Cytokines from Bench to Bedside: A Retrospective Study Identifies a Definite Panel of Biomarkers to Early Assess the Risk of Negative Outcome in COVID-19 Patients
Abstract
:1. Introduction
2. Results
2.1. Patients Features and Correlation between Biomarkers and Clinical Outcome
2.2. Cytokines and Inflammatory Markers in Patients with Different Disease Severity
2.3. Cytokines and Inflammatory Markers in Patients with Different Clinical Outcomes
2.4. Ranking Test Analysis
2.5. Decision Tree Building Up
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Laboratory Analysis
4.3. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffin, D.O.; Brennan-Rieder, D.; Ngo, B.; Kory, P.; Confalonieri, M.; Shapiro, L.; Iglesias, J.; Dube, M.; Nanda, N.; In, G.K.; et al. The Importance of Understanding the Stages of COVID-19 in Treatment and Trials. AIDS Rev. 2021, 23, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- Lee, A.J.; Ashkar, A.A. The Dual Nature of Type I and Type II Interferons. Front. Immunol. 2018, 9, 2061. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.Y.; Komarasamy, T.V.; Balasubramaniam, V.R. Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Front. Immunol. 2021, 12, 742941. [Google Scholar] [CrossRef]
- Acharya, D.; Liu, G.; Gack, M.U. Dysregulation of type I interferon responses in COVID-19. Nat. Rev. Immunol. 2020, 20, 397–398. [Google Scholar] [CrossRef]
- Hu, Z.-J.; Xu, J.; Yin, J.-M.; Li, L.; Hou, W.; Zhang, L.-L.; Zhou, Z.; Yu, Y.-Z.; Li, H.-J.; Feng, Y.-M.; et al. Lower Circulating Interferon-Gamma Is a Risk Factor for Lung Fibrosis in COVID-19 Patients. Front. Immunol. 2020, 11, 585647. [Google Scholar] [CrossRef]
- Knoll, R.; Schultze, J.L.; Schulte-Schrepping, J. Monocytes and Macrophages in COVID-19. Front. Immunol. 2021, 12, 720109. [Google Scholar] [CrossRef]
- Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020, 20, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020, 5, e138999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Wendisch, D.; Dietrich, O.; Mari, T.; von Stillfried, S.; Ibarra, I.L.; Mittermaier, M.; Mache, C.; Chua, R.L.; Knoll, R.; Timm, S.; et al. Sander LE. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 2021, 184, 6243–6261.e27. [Google Scholar] [CrossRef] [PubMed]
- Islam, H.; Chamberlain, T.C.; Mui, A.L.; Little, J.P. Elevated Interleukin-10 Levels in COVID-19: Potentiation of Pro-Inflammatory Responses or Impaired Anti-Inflammatory Action? Front. Immunol. 2021, 12, 677008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Li, X.; Xi, D.; Mao, R.; Wu, X.; Cheng, S.; Sun, X.; Yi, C.; Ling, Z.; et al. Potential contribution of increased soluble IL-2R to lymphopenia in COVID-19 patients. Cell. Mol. Immunol. 2020, 17, 878–880. [Google Scholar] [CrossRef]
- Ma, A.; Zhang, L.; Ye, X.; Chen, J.; Yu, J.; Zhuang, L.; Weng, C.; Petersen, F.; Wang, Z.; Yu, X. High Levels of Circulating IL-8 and Soluble IL-2R Are Associated With Prolonged Illness in Patients With Severe COVID-19. Front. Immunol. 2021, 12, 626235. [Google Scholar] [CrossRef]
- Xie, M.; Yunis, J.; Yao, Y.; Shi, J.; Yang, Y.; Zhou, P.; Liang, K.; Wan, Y.; Mehdi, A.; Chen, Z.; et al. High levels of soluble CD25 in COVID-19 severity suggest a divergence between anti-viral and pro-inflammatory T-cell responses. Clin. Transl. Immunol. 2021, 10, e1251. [Google Scholar] [CrossRef]
- Koyama, T.; Kuriyama, N.; Suzuki, Y.; Saito, S.; Tanaka, R.; Iwao, M.; Tanaka, M.; Maki, T.; Itoh, H.; Ihara, M.; et al. Mid-regional pro-adrenomedullin is a novel biomarker for arterial stiffness as the criterion for vascular failure in a cross-sectional study. Sci. Rep. 2021, 11, 305. [Google Scholar] [CrossRef]
- de Guadiana-Romualdo, L.G.; Martinez, M.M.; Mulero, R.; Esteban-Torrella, P.; Olivo, M.H.; Garcia, M.J.A.; Campos-Rodriguez, V.; Sancho-Rodriguez, N.; Martinez, M.G.; Alcaraz, A.; et al. Circulating MR-proADM levels, as an indicator of endothelial dysfunction, for early risk stratification of mid-term mortality in COVID-19 patients. Int. J. Infect. Dis. 2021, 111, 211–218. [Google Scholar] [CrossRef]
- Sozio, E.; Tascini, C.; Fabris, M.; D’Aurizio, F.; De Carlo, C.; Graziano, E.; Bassi, F.; Sbrana, F.; Ripoli, A.; Pagotto, A.; et al. MR-proADM as prognostic factor of outcome in COVID-19 patients. Sci. Rep. 2021, 11, 5121. [Google Scholar] [CrossRef]
- Bost, P.; De Sanctis, F.; Canè, S.; Ugel, S.; Donadello, K.; Castellucci, M.; Eyal, D.; Fiore, A.; Anselmi, C.; Barouni, R.M.; et al. Deciphering the state of immune silence in fatal COVID-19 patients. Nat. Commun. 2021, 12, 1428. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, H.C.; Cho, A.; Kim, J.; Yun, K.S.; Kim, J.; Lee, Y.K. Age-adjusted Charlson comorbidity index score is the best predictor for severe clinical outcome in the hospitalized patients with COVID-19 infection. Medicine 2021, 100, e25900. [Google Scholar] [CrossRef] [PubMed]
- Cloete, J.; Kruger, A.; Masha, M.; du Plessis, N.M.; Mawela, D.; Tshukudu, M.; Manyane, T.; Komane, L.; Venter, M.; Jassat, W.; et al. Paediatric hospitalisations due to COVID-19 during the first SARS-CoV-2 omicron (B.1.1.529) variant wave in South Africa: A multicentre observational study. Lancet Child Adolesc. Health 2022, 6, 294–302. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Poulakou, G.; Milionis, H.; Metallidis, S.; Adamis, G.; Tsiakos, K.; Fragkou, A.; Rapti, A.; Damoulari, C.; Fantoni, M.; et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: A double-blind, randomized controlled phase 3 trial. Nat. Med. 2021, 27, 1752–1760. [Google Scholar] [CrossRef] [PubMed]
- Rubin, E.J.; Longo, D.L.; Baden, L.R. Interleukin-6 Receptor Inhibition in Covid-19-Cooling the Inflammatory Soup. N. Engl. J. Med. 2021, 384, 1564–1565. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.A.; Veenith, T.; Slade, D.; Gaskell, C.; Rowland, M.; Whitehouse, T.; Scriven, J.; Parekh, D.; Balasubramaniam, M.S.; Cooke, G.; et al. Namilumab or infliximab compared with standard of care in hospitalised patients with COVID-19 (CATALYST): A randomised, multicentre, multi-arm, multistage, open-label, adaptive, phase 2, proof-of-concept trial. Lancet Respir. Med. 2021, 10, 255–266. [Google Scholar] [CrossRef]
- Ali, N. Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19. J. Med. Virol. 2020, 92, 2409–2411. [Google Scholar] [CrossRef]
- Julian, D.R.; Kazakoff, M.A.; Patel, A.; Jaynes, J.; Willis, M.S.; Yates, C.C. Chemokine-Based Therapeutics for the Treatment of Inflammatory and Fibrotic Convergent Pathways in COVID-19. Curr. Pathobiol. Rep. 2021, 9, 93–105. [Google Scholar] [CrossRef]
- Retamozo, S.; Brito-Zeron, P.; Siso-Almirall, A.; Flores-Chavez, A.; Soto-Cardenas, M.J.; Ramos-Casals, M. Haemophagocytic syndrome and COVID-19. Clin. Rheumatol. 2021, 40, 1233–1244. [Google Scholar] [CrossRef]
- Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun. 2018, 70, 61–75. [Google Scholar] [CrossRef]
- Sinha, P.; Matthay, M.A.; Calfee, C.S. Is a “Cytokine Storm” Relevant to COVID-19? JAMA Intern. Med. 2020, 180, 1152–1154. [Google Scholar] [CrossRef]
- Volk, C.F.; Burgdorf, S.; Edwardson, G.; Nizet, V.; Sakoulas, G.; Rose, W.E. Interleukin (IL)-1β and IL-10 Host Responses in Patients With Staphylococcus aureus Bacteremia Determined by Antimicrobial Therapy. Clin. Infect. Dis. 2020, 70, 2634–2640. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Clinical Management of COVID-19: Interim Guidance, 27 May 2020; World Health Organization: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/handle/10665/332196 (accessed on 24 April 2022).
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; De Vet, H.C.W.; et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015, 351, h5527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance. Available online: https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf (accessed on 24 April 2022).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Variables | Mean | SD | Median | Percentile 25 | Percentile 75 |
---|---|---|---|---|---|
Age (yrs) | 67.7 | 14.2 | 69.5 | 57.3 | 78.6 |
WHO | 2.7 | 1.2 | 3.0 | 2.0 | 4.0 |
CCI | 3.5 | 2.4 | 3.0 | 2.0 | 5.0 |
IFNγ (pg/mL) | 5.6 | 14.7 | 1.6 | 0.3 | 4.9 |
IL-10 (pg/mL) | 35.5 | 335.1 | 13.8 | 7.7 | 22.5 |
IL-1β (pg/mL) | 0.3 | 0.6 | 0.2 | 0.0 | 0.4 |
sIL2Rα (pg/mL) | 3875.0 | 2392.0 | 3314.0 | 2373.0 | 4547.0 |
IL-6 (pg/mL) | 69.6 | 137.2 | 31.7 | 15.9 | 63.0 |
IL-8 (pg/mL) | 58.0 | 95.6 | 39.5 | 26.6 | 59.5 |
IP10 (pg/mL) | 1374.0 | 958.0 | 1216.0 | 669.0 | 1838.0 |
TNFα (pg/mL) | 27.0 | 21.9 | 26.9 | 16.0 | 29.0 |
CRP (mg/L) | 79.6 | 63.5 | 68.6 | 32.9 | 106.4 |
MR-proADM (nmol/L) | 1.4 | 1.4 | 1.0 | 0.8 | 1.4 |
Variables | WHO ≥ 3 | p Value | ||
---|---|---|---|---|
No | Yes | |||
Sex | M | 84 (57.5%) | 153 (67.7%) | 0.046 * |
F | 62 (42.5%) | 73 (32.3%) | ||
Age (yrs) | 66.8 (54.7–77.7) | 72.1 (62.3–79.1) | 0.006 ° | |
CCI | 3 (1–4) | 3 (2–5) | 0.004 ° | |
IFNγ (pg/mL) | 1.4 (0.3–4.9) | 1.7 (0.4–4.5) | 0.499 ° | |
IL-10 (pg/mL) | 9.6 (6.1–18.7) | 16.4 (9–23.8) | <0.001 ° | |
IL-1β (pg/mL) | 0.2 (0–0.5) | 0.1 (0–0.3) | 0.002 ° | |
sIL2Rα (pg/mL) | 2861 (1956–4174) | 3698.5 (2796–5002) | <0.001 ° | |
IL-6 (pg/mL) | 27.7 (9.3–55.3) | 36 (22–70.3) | <0.001 ° | |
IL-8 (pg/mL) | 32.2 (21.5–51.8) | 43 (28.4–60) | 0.004 ° | |
IP10 (pg/mL) | 902.5 (435–1419) | 1395 (909–1986) | <0.001 ° | |
TNFα (pg/mL) | 28.3 (4.8–170) | 24.7 (3.9–137) | 0.084 | |
CRP (mg/L) | 44.3 (13.3–90.7) | 80.1 (48.1–129.8) | <0.001 ° | |
MR-proADM (nmol/L) | 0.9 (0.7–1.3) | 1.1 (0.9–1.5) | <0.001 ° |
Variables | OTI | p Value | ||
---|---|---|---|---|
No | Yes | |||
Sex | M | 222 (62.5%) | 50 (83.3%) | 0.002 * |
F | 133 (37.5%) | 10 (16.7%) | ||
Age (yrs) | 68.7 (56.5–78.9) | 70.6 (65.5–76.6) | 0.317 ° | |
CCI | 3 (2–5) | 3 (2–5) | 0.319 ° | |
IFNγ (pg/mL) | 1.6 (0.3–4.7) | 1.5 (0.5–6) | 0.997 ° | |
IL-10 (pg/mL) | 12.7 (7.2–21.6) | 19.8 (14.4–30.3) | <0.001 ° | |
IL-1β (pg/mL) | 0.2 (0–0.4) | 0.2 (0–0.4) | 0.752 ° | |
sIL2Rα (pg/mL) | 3292 (2298–4462) | 4020 (2937–5219.5) | 0.003 ° | |
IL-6 (pg/mL) | 29.7 (13.3–57.3) | 44.6 (27–116) | <0.001 ° | |
IL-8 (pg/mL) | 36.6 (25.9–57.4) | 52.3 (34–75.1) | <0.001 ° | |
IP10 (pg/mL) | 1138 (647–1727) | 1676 (1195–2140.5) | <0.001 ° | |
TNFα (pg/mL) | 27.4 (3.9–219) | 24.7 (9.4–90) | 0.364 | |
CRP (mg/L) | 63.2 (29.2–102) | 98.8 (57.7–148.2) | <0.001 ° | |
MR-proADM (nmol/L) | 1 (0.8–1.4) | 1.2 (0.9–1.5) | 0.004 ° |
Variables | Death | p Value | ||
---|---|---|---|---|
No | Yes | |||
Sex | M | 228 (65.1%) | 44 (67.7%) | 0.691 * |
F | 122 (34.9%) | 21 (32.3%) | ||
Age (yrs) | 67.4 (55.6–77.2) | 77.6 (69.4–83.7) | <0.001 ° | |
CCI | 3 (2–4) | 5.5 (4–7) | <0.001 ° | |
IFNγ (pg/mL) | 1.5 (0.3–4.5) | 1.7 (0.3–5.4) | 0.664 | |
IL-10 (pg/mL) | 12.6 (7.2–20.7) | 21.6 (13.3–34.1) | <0.001 ° | |
IL-1β (pg/mL) | 0.2 (0–0.4) | 0.1 (0–0.4) | 0.242 | |
sIL2Rα (pg/mL) | 3165 (2293–4107) | 5072 (4015–6584) | <0.001 ° | |
IL-6 (pg/mL) | 28.9 (13–55.3) | 56 (31.4–127.1) | <0.001 ° | |
IL-8 (pg/mL) | 36 (25.6–53.6) | 58.4 (38.6–76.4) | <0.001 ° | |
IP10 (pg/mL) | 1108 (638–1672) | 1964 (1418–2666) | <0.001 ° | |
TNFα (pg/mL) | 27.3 (4.8–219) | 25.4 (3.9–91.6) | 0.541 | |
CRP (mg/L) | 62.7 (28.6–100.9) | 105.2 (57.1–167) | <0.001 ° | |
MR-proADM (nmol/L) | 1 (0.8–1.3) | 1.4 (1–2.4) | <0.001 ° |
Variables | NEGATIVE Outcome (Death/OTI) | p Value | ||
---|---|---|---|---|
No | Yes | |||
Sex | M | 203 (64.0%) | 69 (70.4%) | 0.246 * |
F | 114 (36.0%) | 29 (29.6%) | ||
Age (yrs) | 67.1 (55.3–78.2) | 74.3 (67.8–81.6) | <0.001 ° | |
CCI | 3 (1–4) | 4 (3–6) | <0.001 ° | |
IFNγ (pg/mL) | 1.5 (0.3–4.5) | 1.6 (0.3–5.4) | 0.910 ° | |
IL-10 (pg/mL) | 11.4 (6.9–19.7) | 20.9 (13.3–33) | <0.001 ° | |
IL-1β (pg/mL) | 0.2 (0–0.4) | 0.2 (0–0.4) | 0.534 ° | |
sIL2Rα (pg/mL) | 3150 (2238–4101) | 4415.5 (3087–5866) | <0.001 ° | |
IL-6 (pg/mL) | 28.6 (12.2–51.5) | 46.1 (27.8–121) | <0.001 ° | |
IL-8 (pg/mL) | 34.9 (25.4–51) | 55.6 (34.4–78.8) | <0.001 ° | |
IP10 (pg/mL) | 1072 (637–1578) | 1754.5 (1278–2314) | <0.001 ° | |
TNFα (pg/mL) | 27.3 (4.8–219) | 26.2 (3.9–91.6) | 0.673 | |
CRP (mg/L) | 60.9 (28.1–100) | 99.9 (53.8–160) | <0.001 ° | |
MR-proADM (nmol/L) | 0.9 (0.7–1.3) | 1.3 (1–2) | <0.001 ° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabris, M.; Del Ben, F.; Sozio, E.; Beltrami, A.P.; Cifù, A.; Bertolino, G.; Caponnetto, F.; Cotrufo, M.; Tascini, C.; Curcio, F. Cytokines from Bench to Bedside: A Retrospective Study Identifies a Definite Panel of Biomarkers to Early Assess the Risk of Negative Outcome in COVID-19 Patients. Int. J. Mol. Sci. 2022, 23, 4830. https://doi.org/10.3390/ijms23094830
Fabris M, Del Ben F, Sozio E, Beltrami AP, Cifù A, Bertolino G, Caponnetto F, Cotrufo M, Tascini C, Curcio F. Cytokines from Bench to Bedside: A Retrospective Study Identifies a Definite Panel of Biomarkers to Early Assess the Risk of Negative Outcome in COVID-19 Patients. International Journal of Molecular Sciences. 2022; 23(9):4830. https://doi.org/10.3390/ijms23094830
Chicago/Turabian StyleFabris, Martina, Fabio Del Ben, Emanuela Sozio, Antonio Paolo Beltrami, Adriana Cifù, Giacomo Bertolino, Federica Caponnetto, Marco Cotrufo, Carlo Tascini, and Francesco Curcio. 2022. "Cytokines from Bench to Bedside: A Retrospective Study Identifies a Definite Panel of Biomarkers to Early Assess the Risk of Negative Outcome in COVID-19 Patients" International Journal of Molecular Sciences 23, no. 9: 4830. https://doi.org/10.3390/ijms23094830
APA StyleFabris, M., Del Ben, F., Sozio, E., Beltrami, A. P., Cifù, A., Bertolino, G., Caponnetto, F., Cotrufo, M., Tascini, C., & Curcio, F. (2022). Cytokines from Bench to Bedside: A Retrospective Study Identifies a Definite Panel of Biomarkers to Early Assess the Risk of Negative Outcome in COVID-19 Patients. International Journal of Molecular Sciences, 23(9), 4830. https://doi.org/10.3390/ijms23094830