carbonatecrosslinked sodium alginate. Chemistryopen 2020, 9, 451–458. [Google Scholar] [CrossRef]
- Zhao, W.; Odelius, K.; Edlund, U.; Zhao, C.; Albertsson, A.-C. In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery. Biomacromolecules 2015, 16, 2522–2528. [Google Scholar] [CrossRef]
- Wei, Y.-S.; Chen, K.-S.; Wu, L.-T. In situ synthesis of high swell ratio polyacrylic acid/silver nanocomposite hydrogels and their antimicrobial properties. J. Inorg. Biochem. 2016, 164, 17–25. [Google Scholar] [CrossRef]
- Abudabbus, M.M.; Jevremovic, I.; Nesovic, K.; Peric-Grujic, A.; Rhee, K.Y.; Miskovic-Stankovic, V. In situ electrochemical synthesis of silver-doped poly(vinyl alcohol)/graphene composite hydrogels and their physicochemical and thermal properties. Compos. B Eng. 2018, 140, 99–107. [Google Scholar] [CrossRef]
- Jabbari, E. Bioconjugation of hydrogels for tissue engineering. Curr. Opin. Biotechnol. 2011, 22, 655–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, S.-F.; Smith, A.A.A.; Zelikin, A.N. Microstructured, Functional PVA Hydrogels through Bioconjugation with Oligopeptides under Physiological Conditions. Small 2012, 9, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Ahadian, S.; Sadeghian, R.B.; Salehi, S.; Ostrovidov, S.; Bae, H.; Ramalingam, M.; Khademhosseini, A. Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjugate. Chem. 2015, 26, 1984–2001. [Google Scholar] [CrossRef]
- Dragan, E.S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 2014, 243, 572–590. [Google Scholar] [CrossRef]
- Sharma, R.; Kalia, S.; Kaith, B.S.; Pathania, D.; Kumar, A.; Thakur, P. Guaran-based biodegradable and conducting inter-penetrating polymer network composite hydrogels for adsorptive removal of methylene blue dye. Polym. Degrad. Stab. 2015, 122, 52–65. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, K.; Nan, J.; Tang, C.; Chen, Y.; Hu, Y. Synthesis and characterization of lignosulfonate-graft-poly(acrylic acid)/hydroxyethyl cellulose semi-interpenetrating hydrogels. React. Funct. Polym. 2017, 115, 28–35. [Google Scholar] [CrossRef]
- Wang, H.J.; Chu, Y.Z.; Chen, C.K.; Liao, Y.S.; Yeh, M.Y. Preparation of conductive self-healing hydrogels via an interpenetrating polymer network method. RSC Adv. 2021, 11, 6620–6627. [Google Scholar] [CrossRef]
- Buwalda, S.J. Bio-based composite hydrogels for biomedical applications. Multifunct. Mater. 2020, 3, 022001. [Google Scholar] [CrossRef]
- Vassallo, V.; Tsianaka, A.; Alessio, N.; Grübel, J.; Cammarota, M.; Tovar, G.E.M.; Southan, A.; Schiraldi, C. Evaluation of novel biomaterials for cartilage regeneration based on gelatin methacryloyl interpenetrated with extractive chondroitin sulfate or unsulfated biotechnological chondroitin. J. Biomed. Mater. Res. Part A 2022, 110, 1210–1223. [Google Scholar] [CrossRef]
- Anufrieva, E.V.; Gromova, R.A.; Kirsh, Y.E.; Yanul, N.A.; Krakovyak, M.G.; Lushchik, V.B.; Pautov, V.D.; Sheveleva, T.V. Complexing properties and structural characteristics of thermally sensitive copolymers of N-vinylpyrrolidone and N-vinylcaprolcatman. Eur. Polym. J. 2001, 37, 323–328. [Google Scholar] [CrossRef]
- Pashkin, I.I.; Kirsh, Y.; Zubov, Y.; Aninimova, V.P.T.V.; Kuz’kina, I.F.; Voloshina, Y.P.; Krylov, A.V. Synthesis of water-soluble-N-vinylcaprolactam-based copolymers and physicochemical properties of their aqueous solutions. Vysokomol. Soedin. Ser. A 1993, 35, 481–484. [Google Scholar]
- Sun, S.; Wu, P. Infrared spectroscopic insight into hydration behavior of poly(N-vinylcaprolatam) in water. J. Phys. Chem. B 2011, 115, 11609–11618. [Google Scholar] [CrossRef] [PubMed]
- Spěváček, J. NMR investigations of phase transition in aqueous polymer solutions and gels. Curr. Opin. Colloid Interface Sci. 2009, 14, 184–191. [Google Scholar] [CrossRef]
- Nakabayashi, K.; Mori, H. Recent progress in controlled radical polymerization of N-vinyl monomers. Eur. Polym. J. 2013, 49, 2808–2838. [Google Scholar] [CrossRef] [Green Version]
- Cortez-Lemus, N.A.; Licea-Claverie, A. Preparation of a Mini-Library of Thermo-Responsive Star (NVCL/NVP-VAc) Polymers with Tailored Properties Using a Hexafunctional Xanthate RAFT Agent. Polymers 2018, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Mahinroosta, M.; Farsangi, Z.J.; Allahverdi, A.; Shakoori, Z. Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Mater. Today Chem. 2018, 8, 42–55. [Google Scholar] [CrossRef]
- Lynch, B.; Crawford, K.; Baruti, O.; Abdulahad, A.; Webster, M.; Puetzer, J.; Ryu, C.; Bonassar, L.J.; Mendenhall, J. The effect of hypoxia on thermosensitive poly(N-vinylcaprolactam) hydrogels with tunable mechanical integrity for cartilage tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 105, 1863–1873. [Google Scholar] [CrossRef]
- Arellano-Sandoval, L.; Delgado, E.; Camacho, T.; Bravo-Madrigal, J.; Manríquez-González, R.; Lugo, P.; Toriz, G.; García-Uriostegui, L. Development of thermosensitive hybrid hydrogels based on xylan-type hemicellulose from agave bagasse: Characterization and antibacterial activity. MRS Commun. 2020, 10, 147–154. [Google Scholar] [CrossRef]
- Dalton, M.; Halligan, S.; Killion, J.; Murray, K.A.; Geever, L. Smart thermosensitive poly(N-vinylcaprolactam) based hydrogels for biomedical applications. Adv. Environ. Biol. 2014, 8, 1–6. [Google Scholar]
- Dalton, M.B.; Halligan, S.; Killion, J.A.; Wang, W.; Dong, Y.; Nugent, M.; Geever, L.M. The Effect Acetic Acid has on Poly(N-Vinylcaprolactam) LCST for Biomedical Applications. Polym. Technol. Eng. 2017, 57, 1165–1174. [Google Scholar] [CrossRef]
- Halligan, S.C.; Dalton, M.B.; Murray, K.A.; Dong, Y.; Wang, W.; Lyons, J.G.; Geever, L.M. synthesis, characterization and phase transition behavior of temperature-responsive physically crosslinked poly (N-vinylcaprolactam) based polymers for biomedical applications. Mater. Sci. Eng. C 2017, 79, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Liu, Z.; Yang, C.; Li, X.Y.; Sun, Y.M.; Deng, Y.; Wang, W.; Ju, X.J.; Xie, R.; Chu, L.Y. Novel biocompatible Thermoresponsive poly(N-vinylcaprolactam)/clay nanocomposite hydrogels with macroporous structure and improved mechanical characteristics. ACS Appl. Mater. Interfaces 2017, 9, 21979–21990. [Google Scholar] [CrossRef] [PubMed]
- Cerda-Sumbarda, Y.D.; Domínguez-González, C.; Zizumbo-López, A.; Licea-Claverie, A. Thermoresponsive nanocomposite hydrogels with improved properties based on poly(N-vinylcaprolactam). Mater. Today Commun. 2020, 24, 101041. [Google Scholar] [CrossRef]
- Pérez-Calixto, M.; Ortega, A.; Garcia-Uriostegui, L.; Burillo, G. Synthesis and characterization of N-vinylcaprolactam/N,N-dimethylacrylamide grafted onto chitosan networks by gamma radiation. Radiat. Phys. Chem. 2016, 119, 228–235. [Google Scholar] [CrossRef]
- Halligan, S.C.; Murray, K.A.; Vrain, O.; Lyons, J.G.; Geever, L.M. Controlling the Thermosensitivity of Poly(N-vinylcaprolactam) for Smart Glass Applications via Electron Beam Irradiation. Mater. Today Proc. 2019, 10, 430–435. [Google Scholar] [CrossRef]
- Higgins, W.; Kozlovskaya, V.; Alford, A.; Ankner, J.; Kharlampieva, E. Stratified Temperature-Responsive Multilayer Hydrogels of Poly(N-vinylpyrrolidone) and Poly(N-vinylcaprolactam): Effect of Hydrogel Architecture on Properties. Macromolecules 2016, 49, 6953–6964. [Google Scholar] [CrossRef]
- Zavgorodnya, O.; Carmona-Moran, C.A.; Kozlovskaya, V.; Liu, F.; Wick, T.M.; Kharlampieva, E. Temperature-responsive nanogel multilayers of poly(N-vinylcaprolactam) for topical drug delivery. J. Colloid Interface Sci. 2017, 506, 589–602. [Google Scholar] [CrossRef]
- Durkut, S.; Elcin, Y.M. Synthesis and characterization of thermosensitive poly(N-vinylcaprolactam)-grafted-aminated alginate hydrogels. Macromol. Chem. Phys. 2019, 19, 412. [Google Scholar]
- Sala, R.L.; Kwon, M.Y.; Kim, M.; Gullbrand, S.; Henning, E.A.; Mauck, R.L.; Camargo, E.R.; Burdick, J.A. Thermosensitive Poly(N-vinylcaprolactam) Injectable Hydrogels for Cartilage Tissue Engineering. Tissue Eng. Part A 2017, 23, 935–945. [Google Scholar] [CrossRef]
- Lattuada, M.; Del Gado, E.; Abete, T.; de Arcangelis, L.; Lazzari, S.; Diederich, V.; Storti, G.; Morbidelli, M. Kinetics of Free-Radical Cross-Linking Polymerization: Comparative Experimental and Numerical Study. Macromolecules 2013, 46, 5831–5841. [Google Scholar] [CrossRef]
- Karaca, N.; Temel, G.; Balta, D.K.; Aydin, M.; Arsu, N. Preparation of hydrogels by photopolymerization of acrylates in the presence of Type I and one-component Type II photoinitiators. J. Photochem. Photobiol. A Chem. 2010, 209, 1–6. [Google Scholar] [CrossRef]
- Güven, O. Ionizing radiation: A versatile tool for nanostructuring of polymers. Pure Appl. Chem. 2016, 88, 1049–1061. [Google Scholar] [CrossRef]
- Davtyan, S.P.; Tonoyan, A.O. The Frontal Polymerization Method in High Technology Applications. Rev. J. Chem. 2019, 9, 71–94. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, Z.; You, Y.Z. Synthesis of sequence-controlled polymers via sequential multicomponent reactions and inter-convertible hybrid copolymerizations. Polym. J. 2020, 52, 33–43. [Google Scholar] [CrossRef]
- Dannert, C.; Stokke, B.T.; Dias, R.S. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers 2019, 11, 275. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, C.; Meyers, K.; Johnson, E.; Rajachar, R.M. Application of Composite Hydrogels to Control Physical Properties in Tissue Engineering and Regenerative Medicine. Gels 2018, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Utech, S.; Boccaccini, A.R. A review of hydrogel-based composites for biomedical applications: Enhancement of hydrogel properties by addition of rigid inorganic fillers. J. Mater. Sci. 2016, 51, 271–310. [Google Scholar] [CrossRef]
- Mondal, S.; Rana, U.; Malik, S. Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J. Phys. Chem. C 2017, 121, 7573–7583. [Google Scholar] [CrossRef]
- Imaz, A.; Forcada, J. Synthesis strategies to incorporate acrylic acid into N-vinylcaprolactam-based microgels. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 3218–3227. [Google Scholar] [CrossRef]
- Zhu, Z.; Guan, Z.; Jia, S.; Lei, Z.; Lin, S.; Zhang, H.; Ma, Y.; Tian, Z.Q.; Yang, C.J. Au@Pt nanoparticle encapsulated tar-get-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew. Chem. Int. Ed. 2014, 53, 12503–12507. [Google Scholar]
- Fallon, M.; Halligan, S.; Pezzoli, R.; Geever, L.; Higginbotham, C. Synthesis and characterization of novel temperature and pH sensitive physically cross-linked poly(N-vinylcaprolactam-co-itaconic acid) hydrogels for drug delivery. Gels 2019, 5, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pich, A.; Bhattacharya, S.; Lu, Y.; Boyko, A.V.; Adler, H.-J.P. Temperature-Sensitive Hybrid Microgels with Magnetic Properties. Langmuir 2004, 20, 10706–10711. [Google Scholar] [CrossRef] [PubMed]
- Bawa, P.; Pillay, V.; Choonara, Y.; du Toit, L. Stimuli-responsive polymers and their applications in drug delivery. Biomed. Mater. 2009, 4, 022001. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-responsive polymers and their applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Charlet, G.; Delmas, G. Thermodynamic properties of polyolefin solutions at high temperature: 1. Lower critical solubility temperatures of polyethylene, polypropylene and ethylene-propylene copolymers in hydrocarbon solvents. Polymers 1981, 22, 1181–1189. [Google Scholar] [CrossRef]
- Klouda, L.; Mikos, A.G. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2008, 68, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Klouda, L. Thermoresponsive hydrogels in biomedical applications: A seven-year update. Eur. J. Pharm. Biopharm. 2015, 97, 338–349. [Google Scholar] [CrossRef]
- Lee, B.; Jiao, A.; Yu, S.; You, J.B.; Kim, D.-H.; Im, S.G. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering. Acta Biomater. 2013, 9, 7691–7698. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, I.; Yildiz, B.S. Applications of Thermoresponsive Magnetic Nanoparticles. J. Nanomater. 2015, 16, 357. [Google Scholar] [CrossRef]
- Fitzpatrick, S.D.; Fitzpatrick, L.; Thakur, A.; Mazumder, M.A.J.; Sheardown, H. Temperature-sensitive polymers for drug delivery. Expert Rev. Med. Devices 2012, 9, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Joglekar, M.; Trewyn, B.G. Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol. J. 2013, 8, 931–945. [Google Scholar] [CrossRef]
- Kozanoǧlu, S.; Özdemir, T.; Usanmaz, A. Polymerization of N-Vinylcaprolactam and Characterization of Poly(N-Vinylcaprolactam). J. Macromol. Sci. Part A Pure Appl. Chem. 2011, 48, 467–477. [Google Scholar] [CrossRef]
- Vihola, H.; Laukkanen, A.; Valtola, L.; Tenhu, H.; Hirvonen, J.T. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 2005, 26, 3055–3064. [Google Scholar] [CrossRef] [PubMed]
- Tahir, F.; Begum, R.; Wu, W.; Irfan, A.; Farooqi, Z.H. Physicochemical aspects of inorganic nanoparticles stabilized in N-vinylcaprolactam based microgels for various applications. RSC Adv. 2021, 11, 978–995. [Google Scholar] [CrossRef]
- Gonzalez-Ayon, M.A.; Cortez-Lemus, N.A.; Zizumbo-Lopez, A.; Licea-Claverie, A. Nanogels of poly(N-vinylcaprolactam) core and polyethyleneglycol shell by surfactant free emulsion polymerization. Soft Mater. 2014, 12, 315–325. [Google Scholar] [CrossRef]
- Gholiha, H.M.; Ehsani, M.; Saeidi, A.; Ghadami, A.; Alizadeh, N. Magnetic dual-responsive semi-IPN nanogels based on chitosan/PNVCL and study on BSA release behavior. Prog. Biomater. 2021, 10, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Sanna, R.; Fortunati, E.; Alzari, V.; Nuvoli, D.; Terenzi, A.; Casula, M.F.; Kenny, J.M.; Mariani, A. Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: A green approach to thermoresponsive hydrogels. Cellulose 2013, 20, 2393–2402. [Google Scholar] [CrossRef]
- Zhang, C.; Gau, E.; Sun, W.; Zhu, J.; Schmidt, B.M.; Pich, A.; Shi, X. Influence of size, crosslinking degree and surface structure of poly(N-vinylcaprolactam)-based microgels on their penetration into multicellular tumor spheroids. Biomater. Sci. 2019, 7, 4738–4747. [Google Scholar] [CrossRef]
- Nolan, H.; Sun, D.; Falzon, B.G.; Chakrabarti, S.; Padmanaba, D.B.; Maguire, P.; Mariotti, D.; Yu, T.; Jones, D.; Andrews, G.; et al. Metal nanoparticle-hydrogel nanocomposites for biomedical applications—An atmospheric pressure plasma synthesis approach. Plasma Process. Polym. 2018, 15, 1800112. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.-L.; Teow, S.-Y.; Pushpamalar, J. Application of Metal Nanoparticle–Hydrogel Composites in Tissue Regeneration. Bioengineering 2019, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, P.R.S.; Eswaramma, S.; Rao, K.K.; Lee, Y.-I. Dual Responsive Pectin Hydrogels and Their Silver Nanocomposites: Swelling Studies, Controlled Drug Delivery and Antimicrobial Applications. Bull. Korean Chem. Soc. 2014, 35, 2391–2399. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.R.S.; Rao, K.M.; Shchipunov, Y.; Ha, C.-S. Synthesis of alginate based silver nanocomposite hydrogels for biomedical applications. Macromol. Res. 2014, 22, 832–842. [Google Scholar] [CrossRef]
- Zavgorodnya, O.; Kozlovskaya, V.; Liang, X.; Kothalawala, N.; Catledge, A.; Dass, A.; Kharlampieva, E. Temperature-responsive properties of poly(N-vinylcaprolactam) multilayer hydrogels in the presence of Hofmeister anions. Mater. Res. Express. 2014, 1, 35039. [Google Scholar] [CrossRef]
- Hu, C.; Hahn, L.; Yang, M.; Altmann, A.; Stahlhut, P.; Groll, J.; Luxenhofer, R. Improving printability of a thermoresponsive hydrogel biomaterial ink by nanoclay addition. J. Mater. Sci. 2021, 56, 691–705. [Google Scholar] [CrossRef]
- Murugesan, S.; Scheibel, T. Copolymer/Clay Nanocomposites for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 1908101. [Google Scholar] [CrossRef] [Green Version]
- Parameswaran-Thankam, A.; Parnell, C.M.; Watanabe, F.; RanguMagar, A.B.; Chhetri, B.; Szwedo, P.K.; Biris, A.S.; Ghosh, A. Guar-Based Injectable Thermoresponsive Hydrogel as a Scaffold for Bone Cell Growth and Controlled Drug Delivery. ACS Omega 2018, 3, 15158–15167. [Google Scholar] [CrossRef]
- Glass, S.; Trinklein, B.; Abel, B.; Schulze, A. TiO2 as Photosensitizer and Photoinitiator for Synthesis of Photoactive TiO2-PEGDA Hydrogel Without Organic Photoinitiator. Front. Chem. 2018, 6, 340. [Google Scholar] [CrossRef]
- Timaeva, O.I.; Pashkin, I.I.; Kuz’Micheva, G.M.; Sadovskaya, N.V. Synthesis and structure of new composite hydrogels based on poly(N-vinyl caprolactam) with nanosized anatase. Mendeleev Commun. 2019, 29, 646–647. [Google Scholar] [CrossRef]
- Timaeva, O.I.; Kuz´micheva, G.M.; Pashkin, I.I.; Czakkel, O.; Prevost, S. Structure and dynamics of titania-poly(N-vinylcaprolactam) composite hydrogels. Soft Matter. 2020, 16, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.M.; Rao, K.S.V.K.; Ha, C.-S. Stimuli Responsive Poly(Vinyl Caprolactam) Gels for Biomedical Applications. Gels 2016, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Liu, J.; Debuigne, A.; Detrembleur, C.; Jérôme, C. Poly(N-vinylcaprolactam): A thermoresponsive macromolecule with promising future in biomedical field. Adv. Healthc. Mater. 2014, 3, 1941–1968. [Google Scholar] [CrossRef]
- Kavitha, T.; Kim, J.-O.; Jang, S.; Kim, D.-P.; Kang, I.-K.; Park, S.-Y. Multifaceted thermoresponsive poly(N-vinylcaprolactam) coupled with carbon dots for biomedical applications. Mater. Sci. Eng. C 2016, 61, 492–498. [Google Scholar] [CrossRef]
- Sun, W.; Thies, S.; Zhang, J.; Peng, C.; Tang, G.; Shen, M.; Pich, A.; Shi, X. Gadolinium-Loaded Poly(N-vinylcaprolactam) Nanogels: Synthesis, Characterization, and Application for Enhanced Tumor MR Imaging. ACS Appl. Mater. Interfaces 2017, 9, 3411–3418. [Google Scholar] [CrossRef]
- Indulekha, S.; Arunkumar, P.; Bahadur, D.; Srivastava, R. Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management. Mater. Sci. Eng. C 2016, 62, 113–122. [Google Scholar] [CrossRef]
- Durkut, S.; Elçin, Y.M. Synthesis and characterization of thermosensitive poly(N-vinylcaprolactam)-g-collagen. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1665–1674. [Google Scholar] [CrossRef]
- Durkut, S. Thermoresponsive poly (N-vinylcaprolactam)-g-galactosylated chitosan hydrogel: Synthesis, characterization, and controlled release properties. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 1034–1047. [Google Scholar] [CrossRef]
- Ortega, A.; Sánchez, A.; Burillo, G. Binary Graft of Poly(N-vinylcaprolactam) and Poly(acrylic acid) onto Chitosan Hydrogels Using Ionizing Radiation for the Retention and Controlled Release of Therapeutic Compounds. Polymers 2021, 13, 2641. [Google Scholar] [CrossRef] [PubMed]
- Riyajan, S.A. Establishment and properties of epoxidized natural rubber-graft-poly(N-vinylcaprolactam)/poly(vinyl alcohol) blend. Ind. Crops Prod. 2022, 177, 114415. [Google Scholar] [CrossRef]
- Chung, C.; Burdick, J.A. Engineering cartilage tissue. Adv. Drug Deliv. Rev. 2008, 60, 243–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sontyana, A.G.; Mathew, A.P.; Cho, K.-H.; Uthaman, S.; Park, I.-K. Biopolymeric In Situ Hydrogels for Tissue Engineering and Bioimaging Applications. Tissue Eng. Regen. Med. 2018, 15, 575–590. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumar, A. Thermoresponsive poly(N-vinylcaprolactam) cryogels: Synthesis and its biophysical evaluation for tissue engineering applications. J. Mater. Sci. Mater. Med. 2010, 21, 2937–2945. [Google Scholar] [CrossRef]
- Whittaker, J.L.; Dutta, N.K.; Zannettino, A.; Choudhury, N.R. Engineering DN hydrogels from regenerated silk fibroin and poly(N-vinylcaprolactam). J. Mater. Chem. B 2016, 4, 5519–5533. [Google Scholar] [CrossRef]
- Dong, Y.C.; Bouché, M.; Uman, S.; Burdick, J.A.; Cormode, D.P. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater. Sci. Eng. 2021, 7, 4027–4047. [Google Scholar] [CrossRef]
- Yang, K.; Han, Q.; Chen, B.; Zheng, Y.; Zhang, K.; Li, Q.; Wang, J. Antimicrobial hydrogels: Promising materials for medical application. Int. J. Nanomed. 2018, 13, 2217–2263. [Google Scholar] [CrossRef] [Green Version]
Polymerization Technique | Description of Hydrogels | Reference |
---|---|---|
Free-radical polymerization | -NVCL-g-HA (hyaluronic acid) | [58] |
-Silanized hemicellulose and NVCL | [59] | |
Photopolymerization | -NVCL 1 | [60] |
-NVCL-AAc (Acrylic acid) 1 | [61] | |
-NVCL-VAc (Vinyl acetate) 1 | [62] | |
-NVCL with BIS as crosslinker | [63] | |
-NVCL with DVA as crosslinker | [64] | |
Radiation polymerization | NVCL-DMAAm grafted onto chitosan by gamma irradiation | [65] |
NVCL hydrogels by e-beam irradiation | [66] | |
Frontal polymerization | PNIPAM-PNVCL | [20] |
Poly(NMA-co-NVCL) | [18] | |
Sequential polymerization | ||
PNVCL and PAcrNEP | [21] | |
PVP-PNVCL multilayer | [67] | |
PNVCL hydrogel films | [68] | |
PNVCL-g-Al-NH2 | [69] | |
Sol–gel technology | ||
PNVCL injectable hydrogels 1 | [70] |
Type of Hydrogel | Drug Delivery/Antimicrobial | Therapeutic Application/Bactericides | Reference |
---|---|---|---|
PAV-PC | 5-Fluorouracil Silver nanoparticles | Drug delivery system/Bacillus subtilis and E. coli | [102] |
SA-PAVA | 5-Fluorouracil Silver nanoparticles | Drug delivery system/Bacillus subtilis and E. coli | [103] |
Chitosan-g-PNVCL | Etoricoxib Acetamidophenol | On-demand transdermal drug delivery system for pain management. | [118] |
PNVCL-g-Col | Lidocaine hydrochloride and bovine serum albumin | Drug delivery system | [119] |
HPG-g-PNVCL | Ciprofloxacin | Antimicrobial controlled drug delivery | [107] |
PNVCL-g-GC | Bovine serum albumin | Drug delivery system | [120] |
PNVCL-g-Alg-NH2 | Bovine serum albumin | Drug delivery system | [69] |
Poly(N-vinylcaprolactam-co-itaconic acid) | Acetaminophen | Drug delivery system | [82] |
Cellulose-based polymeric emulsifier stabilized PNVCL | Salicylaldehyde | Drug delivery system | [5] |
Hybrid hydrogels from silanized hemicellulose and PNVCL | Ciprofloxacin | E. coli, S. aureus and P. aeruginosa | [59] |
NVCL/AAc onto net-CS | Vancomycin Diclofenac | Drug delivery system | [121] |
Epoxidized natural rubber-g-PNVCL/poly(vinyl alcohol) blend | Curcumin | Drug delivery system | [122] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Urias, A.; Licea-Claverie, A.; Sañudo-Barajas, J.A.; González-Ayón, M.A. NVCL-Based Hydrogels and Composites for Biomedical Applications: Progress in the Last Ten Years. Int. J. Mol. Sci. 2022, 23, 4722. https://doi.org/10.3390/ijms23094722
Gonzalez-Urias A, Licea-Claverie A, Sañudo-Barajas JA, González-Ayón MA. NVCL-Based Hydrogels and Composites for Biomedical Applications: Progress in the Last Ten Years. International Journal of Molecular Sciences. 2022; 23(9):4722. https://doi.org/10.3390/ijms23094722
Chicago/Turabian StyleGonzalez-Urias, Alejandra, Angel Licea-Claverie, J. Adriana Sañudo-Barajas, and Mirian A. González-Ayón. 2022. "NVCL-Based Hydrogels and Composites for Biomedical Applications: Progress in the Last Ten Years" International Journal of Molecular Sciences 23, no. 9: 4722. https://doi.org/10.3390/ijms23094722
APA StyleGonzalez-Urias, A., Licea-Claverie, A., Sañudo-Barajas, J. A., & González-Ayón, M. A. (2022). NVCL-Based Hydrogels and Composites for Biomedical Applications: Progress in the Last Ten Years. International Journal of Molecular Sciences, 23(9), 4722. https://doi.org/10.3390/ijms23094722