Vibrational Biospectroscopy: An Alternative Approach to Endometrial Cancer Diagnosis and Screening
Abstract
:1. Introduction
2. Endometrial Cancer
2.1. Current Endometrial Cancer Diagnosis and Screening
2.1.1. Ultrasound Imaging
2.1.2. Hysteroscopy
2.1.3. Endometrial Biopsy and Histological Analysis
2.1.4. Screening for Endometrial Cancer
3. Aim of this Review
4. Biospectroscopy
4.1. Mid-Infrared Absorption Spectroscopy
4.2. Raman Spectroscopy
4.3. Biospectroscopy for Endometrial Tissue Interrogation
4.3.1. Assessment of Endometrial Structure
4.3.2. Endometrial Cancer Diagnosis
4.3.3. Treatment and Surveillance
4.4. Biospectroscopy of Biofluids: Screening and Cancer Diagnosis
5. State of Play, Present Challenges and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Gong, T.-T.; Liu, F.-H.; Jiang, Y.-T.; Sun, H.; Ma, X.-X.; Zhao, Y.-H.; Wu, Q.-J. Global, Regional, and National Burden of Endometrial Cancer, 1990–2017: Results from the Global Burden of Disease Study, 2017. Front. Oncol. 2019, 9, 1440. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, E.; Morrison, J. The emerging epidemic of endometrial cancer: Time to take action. Cochrane Database Syst. Rev. 2014, ED000095. [Google Scholar] [CrossRef]
- Brüggmann, D.; Ouassou, K.; Klingelhöfer, D.; Bohlmann, M.K.; Jaque, J.; Groneberg, D.A. Endometrial cancer: Mapping the global landscape of research. J. Transl. Med. 2020, 18, 386. [Google Scholar] [CrossRef]
- James Lind Alliance. Available online: https://www.jla.nihr.ac.uk/priority-setting-partnerships/womb-cancer/top-10-priorities.htm (accessed on 1 May 2021).
- Wan, Y.L.; Beverley-Stevenson, R.; Carlisle, D.; Clarke, S.; Edmondson, R.J.; Glover, S.; Holland, J.; Hughes, C.; Kitchener, H.C.; Kitson, S.; et al. Working together to shape the endometrial cancer research agenda: The top ten unanswered research questions. Gynecol. Oncol. 2016, 143, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Pahlow, S.; Weber, K.; Popp, J.; Wood, B.R.; Kochan, K.; Rüther, A.; Perez-Guaita, D.; Heraud, P.; Stone, N.; Dudgeon, A.; et al. Application of Vibrational Spectroscopy and Imaging to Point-of-Care Medicine: A Review. Appl. Spectrosc. 2018, 72, 52–84. [Google Scholar] [CrossRef]
- Kendall, C.; Isabelle, M.; Bazant-Hegemark, F.; Hutchings, J.; Orr, L.; Babrah, J.; Baker, R.; Stone, N. Vibrational spectroscopy: A clinical tool for cancer diagnostics. Anal. 2009, 134, 1029–1045. [Google Scholar] [CrossRef]
- Depciuch, J.; Barnaś, E.; Skręt-Magierło, J.; Skręt, A.; Kaznowska, E.; Łach, K.; Jakubczyk, P.; Cebulski, J. Spectroscopic evaluation of carcinogenesis in endometrial cancer. Sci. Rep. 2021, 11, 9079. [Google Scholar] [CrossRef]
- Barnas, E.; Skret-Magierlo, J.; Skret, A.; Kaznowska, E.; Depciuch, J.; Szmuc, K.; Łach, K.; Krawczyk-Marć, I.; Cebulski, J. Simultaneous FTIR and Raman Spectroscopy in Endometrial Atypical Hyperplasia and Cancer. Int. J. Mol. Sci. 2020, 21, 4828. [Google Scholar] [CrossRef]
- Auner, G.W.; Koya, S.K.; Huang, C.; Broadbent, B.; Trexler, M.; Auner, Z.; Elias, A.; Mehne, K.C.; Brusatori, M.A. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev. 2018, 37, 691–717. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.J.; Byrne, H.J.; Chalmers, J.; Gardner, P.; Goodacre, R.; Henderson, A.; Kazarian, S.G.; Martin, F.L.; Moger, J.; Stone, N.; et al. Clinical applications of infrared and Raman spectroscopy: State of play and future challenges. Analyst 2018, 143, 1735–1757. [Google Scholar] [CrossRef]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Zhang, S.; Yue, S. Raman Spectroscopy and Imaging for Cancer Diagnosis. J. Health Eng. 2018, 2018, 8619342. [Google Scholar] [CrossRef]
- Kong, K.; Kendall, C.; Stone, N.; Notingher, I. Raman spectroscopy for medical diagnostics—From in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 2015, 89, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Nijssen, A.; Koljenovicć, S.; Schut, T.C.B.; Caspers, P.J.; Puppels, G.J. Towards oncological application of Raman spectroscopy. J. Biophotonics 2009, 2, 29–36. [Google Scholar] [CrossRef]
- Kazarian, S.G.; Chan, K.L.A. ATR-FTIR spectroscopic imaging: Recent advances and applications to biological systems. Analyst 2013, 138, 1940–1951. [Google Scholar] [CrossRef]
- Santos, F.; Magalhaes, S.; Henriques, M.C.; Fardilha, M.; Nunes, A. Spectroscopic Features of Cancer Cells: FTIR Spectroscopy as a Tool for Early Diagnosis. Curr. Metab. 2018, 6, 103–111. [Google Scholar] [CrossRef]
- Siqueira, L.F.S.; Lima, K.M.G. MIR-biospectroscopy coupled with chemometrics in cancer studies. Analyst 2016, 141, 4833–4847. [Google Scholar] [CrossRef]
- Purandare, N.C.; Trevisan, J.; I Patel, I.; Gajjar, K.; Mitchell, A.L.; Theophilou, G.; Valasoulis, G.; Martin, M.; von Bünau, G.; Kyrgiou, M.; et al. Exploiting biospectroscopy as a novel screening tool for cervical cancer: Towards a framework to validate its accuracy in a routine clinical setting. Bioanalysis 2013, 5, 2697–2711. [Google Scholar] [CrossRef]
- National Cancer Institute. Endometrial Cancer Treatment Physician Data Query (PDQ). Available online: http://www.cancer.gov/cancertopics/pdq/treatment/endometrial/healthprofessional (accessed on 1 May 2021).
- Cancer Research UK. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/uterine-cancer/incidence (accessed on 15 January 2022).
- Office for National Statistics. Cancer Survival by Stage at Diagnosis for England (Experimental Statistics)—Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/cancersurvivalratescancersurvivalinenglandadultsdiagnosed (accessed on 15 January 2022).
- Lortet-Tieulent, J.; Ferlay, J.; Bray, F.; Jemal, A. International Patterns and Trends in Endometrial Cancer Incidence, 1978–2013. JNCI J. Natl. Cancer Inst. 2017, 110, 354–361. [Google Scholar] [CrossRef]
- Crosbie, E.; Zwahlen, M.; Kitchener, H.C.; Egger, M.; Renehan, A. Body Mass Index, Hormone Replacement Therapy, and Endometrial Cancer Risk: A Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2010, 19, 3119–3130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, J.L.; Mutter, G.L. Molecular and Pathologic Aspects of Endometrial Carcinogenesis. J. Clin. Oncol. 2006, 24, 4783–4791. [Google Scholar] [CrossRef] [PubMed]
- Bokhman, J.V. Two pathogenetic types of endometrial carcinoma. Gynecol. Oncol. 1983, 15, 10–17. [Google Scholar] [CrossRef]
- Sherman, M.E. Theories of Endometrial Carcinogenesis: A Multidisciplinary Approach. Mod. Pathol. 2000, 13, 295–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amant, F.; Moerman, P.; Neven, P.; Timmerman, D.; Van Limbergen, E.; Vergote, I. Endometrial cancer. Lancet 2005, 366, 491–505. [Google Scholar] [CrossRef]
- Daley-Brown, D.; Oprea-Ilies, G.M.; Lee, R.; Pattillo, R.; Gonzalez-Perez, R.R. Molecular cues on obesity signals, tumor markers and endometrial cancer. Horm. Mol. Biol. Clin. Investig. 2015, 21, 89–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creasman, W.T.; Odicino, F.; Maisonneuve, P.; Quinn, M.A.; Beller, U.; Benedet, J.L.; Heintz, A.; Ngan, H.Y.S.; Pecorelli, S. Carcinoma of the Corpus Uteri. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer. Int. J. Gynecol. Obstet. 2006, 95, S105–S143. [Google Scholar] [CrossRef]
- Murali, R.; Soslow, R.; Weigelt, B. Classification of endometrial carcinoma: More than two types. Lancet Oncol. 2014, 15, e268–e278. [Google Scholar] [CrossRef]
- Talhouk, A.; McAlpine, J.N. New classification of endometrial cancers: The development and potential applications of genomic-based classification in research and clinical care. Gynecol. Oncol. Res. Pract. 2016, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Church, D.N.; Stelloo, E.; Nout, R.A.; Valtcheva, N.; Depreeuw, J.; Ter Haar, N.; Noske, A.; Amant, F.; Tomlinson, I.P.M.; Wild, P.J.; et al. Prognostic Significance of POLE Proofreading Mutations in Endometrial Cancer. JNCI J. Natl. Cancer Inst. 2015, 107, 402. [Google Scholar] [CrossRef]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int. J. Gynecol. Cancer 2021, 31, 12–39. [Google Scholar] [CrossRef]
- Luomaranta, A.; Leminen, A.; Loukovaara, M. Magnetic Resonance Imaging in the Assessment of High-Risk Features of Endometrial Carcinoma: A Meta-Analysis. Int. J. Gynecol. Cancer 2015, 25, 837–842. [Google Scholar] [CrossRef]
- Andreano, A.; Rechichi, G.; Rebora, P.; Sironi, S.; Valsecchi, M.G.; Galimberti, S. MR diffusion imaging for preoperative staging of myometrial invasion in patients with endometrial cancer: A systematic review and meta-analysis. Eur. Radiol. 2014, 24, 1327–1338. [Google Scholar] [CrossRef]
- Cignini, P.; Vitale, S.G.; Laganà, A.S.; Biondi, A.; La Rosa, V.L.; Cutillo, G. Preoperative work-up for definition of lymph node risk involvement in early stage endometrial cancer: 5-year follow-up. Updat. Surg. 2017, 69, 75–82. [Google Scholar] [CrossRef]
- Koplay, M.; Dogan, N.U.; Erdoğan, H.; Sivri, M.; Erol, C.; Nayman, A.; Karabagli, P.; Paksoy, Y.; Çelik, C. Diagnostic efficacy of diffusion-weighted MRI for pre-operative assessment of myometrial and cervical invasion and pelvic lymph node metastasis in endometrial carcinoma. J. Med. Imaging Radiat. Oncol. 2014, 58, 538–546. [Google Scholar] [CrossRef]
- Wouk, N.; Helton, M. Abnormal Uterine Bleeding in Premenopausal Women. Am. Fam. Physician 2019, 99, 435–443. [Google Scholar]
- Gill, K.A. Chapter 1: Introduction to Diagnostic Ultrasound. In Ultrasound in Obstetrics and Gynaecology; Davies Publishing, Inc.: Pasadena, CA, USA, 2014; pp. 1–2. [Google Scholar]
- Cusimano, M.C.; Simpson, A.N.; Han, A.; Hayeems, R.; Bernardini, M.Q.; Robertson, D.; Kives, S.L.; Satkunaratnam, A.; Baxter, N.N.; Ferguson, S.E. Barriers to care for women with low-grade endometrial cancer and morbid obesity: A qualitative study. BMJ Open 2019, 9, e026872. [Google Scholar] [CrossRef] [Green Version]
- Bosch, T.V.D. Ultrasound in the diagnosis of endometrial and intracavitary pathology: An update. Australas. J. Ultrasound Med. 2012, 15, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Clarke, M.A.; Long, B.J.; Del Mar Morillo, A.; Arbyn, M.; Bakkum-Gamez, J.N.; Wentzensen, N. Association of Endometrial Cancer Risk With Postmenopausal Bleeding in Women: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2018, 178, 1210–1222. [Google Scholar] [CrossRef] [Green Version]
- Timmermans, A.; Opmeer, B.C.; Khan, K.S.; Bachmann, L.M.; Epstein, E.; Clark, T.J.; Gupta, J.K.; Bakour, S.H.; Bosch, T.V.D.; van Doorn, H.C.; et al. Endometrial Thickness Measurement for Detecting Endometrial Cancer in Women With Postmenopausal Bleeding. Obstet. Gynecol. 2010, 116, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Smith-Bindman, R.; Kerlikowske, K.; Feldstein, V.A.; Subak, L.L.; Scheidler, J.; Segal, M.R.; Brand, R.; Grady, D. Endovaginal Ultrasound to Exclude Endometrial Cancer and Other Endometrial Abnormalities. JAMA 1998, 280, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Getpook, C.; Wattanakumtornkul, S. Endometrial thickness screening in premenopausal women with abnormal uterine bleeding. J. Obstet. Gynaecol. Res. 2006, 32, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Nicula, R.; Costin, N. Management of endometrial modifications in perimenopausal women. Clujul Med. 2015, 88, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Bignardi, T.; Van den Bosch, T.; Condous, G. Abnormal uterine and post-menopausal bleeding in the acute gynaecology unit. Best Pract. Res. Clin. Obstet. Gynaecol. 2009, 23, 595–607. [Google Scholar] [CrossRef]
- Valle, R.F. Operative Hysteroscopy. Glob. Libr. Women’s Med. 2008. [Google Scholar] [CrossRef]
- British Gynaecological Cancer Society. BGCS Uterine Cancer Guidelines: Recommendations for Practice; British Gynaecological Cancer Society: London, UK, 2017. [Google Scholar]
- Bakour, S.H.; Jones, S.E.; O’Donovan, P. Ambulatory hysteroscopy: Evidence-based guide to diagnosis and therapy. Best Pract. Res. Clin. Obstet. Gynaecol. 2006, 20, 953–975. [Google Scholar] [CrossRef]
- Kremer, C.; Barik, S.; Duffy, S. Flexible outpatient hysteroscopy without anaesthesia: A safe, successful and well tolerated procedure. Br. J. Obstet. Gynaecol. 1998, 105, 672–676. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.J.; Voit, D.; Gupta, J.K.; Hyde, C.; Song, F.; Khan, K.S. Accuracy of Hysteroscopy in the Diagnosis of Endometrial Cancer and Hyperplasia. JAMA 2002, 288, 1610–1621. [Google Scholar] [CrossRef]
- Royal College of Obstetricians and Gynaecologists. Diagnostic Hysteroscopy under General Anaesthesia. Consent Advice 1. Available online: www.rcog.org.uk/guidance/browse-all-guidance/consent-advice/diagnostic-hysteroscopy-under-general-anaesthesia-consent-advice-no-1 (accessed on 28 April 2021).
- Relph, S.; Lawton, T.; Broadbent, M.; Karoshi, M. Failed hysteroscopy and further management strategies. Obstet. Gynaecol. 2016, 18, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Farquhar, C.; Ekeroma, A.; Furness, S.; Arroll, B. A systematic review of transvaginal ultrasonography, sonohysterography and hysteroscopy for the investigation of abnormal uterine bleeding in premenopausal women. Acta Obstet. Gynecol. Scand. 2003, 82, 493–504. [Google Scholar] [CrossRef]
- Van Dongen, H.; De Kroon, C.D.; Jacobi, C.E.; Trimbos, J.B.; Jansen, F.W. Diagnostic hysteroscopy in abnormal uterine bleeding: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2007, 114, 664–675. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Heavy Menstrual Bleeding: Assessment and Management. NICE Guideline [NG88]. Available online: https://www.nice.org.uk/guidance/ng88/chapter/Recommendations-investigations-for-the-cause-of-hmb (accessed on 1 October 2021).
- National Institute for Health and Care Excellence. Heavy Menstrual Bleeding (Update). A: Evidence Reviews for Diagnostic Test Accuracy in Investigation for Women Presenting with Heavy Menstrual Bleeding. Available online: https://www.nice.org.uk/guidance/ng88/evidence/a-diagnostic-test-accuracy-pdf-4782293101 (accessed on 1 October 2021).
- Slaoui, M.; Fiette, L. Histopathology procedures: From tissue sampling to histopathological evaluation. Methods Mol. Biol. 2011, 691, 69–82. [Google Scholar] [CrossRef]
- Morelli, P.; Porazzi, E.; Ruspini, M.; Restelli, U.; Banfi, G. Analysis of errors in histology by root cause analysis: A pilot study. J. Prev. Med. Hyg. 2013, 54, 90. [Google Scholar] [CrossRef]
- Phillips, V. Results of a questionnaire regarding criteria for adequacy of endometrial biopsies. J. Clin. Pathol. 2005, 58, 417–419. [Google Scholar] [CrossRef] [Green Version]
- Breijer, M.C.; Visser, N.C.M.; van Hanegem, N.; van der Wurff, A.A.; Opmeer, B.C.; van Doorn, H.C.; Mol, B.W.J.; Pijnenborg, J.M.A.; Timmermans, A. A Structured Assessment to Decrease the Amount of Inconclusive Endometrial Biopsies in Women with Postmenopausal Bleeding. Int. J. Surg. Oncol. 2016, 2016, 3039261. [Google Scholar] [CrossRef] [Green Version]
- van Hanegem, N.; Prins, M.M.; Bongers, M.Y.; Opmeer, B.C.; Sahota, D.; Mol, B.W.J.; Timmermans, A. The accuracy of endometrial sampling in women with postmenopausal bleeding: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 197, 147–155. [Google Scholar] [CrossRef]
- Narice, B.F.; Delaney, B.; Dickson, J.M. Endometrial sampling in low-risk patients with abnormal uterine bleeding: A systematic review and meta-synthesis. BMC Fam. Pract. 2018, 19, 135. [Google Scholar] [CrossRef]
- Gordon, S.; Westgate, J. The incidence and management of failed Pipelle sampling in a general outpatient clinic. Aust. N. Z. J. Obstet. Gynaecol. 1999, 39, 115–118. [Google Scholar] [CrossRef]
- Visser, N.C.; Breijer, M.C.; Herman, M.C.; Bekkers, R.L.; Veersema, S.; Opmeer, B.C.; Mol, B.W.; Timmermans, A.; Pijnenborg, J.M. Factors attributing to the failure of endometrial sampling in women with postmenopausal bleeding. Acta Obstet. Gynecol. Scand. 2013, 92, 1216–1222. [Google Scholar] [CrossRef]
- Williams, A.R.W.; Brechin, S.; Porter, A.J.L.; Warner, P.; Critchley, H.O.D. Factors affecting adequacy of Pipelle and Tao Brush endometrial sampling. BJOG Int. J. Obstet. Gynaecol. 2008, 115, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Van Doorn, H.C.; Opmeer, B.C.; Burger, C.W.; Duk, M.J.; Kooi, G.S.; Mol, B.W.J. Dutch Study in Postmenopausal Bleeding (DUPOMEB) Inadequate office endometrial sample requires further evaluation in women with postmenopausal bleeding and abnormal ultrasound results. Int. J. Gynecol. Obstet. 2007, 99, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Mohanlal, R.D. Endometrial sampling at an academic hospital in South Africa: Histological findings, lessons learnt and interesting surprises. Afr. J. Lab. Med. 2020, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Li, Y.; Lv, S.; Wang, Q.; Sun, C.; Dong, X.; He, M.; Ulain, Q.; Yuan, Y.; Tuo, X.; et al. Endometrial sampling devices for early diagnosis of endometrial lesions. J. Cancer Res. Clin. Oncol. 2016, 142, 2515–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, T.J.; Mann, C.H.; Shah, N.; Khan, K.S.; Song, F.; Gupta, J.K. Accuracy of outpatient endometrial biopsy in the diagnosis of endometrial cancer: A systematic quantitative review. BJOG: Int. J. Obstet. Gynaecol. 2002, 109, 313–321. [Google Scholar] [CrossRef]
- Dijkhuizen, F.P.; Mol, B.W.; Brölmann, H.A.; Heintz, A.P. The accuracy of endometrial sampling in the diagnosis of patients with endometrial carcinoma and hyperplasia: A meta-analysis. Cancer 2000, 89, 1765–1772. [Google Scholar] [CrossRef]
- Feldman, S.; Berkowitz, R.S.; Tosteson, A.N. Cost-effectiveness of strategies to evaluate postmenopausal bleeding. Obstet. Gynecol. 1993, 81, 968–975. [Google Scholar] [CrossRef]
- Clark, T.J.; Mann, C.H.; Shah, N.; Khan, K.S.; Song, F.; Gupta, J.K. Accuracy of outpatient endometrial biopsy in the diagnosis of endometrial hyperplasia. Acta Obstet. Gynecol. Scand. 2001, 80, 784–793. [Google Scholar] [CrossRef]
- World Health Organisation. Screening. Available online: https://www.who.int/cancer/prevention/diagnosis-screening/screening/en/ (accessed on 15 May 2021).
- Møller, P.; Seppälä, T.; Bernstein, I.; Holinski-Feder, E.; Sala, P.; Evans, D.G.; Lindblom, A.; Macrae, F.; Blanco, I.; Sijmons, R.; et al. Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: First report from the prospective Lynch syndrome database. Gut 2017, 66, 464–472. [Google Scholar] [CrossRef]
- Jacobs, I.; Gentry-Maharaj, A.; Burnell, M.; Manchanda, R.; Singh, N.; Sharma, A.; Ryan, A.; Seif, M.W.; Amso, N.; Turner, G.; et al. Sensitivity of transvaginal ultrasound screening for endometrial cancer in postmenopausal women: A case-control study within the UKCTOCS cohort. Lancet Oncol. 2010, 12, 38–48. [Google Scholar] [CrossRef]
- Clark, T.; Barton, P.; Coomarasamy, A.; Gupta, J.; Khan, K. Gynaecological oncology: Investigating postmenopausal bleeding for endometrial cancer: Cost-effectiveness of initial diagnostic strategies. BJOG Int. J. Obstet. Gynaecol. 2006, 113, 502–510. [Google Scholar] [CrossRef]
- Jacobs, I.J.; Menon, U.; Ryan, A.; Gentry-Maharaj, A.; Burnell, M.; Kalsi, J.K.; Amso, N.; Apostolidou, S.; Benjamin, E.; Cruickshank, D.; et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A randomised controlled trial. Lancet 2016, 387, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.J.; Hussain, S.R.; Lovergne, L.; Untereiner, V.; Hughes, C.; Lukaszewski, R.A.; Thiéfin, G.; Sockalingum, G.D. Developing and understanding biofluid vibrational spectroscopy: A critical review. Chem. Soc. Rev. 2016, 45, 1803–1818. [Google Scholar] [CrossRef] [Green Version]
- Byrne, H.J.; Baranska, M.; Puppels, G.J.; Stone, N.; Wood, B.; Gough, K.M.; Lasch, P.; Heraud, P.; Sulé-Suso, J.; Sockalingum, G.D. Spectropathology for the next generation: Quo vadis? Analyst 2015, 140, 2066–2073. [Google Scholar] [CrossRef] [Green Version]
- Seddon, A.B.; Napier, B.; Lindsay, I.; Lamrini, S.; Moselund, P.M.; Stone, N.; Bang, O.; Farries, M. Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease. Analyst 2018, 143, 5874–5887. [Google Scholar] [CrossRef]
- Mantsch, H.H. Foreword. In Biomedical Applications of Synchrotron Infrared Microspectroscopy; Analytical Spectroscopy Series; Moss, D., Ed.; The Royal Society of Chemistry: London, UK, 2011. [Google Scholar]
- Baker, M.J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H.J.; Dorling, K.M.; Fielden, P.R.; Fogarty, S.W.; Fullwood, N.J.; Heys, K.A.; et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 2014, 9, 1771–1791. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.L.; Gajjar, K.B.; Theophilou, G.; Martin, F.L.; Martin-Hirsch, P.L. Vibrational spectroscopy of biofluids for disease screening or diagnosis: Translation from the laboratory to a clinical setting. J. Biophotonics 2014, 7, 153–165. [Google Scholar] [CrossRef]
- The International Organisation for Standardisation. ISO 20473: 2007 Optics and Photonics. Spectral Bands 2007, 10. Available online: www.iso.org/standard/39482.html (accessed on 1 May 2021).
- Stuart, B. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons Ltd.: Chichester, UK, 2004. [Google Scholar]
- Filik, J.; Frogley, M.D.; Pijanka, J.K.; Wehbe, K.; Cinque, G. Electric field standing wave artefacts in FTIR micro-spectroscopy of biological materials. Analyst 2012, 137, 853–861. [Google Scholar] [CrossRef]
- Bassan, P.; Lee, J.; Sachdeva, A.; Pissardini, J.; Dorling, K.M.; Fletcher, J.S.; Henderson, A.; Gardner, P. The inherent problem of transflection-mode infrared spectroscopic microscopy and the ramifications for biomedical single point and imaging applications. Analyst 2013, 138, 144–157. [Google Scholar] [CrossRef]
- Raman, C.V.; Krishnan, K.S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Patel, I.I.; Trevisan, J.; Evans, G.; Llabjani, V.; Martin-Hirsch, P.L.; Stringfellow, H.F.; Martin, F.L. High contrast images of uterine tissue derived using Raman microspectroscopy with the empty modelling approach of multivariate curve resolution-alternating least squares. Analyst 2011, 136, 4950–4959. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, M.; Schackert, G.; Salzer, R.; Krafft, C. Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal. Bioanal. Chem. 2010, 398, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Butler, H.J.; Martin-Hirsch, P.L.; Martin, F.L. Aluminium foil as a potential substrate for ATR-FTIR, transflection FTIR or Raman spectrochemical analysis of biological specimens. Anal. Methods 2016, 8, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Crow, P.; Stone, N.; Kendall, C.A.; Uff, J.S.; Farmer, J.A.M.; Barr, H.; Wright, M.P.J. The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro. Br. J. Cancer 2003, 89, 106–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theophilou, G.; Lima, K.M.G.; Briggs, M.; Martin-Hirsch, P.L.; Stringfellow, H.F.; Martin, F.L. A biospectroscopic analysis of human prostate tissue obtained from different time periods points to a trans-generational alteration in spectral phenotype. Sci. Rep. 2015, 5, 13465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, I.I.; Trevisan, J.; Singh, P.B.; Nicholson, C.M.; Krishnan, R.K.G.; Matanhelia, S.S.; Martin, F.L. Segregation of human prostate tissues classified high-risk (UK) versus low-risk (India) for adenocarcinoma using Fourier-transform infrared or Raman microspectroscopy coupled with discriminant analysis. Anal. Bioanal. Chem. 2011, 401, 969–982. [Google Scholar] [CrossRef]
- Güler, G.; Guven, U.; Oktem, G. Characterization of CD133+/CD44+ human prostate cancer stem cells with ATR-FTIR spectroscopy. Analyst 2019, 144, 2138–2149. [Google Scholar] [CrossRef]
- German, M.; Hammiche, A.; Ragavan, N.; Tobin, M.; Cooper, L.J.; Matanhelia, S.S.; Hindley, A.C.; Nicholson, C.M.; Fullwood, N.J.; Pollock, H.M.; et al. Infrared Spectroscopy with Multivariate Analysis Potentially Facilitates the Segregation of Different Types of Prostate Cell. Biophys. J. 2006, 90, 3783–3795. [Google Scholar] [CrossRef] [Green Version]
- Bergholt, M.S.; Zheng, W.; Lin, K.; Ho, K.Y.; Teh, M.; Yeoh, K.G.; So, J.; Huang, Z. In Vivo Diagnosis of Esophageal Cancer Using Image-Guided Raman Endoscopy and Biomolecular Modeling. Technol. Cancer Res. Treat. 2011, 10, 103–112. [Google Scholar] [CrossRef]
- Yao, H.-W.; Liu, Y.-Q.; Fu, W.; Shi, X.-Y.; Zhang, Y.-F.; Xu, Y.-Z. Initial research on Fourier transform infrared spectroscopy for the diagnosis of colon neoplasms. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2011, 31, 297–301. [Google Scholar]
- Sahu, R.K.; Argov, S.; Walfisch, S.; Bogomolny, E.; Moreh, R.; Mordechai, S. Prediction potential of IR-micro spectroscopy for colon cancer relapse. Analyst 2010, 135, 538–544. [Google Scholar] [CrossRef]
- Nallala, J.; Piot, O.; Diebold, M.-D.; Gobinet, C.; Bouché, O.; Manfait, M.; Sockalingum, G.D. Infrared and Raman Imaging for Characterizing Complex Biological Materials: A Comparative Morpho-Spectroscopic Study of Colon Tissue. Appl. Spectrosc. 2014, 68, 57–68. [Google Scholar] [CrossRef]
- Maziak, D.E.; Do, M.T.; Shamji, F.M.; Sundaresan, S.R.; Perkins, D.G.; Wong, P.T. Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: An exploratory study. Cancer Detect. Prev. 2007, 31, 244–253. [Google Scholar] [CrossRef]
- Cameron, J.M.; Butler, H.J.; Smith, B.R.; Hegarty, M.G.; Jenkinson, M.D.; Syed, K.; Brennan, P.M.; Ashton, K.; Dawson, T.; Palmer, D.S.; et al. Developing infrared spectroscopic detection for stratifying brain tumour patients: Glioblastoma multiforme vs. lymphoma. Analyst 2019, 144, 6736–6750. [Google Scholar] [CrossRef]
- Bury, D.; Morais, C.L.M.; Martin, F.L.; Lima, K.M.G.; Ashton, K.M.; Baker, M.J.; Dawson, T.P. Discrimination of fresh frozen non-tumour and tumour brain tissue using spectrochemical analyses and a classification model. Br. J. Neurosurg. 2020, 34, 40–45. [Google Scholar] [CrossRef]
- Kong, K.; Zaabar, F.; Rakha, E.; Ellis, I.; Koloydenko, A.; Notingher, I. Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy. Phys. Med. Biol. 2014, 59, 6141–6152. [Google Scholar] [CrossRef]
- Zúñiga, W.C.; Jones, V.; Anderson, S.M.; Echevarria, A.; Miller, N.L.; Stashko, C.; Schmolze, D.; Cha, P.D.; Kothari, R.; Fong, Y.; et al. Raman Spectroscopy for Rapid Evaluation of Surgical Margins during Breast Cancer Lumpectomy. Sci. Rep. 2019, 9, 14639. [Google Scholar] [CrossRef] [Green Version]
- Nargis, H.; Nawaz, H.; Ditta, A.; Mahmood, T.; Majeed, M.; Rashid, N.; Muddassar, M.; Bhatti, H.; Saleem, M.; Jilani, K.; et al. Raman spectroscopy of blood plasma samples from breast cancer patients at different stages. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 222, 117210. [Google Scholar] [CrossRef] [Green Version]
- Lyng, F.M.; Traynor, D.; Nguyen, T.N.Q.; Meade, A.; Rakib, F.; Al-Saady, R.; Goormaghtigh, E.; Al-Saad, K.; Ali, M.H. Discrimination of breast cancer from benign tumours using Raman spectroscopy. PLoS ONE 2019, 14, e0212376. [Google Scholar] [CrossRef]
- Walsh, M.J.; Holton, S.E.; Kajdacsy-Balla, A.; Bhargava, R. Attenuated total reflectance Fourier-transform infrared spectroscopic imaging for breast histopathology. Vib. Spectrosc. 2012, 60, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Tian, P.; Zhang, W.; Zhao, H.; Lei, Y.; Cui, L.; Wang, W.; Li, Q.; Zhu, Q.; Zhang, Y.; Xu, Z. Intraoperative diagnosis of benign and malignant breast tissues by fourier transform infrared spectroscopy and support vector machine classification. Int. J. Clin. Exp. Med. 2015, 8, 972–981. [Google Scholar] [PubMed]
- Depciuch, J.; Kaznowska, E.; Zawlik, I.; Wojnarowska-Nowak, R.; Cholewa, M.; Heraud, P.; Cebulski, J. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer. Appl. Spectrosc. 2016, 70, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Depciuch, J.; Kaznowska, E.; Golowski, S.; Koziorowska, A.; Zawlik, I.; Cholewa, M.; Szmuc, K.; Cebulski, J. Monitoring breast cancer treatment using a Fourier transform infrared spectroscopy-based computational model. J. Pharm. Biomed. Anal. 2017, 143, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; McWilliams, A.; Lui, H.; McLean, D.I.; Lam, S.; Zeng, H. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int. J. Cancer 2003, 107, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Xu, Y.; Wu, J.; Zhang, Y.; Sun, K. Detection of lung cancer tissue by attenuated total reflection–Fourier transform infrared spectroscopy—A pilot study of 60 samples. J. Surg. Res. 2013, 179, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Lui, H.; Zhao, J.; McLean, D.; Zeng, H. Real-time Raman Spectroscopy for In Vivo Skin Cancer Diagnosis. Cancer Res. 2012, 72, 2491–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, C.A.; Goulart, V.P.; Côrrea, L.; Pereira, T.M.; Zezell, D.M. ATR-FTIR Spectroscopy for the Assessment of Biochemical Changes in Skin Due to Cutaneous Squamous Cell Carcinoma. Int. J. Mol. Sci. 2015, 16, 6621–6630. [Google Scholar] [CrossRef] [Green Version]
- Lima, C.A.; Goulart, V.P.; Correa, L.; Zezell, D.M. Using Fourier transform infrared spectroscopy to evaluate biological effects induced by photodynamic therapy. Lasers Surg. Med. 2016, 48, 538–545. [Google Scholar] [CrossRef]
- Walsh, M.J.; Singh, M.N.; Pollock, H.M.; Cooper, L.J.; German, M.J.; Stringfellow, H.F.; Fullwood, N.J.; Paraskevaidis, E.; Martin-Hirsch, P.L.; Martin, F.L. ATR microspectroscopy with multivariate analysis segregates grades of exfoliative cervical cytology. Biochem. Biophys. Res. Commun. 2007, 352, 213–219. [Google Scholar] [CrossRef]
- Kelly, J.G.; Angelov, P.P.; Trevisan, J.; Vlachopoulou, A.; Paraskevaidis, E.; Martin-Hirsch, P.L.; Martin, F.L. Robust classification of low-grade cervical cytology following analysis with ATR-FTIR spectroscopy and subsequent application of self-learning classifier eClass. Anal. Bioanal. Chem. 2010, 398, 2191–2201. [Google Scholar] [CrossRef]
- Kelly, J.G.; Cheung, K.T.; Martin, C.; O’Leary, J.J.; Prendiville, W.; Martin-Hirsch, P.L.; Martin, F.L. A spectral phenotype of oncogenic human papillomavirus-infected exfoliative cervical cytology distinguishes women based on age. Clin. Chim. Acta 2010, 411, 1027–1033. [Google Scholar] [CrossRef]
- Halliwell, D.E.; Morais, C.L.; Lima, K.M.; Trevisan, J.; Siggel-King, M.R.; Craig, T.; Ingham, J.; Martin, D.S.; Heys, K.; Kyrgiou, M.; et al. An imaging dataset of cervical cells using scanning near-field optical microscopy coupled to an infrared free electron laser. Sci. Data 2017, 4, 170084. [Google Scholar] [CrossRef] [Green Version]
- Ramos, I.R.; Meade, A.D.; Ibrahim, O.; Byrne, H.J.; McMenamin, M.; McKenna, M.; Malkin, A.; Lyng, F.M. Raman spectroscopy for cytopathology of exfoliated cervical cells. Faraday Discuss. 2016, 187, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Krishna, C.M.; Prathima, N.B.; Malini, R.; Vadhiraja, B.M.; Bhatt, R.A.; Fernandes, D.J.; Kushtagi, P.; Vidyasagar, M.S.; Kartha, V.B. Raman spectroscopy studies for diagnosis of cancers in human uterine cervix. Vib. Spectrosc. 2006, 41, 136–141. [Google Scholar] [CrossRef]
- Paraskevaidi, M.; Ashton, K.M.; Stringfellow, H.F.; Wood, N.J.; Keating, P.J.; Rowbottom, A.W.; Martin-Hirsch, P.L.; Martin, F.L. Raman spectroscopic techniques to detect ovarian cancer biomarkers in blood plasma. Talanta 2018, 189, 281–288. [Google Scholar] [CrossRef]
- Lima, K.M.G.; Gajjar, K.B.; Martin-Hirsch, P.L.; Martin, F.L. Segregation of ovarian cancer stage exploiting spectral biomarkers derived from blood plasma or serum analysis: ATR-FTIR spectroscopy coupled with variable selection methods. Biotechnol. Prog. 2015, 31, 832–839. [Google Scholar] [CrossRef]
- Frost, J.; Ludeman, L.; Hillaby, K.; Gornall, R.; Lloyd, G.; Kendall, C.; Shore, A.C.; Stone, N. Raman spectroscopy and multivariate analysis for the non invasive diagnosis of clinically inconclusive vulval lichen sclerosus. Analyst 2016, 142, 1200–1206. [Google Scholar] [CrossRef] [Green Version]
- Theophilou, G.; Morais, C.L.M.; Halliwell, D.E.; Lima, K.M.G.; Drury, J.; Martin-Hirsch, P.L.; Stringfellow, H.F.; Hapangama, D.K.; Martin, F.L. Synchrotron- and focal plane array-based Fourier-transform infrared spectroscopy differentiates the basalis and functionalis epithelial endometrial regions and identifies putative stem cell regions of human endometrial glands. Anal. Bioanal. Chem. 2018, 410, 4541–4554. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.G.; Singh, M.; Stringfellow, H.F.; Walsh, M.J.; Nicholson, J.M.; Bahrami, F.; Ashton, K.M.; Pitt, M.A.; Martin-Hirsch, P.L.; Martin, F.L. Derivation of a subtype-specific biochemical signature of endometrial carcinoma using synchrotron-based Fourier-transform infrared microspectroscopy. Cancer Lett. 2009, 274, 208–217. [Google Scholar] [CrossRef]
- Taylor, S.E.; Cheung, K.T.; Patel, I.I.; Trevisan, J.; Stringfellow, H.F.; Ashton, K.M.; Wood, N.J.; Keating, P.J.; Martin-Hirsch, P.L.; Martin, F.L. Infrared spectroscopy with multivariate analysis to interrogate endometrial tissue: A novel and objective diagnostic approach. Br. J. Cancer 2011, 104, 790–797. [Google Scholar] [CrossRef] [Green Version]
- Murali Krishna, C.; Kegelaer, G.; Adt, I.; Rubin, S.; Kartha, V.; Manfait, M.; Sockalingum, G. Characterisation of uterine sarcoma cell lines exhibiting MDR phenotype by vibrational spectroscopy. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2005, 1726, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Figueira, P.G.M.; Abrão, M.S.; Krikun, G.; Taylor, H.S. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann. N. Y. Acad. Sci. 2011, 1221, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.M.; Jordan, C.T. The Increasing Complexity of the Cancer Stem Cell Paradigm. Science 2009, 324, 1670–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, K.E.; Gargett, C.E. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum. Reprod. 2007, 22, 2903–2911. [Google Scholar] [CrossRef] [Green Version]
- Wolff, E.F.; Wolff, A.B.; Du, H.; Taylor, H.S. Demonstration of Multipotent Stem Cells in the Adult Human Endometrium by In Vitro Chondrogenesis. Reprod. Sci. 2007, 14, 524–533. [Google Scholar] [CrossRef]
- Gargett, C.E.; Chan, R.; Schwab, K.E. Endometrial stem cells. Curr. Opin. Obstet. Gynecol. 2007, 19, 377–383. [Google Scholar] [CrossRef]
- Nallala, J.; Lloyd, G.R.; Stone, N. Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging. Analyst 2015, 140, 2369–2375. [Google Scholar] [CrossRef]
- Paraskevaidi, M.; Morais, C.L.M.; Ashton, K.M.; Stringfellow, H.F.; McVey, R.J.; Ryan, N.A.J.; O’Flynn, H.; Sivalingam, V.N.; Kitson, S.J.; Mackintosh, M.L.; et al. Detecting Endometrial Cancer by Blood Spectroscopy: A Diagnostic Cross-Sectional Study. Cancers 2020, 12, 1256. [Google Scholar] [CrossRef]
- Krishna, C.M.; Kegelaer, G.; Adt, I.; Rubin, S.; Kartha, V.B.; Manfait, M.; Sockalingum, G.D. Combined Fourier transform infrared and Raman spectroscopic approach for identification of multidrug resistance phenotype in cancer cell lines. Biopolymers 2006, 82, 462–470. [Google Scholar] [CrossRef]
- Mabwa, D.; Gajjar, K.; Furniss, D.; Schiemer, R.; Crane, R.; Fallaize, C.; Martin-Hirsch, P.L.; Martin, F.L.; Kypraios, T.; Seddon, A.B.; et al. Mid-infrared spectral classification of endometrial cancer compared to benign controls in serum or plasma samples. Analyst 2021, 146, 5631–5642. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Kaznowska, E.; Depciuch, J.; Szmuc, K.; Cebulski, J. Use of FTIR spectroscopy and PCA-LDC analysis to identify cancerous lesions within the human colon. J. Pharm. Biomed. Anal. 2017, 134, 259–268. [Google Scholar] [CrossRef]
- Zendehdel, R.; Masoudi-Nejad, A.; Mohammadzadeh, J.; Shirazi, F.H. Cisplatin Resistant Patterns in Ovarian Cell Line Using FTIR and Principle Component Analysis. Iran J. Pharm. Res. 2012, 11, 235–240. [Google Scholar] [CrossRef]
- Owens, G.; Gajjar, K.; Trevisan, J.; Fogarty, S.W.; Taylor, S.E.; Da Gama-Rose, B.; Martin-Hirsch, P.L.; Martin, F.L. Vibrational biospectroscopy coupled with multivariate analysis extracts potentially diagnostic features in blood plasma/serum of ovarian cancer patients. J. Biophotonics 2014, 7, 200–209. [Google Scholar] [CrossRef]
- Taleb, I.; Thiéfin, G.; Gobinet, C.; Untereiner, V.; Bernard-Chabert, B.; Heurgué, A.; Truntzer, C.; Hillon, P.; Manfait, M.; Ducoroy, P.; et al. Diagnosis of hepatocellular carcinoma in cirrhotic patients: A proof-of-concept study using serum micro-Raman spectroscopy. Analyst 2013, 138, 4006–4014. [Google Scholar] [CrossRef]
- Gajjar, K.; Trevisan, J.; Owens, G.; Keating, P.J.; Wood, N.J.; Stringfellow, H.F.; Martin-Hirsch, P.L.; Martin, F.L. Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: A novel diagnostic approach for ovarian cancer. Analyst 2013, 138, 3917–3926. [Google Scholar] [CrossRef]
- Hands, J.R.; Clemens, G.; Stables, R.; Ashton, K.; Brodbelt, A.; Davis, C.; Dawson, T.P.; Jenkinson, M.D.; Lea, R.W.; Walker, C.; et al. Brain tumour differentiation: Rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy. J. Neuro-Oncol. 2016, 127, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.-C.; Rich, P.; Foreman, L.; Smith, J.; Tanna, A.; Dibbur, V.; Unwin, R.; Tam, F.W.K. Label Free Detection of Sensitive Mid-Infrared Biomarkers of Glomerulonephritis in Urine Using Fourier Transform Infrared Spectroscopy. Sci. Rep. 2017, 7, 4601. [Google Scholar] [CrossRef] [Green Version]
- Paraskevaidi, M.; Morais, C.L.M.; Lima, K.M.G.; Ashton, K.M.; Stringfellow, H.F.; Martin-Hirsch, P.L.; Martin, F.L. Potential of mid-infrared spectroscopy as a non-invasive diagnostic test in urine for endometrial or ovarian cancer. Analyst 2018, 143, 3156–3163. [Google Scholar] [CrossRef]
- Bel’Skaya, L.V.; Sarf, E.A.; Solomatin, D.V.; Kosenok, V.K. Analysis of the lipid profile of saliva in ovarian and endometrial cancer by IR fourier spectroscopy. Vib. Spectrosc. 2019, 104, 102944. [Google Scholar] [CrossRef]
- Parlatan, U.; Inanc, M.T.; Ozgor, B.Y.; Oral, E.; Bastu, E.; Unlu, M.B.; Basar, G. Raman spectroscopy as a non-invasive diagnostic technique for endometriosis. Sci. Rep. 2019, 9, 19795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paraskevaidi, M.; Morais, C.; Raglan, O.; Lima, K.M.G.; Martin-Hirsch, P.L.; Paraskevaidis, E.; Kyrgiou, M.; Martin, F.L. Spectroscopy of blood samples for the diagnosis of endometrial cancer and classification of its different subtypes. J. Clin. Oncol. 2017, 35, 5596. [Google Scholar] [CrossRef]
- Paraskevaidi, M.; Morais, C.L.M.; Raglan, O.; Lima, K.M.G.; Paraskevaidis, E.; Martin-Hirsch, P.L.; Kyrgiou, M.; Martin, F.L. Aluminium foil as an alternative substrate for the spectroscopic interrogation of endometrial cancer. J. Biophotonics 2018, 11, e201700372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, M.J.; Gazi, E.; Brown, M.D.; Shanks, J.H.; Gardner, P.; Clarke, N.W. FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer. Br. J. Cancer 2008, 99, 1859–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabian, H.; Thi, N.A.N.; Eiden, M.; Lasch, P.; Schmitt, J.; Naumann, D. Diagnosing benign and malignant lesions in breast tissue sections by using IR-microspectroscopy. Biochim. Biophys. Acta (BBA)—Biomembr. 2006, 1758, 874–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisan, J.; Angelov, P.; Scott, A.D.; Carmichael, P.L.; Martin, F.L. IRootLab: A free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis. Bioinformatics 2013, 29, 1095–1097. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Sample | No of Patients | Sample Preparation | Spectroscopy Method | Spectral Findings |
---|---|---|---|---|---|---|
Theophilou et al. [131] | 2018 | Benign uterine tissue | 3 Multiple tissue sections per patient | Paraffin-fixed sections | Synchrotron FtIR (SR-FtIR) and globar focal plane array-based (FPA) FtIR | Identification of endometrial stem cell putative location with SR-FtIR: changes of stretching vibration in DNA, RNA, nucleic acids and protein secondary structure |
Differentiation between functionalis and basalis epithelial layers with FPA-FtIR: variation in protein secondary structure | ||||||
Patel et al. [94] | 2011 | Benign and malignant endometrial tissues | 4 | Freshly-thawed frozen sections | Raman | Identification of tissue architecture: - high content of DNA and RNA in glandular epithelium - high protein content in collagenous stroma and myometrium |
Kelly et al. [132] | 2009 | Benign and malignant endometrial tissues | 26 Non-tamoxifen associated n = 15, tamoxifen-associated n = 8 | Paraffin-fixed sections | Synchrotron FtIR (SR-FtIR) | Endometrioid carcinoma vs. benign: variations in protein content and secondary structure |
Serous papillary and malignant mixed mullerian tumours vs. benign: variations in RNA and DNA regions | ||||||
Group separation based on tamoxifen usage improved cancer vs. benign classification. Spectral changes were observed in protein secondary structure | ||||||
Taylor et al. [133] | 2011 | Benign and malignant endometrial tissues | 76 | Ethanol-based fixed sections (SurePathTM) | ATR-FtIR | Stages of mentrual cycle classification: variation of lipid, Amide I, Amide II and asymmetric phosphate stretching vibration regions |
Cancer vs. benign: increased content of lipids and proteins | ||||||
Classification of tumour subtypes: - highest lipid content in grades I and III endometrioid, in clear cell tumours, adenosarcomas and carcinosarcomas - variation of protein secondary structure in endometrioid cancers | ||||||
Depciuch et al. [9] | 2021 | Benign, pre-cancerous and malignant endometrial tissues | 16 patients, 59 serial tissue samples | Paraffin-fixed sections | Raman and ATR-FtIR | Raman - cancer vs. benign: higher content of lipids and proteins and decreased collagen vibrations |
ATR-FtIR - cancer vs. benign: higher protein content and variations in protein secondary structure | ||||||
Barnas et al. [10] | 2020 | Benign, pre-cancerous and malignant endometrial tissues | 45 | Paraffin-fixed sections | Raman and ATR-FtIR | Raman: - atypical hyperplasia vs. benign: higher nucleic acids, shift in protein and lipid peaks - cancer vs. benign: shift of nucleic acids, protein and lipid peaks |
ATR-FtIR: - atypical hyperplasia vs. benign: changes in carbohydrates, collagen and protein peak - cancer vs. control: changes in carbohydrates, collagen and protein peaks | ||||||
Krishna et al. [134] | 2005 | Chemo- sensitive and multidrug resistant uterine sarcoma cell lines | 15 samples | Cell culture | Raman and FtIR | Raman - multidrug resistant phenotype vs. sensitive cell line: changes in protein secondary structure and DNA vibrations |
FtIR - multidrug resistant phenotype vs. sensitive cell line: changes in protein secondary structure and lipid content |
Endometrioid Wavenumber/(cm−1) | Non-Endometrioid Wavenumber/(cm−1) | Peak Assignment |
---|---|---|
1735 | 1736 | Ester carbonyl of lipids |
1682, 1624 | 1624, 1601 | Amide I group in peptide linkages of proteins |
1570, 1516 | 1570, 1516 | Amide II group in peptide linkages of proteins |
1535 | C-N stretching contribution to Amide II | |
1477, 1462, 1450 | 1477 | CH2 group scissoring modes in proteins (collagen) |
1373 | C-O-O symmetric stretching of fatty acids, and amino acid side chains | |
1340 | 1340 | CH2 wagging of proline in amino acids and collagen |
1240 | Amide III-N-H bending, C-N stretch, C-C stretch of proteins, DNA, phospholipids | |
1234, 1230 | 1231 | Asymmetric PO2− stretching in RNA and DNA |
1169 | 1173, 1142 | C-O-C and C-O-P stretching and ring vibrations, symmetric C-O stretching coupled to C-O-H bending of carbohydrates |
1088 | 1061 | Symmetric PO2− stretching in RNA and DNA |
1066 | C-O stretching mode of C–OH groups of serine, threonine, and tyrosine of protein | |
1034 | 1003 | Symmetric C-O-C/C-O stretching of Glycogen |
964 | 968 | Phosphorylated proteins |
Raman Shift/(cm−1) | Vibration Assignment |
---|---|
853, 821 | Proline, hydroxyproline, tyrosine, PO2 stretching from nucleic acids |
880, 876 | C-C stretching from proline and hydroxyproline |
1066, 935 | Proline, valine, PO2 stretching from nucleic acids |
1299 | Phosphodiester groups in nucleic acids |
1302 | Amide III (collagen assignment) |
1335 | Adenine |
1376, 1374 | Tryptophan |
1447 | CH2 bending from lipids and proteins |
1561 | C-C, tryptophan (protein assignment) |
1685, 1660 | Amide I |
1792, 1723 | C-O stretching from lipids |
2795, 2758 | CH3 stretching from lipids |
2873 | CH2 stretching from lipids |
Author | Year | Sample | No of Patients | Preparation | Spectroscopy Method | Spectral Findings |
---|---|---|---|---|---|---|
Gajjar et al. [149] | 2013 | Endometrial cancer and healthy blood plasma and serum | 60 | Dried samples | ATR-FTIR | Plasma cancer vs. healthy: changes of stretching vibration in glycogen, RNA, fatty acids, amino acids and lower levels of lipids |
Serum cancer vs. healthy: changes of stretching vibration in DNA, RNA and lower levels of lipids | ||||||
Paraskevaidi et al. [155] | 2017 | Endometrial cancer and healthy blood plasma and serum | 89 | Dried samples | ATR-FTIR | Discrimination between cancer subtypes for both plasma and serum due to protein and lipid alterations |
Paraskevaidi et al. [156] | 2018 | Endometrial cancer and healthy blood plasma and serum | 85 for plasma, 75 for serum | Dried samples | ATR-FTIR | Aluminium foil:
|
Low-E slides:
| ||||||
Paraskevaidi et al. [152] | 2018 | Endometrial cancer and healthy urine | 20 | Dried samples | ATR-FTIR | Cancer vs. healthy: increased proteins and nucleic acids, decreased lipid content and alterations in protein secondary structure |
Bel’skaya et al. [153] | 2019 | Endometrial cancer and controls saliva | 55 | Lipid extraction with Folch solution | FTIR | Cancer vs. controls: decreased lipid content |
Paraskevaidi et al. [141] | 2020 | Endometrial cancer, atypical hyperplasia, and healthy blood plasma | 652 | Dried samples | ATR-FTIR | Cancer vs. healthy: increased lipids and decreased content of carbohydrates and fatty acids |
Hyperplasia vs. healthy: higher nucleic acids, collagen and stretching vibration in DNA and RNA | ||||||
Type I vs. Type II cancers: changes in protein secondary structure | ||||||
Mabwa et al. [143] | 2021 | Endometrial cancer and healthy blood plasma and serum | 60 | Dried samples | ATR-FTIR |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiemer, R.; Furniss, D.; Phang, S.; Seddon, A.B.; Atiomo, W.; Gajjar, K.B. Vibrational Biospectroscopy: An Alternative Approach to Endometrial Cancer Diagnosis and Screening. Int. J. Mol. Sci. 2022, 23, 4859. https://doi.org/10.3390/ijms23094859
Schiemer R, Furniss D, Phang S, Seddon AB, Atiomo W, Gajjar KB. Vibrational Biospectroscopy: An Alternative Approach to Endometrial Cancer Diagnosis and Screening. International Journal of Molecular Sciences. 2022; 23(9):4859. https://doi.org/10.3390/ijms23094859
Chicago/Turabian StyleSchiemer, Roberta, David Furniss, Sendy Phang, Angela B. Seddon, William Atiomo, and Ketankumar B. Gajjar. 2022. "Vibrational Biospectroscopy: An Alternative Approach to Endometrial Cancer Diagnosis and Screening" International Journal of Molecular Sciences 23, no. 9: 4859. https://doi.org/10.3390/ijms23094859
APA StyleSchiemer, R., Furniss, D., Phang, S., Seddon, A. B., Atiomo, W., & Gajjar, K. B. (2022). Vibrational Biospectroscopy: An Alternative Approach to Endometrial Cancer Diagnosis and Screening. International Journal of Molecular Sciences, 23(9), 4859. https://doi.org/10.3390/ijms23094859