Compound-Specific 14N/15N Analysis of Amino Acid Trimethylsilylated Derivatives from Plant Seed Proteins
Abstract
:1. Introduction
2. Results
2.1. Chromatograms and Observed Peaks
2.2. N Mole Fraction
2.3. Potential Kinetic Isotope Effects in Derivatization
2.4. Silylated Derivatives of Arginine
2.5. δ15N Values and Performance of the Method
3. Discussion
3.1. Pros and Cons of the Silylation Method for δ15N Analysis by GC-C-IRMS
3.2. Biological Significance of Amino Acid δ15N
4. Materials and Methods
4.1. Source Materials
4.2. GC-MS Analyses
4.3. GC-C-IRMS Analyses
4.4. N Mole Fraction
4.5. Protein Extraction and Hydrolysis
4.6. Log-Log Plots and Isotope Effects
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elamine, Y.; Alaiz, M.; Girón-Calle, J.; Guiné, R.P.F.; Vioque, J. Nutritional Characteristics of the Seed Protein in 23 Mediterranean Legumes. Agronomy 2022, 12, 400. [Google Scholar] [CrossRef]
- Chen, Z.; Lancon-Verdier, V.; Le Signor, C.; She, Y.-M.; Kang, Y.; Verdier, J. Genome-wide association study identified candidate genes for seed size and seed composition improvement in M. truncatula. Sci. Rep. 2021, 11, 4224. [Google Scholar] [CrossRef] [PubMed]
- Corbineau, F. Markers of seed quality: From present to future. Seed Sci. Res. 2012, 22, S61–S68. [Google Scholar] [CrossRef]
- Chardon, F.; Noël, V.; Masclaux-Daubresse, C. Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J. Exp. Bot. 2012, 63, 3401–3412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araus, J.L.; Cabrera-Bosquet, L.; Serret, M.D.; Bort, J.; Nieto-Taladriz, M.T. Comparative performance of δ13C, δ18O and δ15N for phenotyping durum wheat adaptation to a dryland environment. Funct. Plant Biol. 2013, 40, 595–608. [Google Scholar] [CrossRef]
- Tcherkez, G.; Ben Mariem, S.; Larraya, L.; García-Mina, J.M.; Zamarreño, A.M.; Paradela, A.; Cui, J.; Badeck, F.-W.; Meza, D.; Rizza, F. Elevated CO2 has concurrent effects on leaf and grain metabolism but minimal effects on yield in wheat. J. Exp. Bot. 2020, 71, 5990–6003. [Google Scholar] [CrossRef]
- Soba, D.; Ben Mariem, S.; Fuertes-Mendizábal, T.; Méndez-Espinoza, A.M.; Gilard, F.; González-Murua, C.; Irigoyen, J.J.; Tcherkez, G.; Aranjuelo, I. Metabolic Effects of Elevated CO2 on Wheat Grain Development and Composition. J. Agric. Food Chem. 2019, 67, 8441–8451. [Google Scholar] [CrossRef]
- Tea, I.; Tcherkez, G. Natural Isotope Abundance in Metabolites: Techniques and Kinetic Isotope Effect Measurement in Plant, Animal, and Human Tissues. Methods Enzymol. 2017, 596, 113–147. [Google Scholar] [CrossRef]
- Evershed, R.P.; Bull, I.D.; Corr, L.T.; Crossman, Z.M.; van Dongen, B.E.; Evans, C.J.; Jim, S.; Mottram, H.R.; Mukherjee, A.J.; Pancost, R.D. Compound-specific stable isotope analysis in ecology and paleoecology. In Stable Isotopes in Ecology and Environmental Science; Michener, R., Lajtha, K., Eds.; Blackwell Publishing Oxford: Malden, MA, USA, 2007; pp. 480–540. [Google Scholar]
- Zhang, Z.; Tian, J.; Xiao, H.-W.; Zheng, N.; Gao, X.; Zhu, R.-G.; Xiao, H. A reliable compound-specific nitrogen isotope analysis of amino acids by GC-C-IRMS following derivatisation into N-pivaloyl-iso-propyl (NPIP)esters for high-resolution food webs estimation. J. Chromatogr. B 2016, 1033–1034, 382–389. [Google Scholar] [CrossRef]
- Cantalapiedra-Hijar, G.; Ortigues-Marty, I.; Schiphorst, A.-M.; Robins, R.J.; Tea, I.; Prache, S. Natural 15N Abundance in Key Amino Acids from Lamb Muscle: Exploring a New Horizon in Diet Authentication and Assessment of Feed Efficiency in Ruminants. J. Agric. Food Chem. 2016, 64, 4058–4067. [Google Scholar] [CrossRef]
- Tea, I.; Le Guennec, A.; Frasquet-Darrieux, M.; Julien, M.; Romek, K.; Antheaume, I.; Hankard, R.; Robins, R. Simultaneous determination of natural-abundance δ15N values and quantities of individual amino acids in proteins from milk of lactating women and from infant hair using gas chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1345–1353. [Google Scholar] [CrossRef]
- Baskal, S.; Bollenbach, A.; Tsikas, D. Two-Step Derivatization of Amino Acids for Stable-Isotope Dilution GC—MS Analysis: Long-Term Stability of Methyl Ester-Pentafluoropropionic Derivatives in Toluene Extracts. Molecules 2021, 26, 1726. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.-G.; Xiao, H.-Y.; Zhang, Z.; Lai, Y. Compound-specific δ15N composition of free amino acids in moss as indicators of atmospheric nitrogen sources. Sci. Rep. 2018, 8, 14347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, D.; Jung, K.; Segschneider, H.-J.; Gehre, M.; Schüürmann, G. 15N/14N Analysis of Amino Acids with GC-C-IRMS—Methodical Investigations and Ecotoxicological Applications. Isot. Environ. Health Stud. 1995, 31, 367–375. [Google Scholar] [CrossRef]
- Styring, A.K.; Sealy, J.C.; Evershed, R.P. Resolving the bulk δ15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids. Geochim. Cosmochim. Acta 2010, 74, 241–251. [Google Scholar] [CrossRef]
- Gauthier, P.P.G.; Lamothe, M.; Mahé, A.; Molero, G.; Nogués, S.; Hodges, M.; Tcherkez, G. Metabolic origin of δ15N values in nitrogenous compounds from Brassica napus L. leaves. Plant Cell Environ. 2013, 36, 128–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Styring, A.K.; Fraser, R.A.; Bogaard, A.; Evershed, R.P. Cereal grain, rachis and pulse seed amino acid δ15N values as indicators of plant nitrogen metabolism. Phytochemistry 2014, 97, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Molero, G.; Aranjuelo, I.; Teixidor, P.; Araus, J.L.; Nogués, S. Measurement of 13C and δ15N isotope labeling by gas chromatography/combustion/isotope ratio mass spectrometry to study amino acid fluxes in a plant-microbe symbiotic association. Rapid Commun. Mass Spectrom. 2011, 25, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Rieley, G. Derivatization of organic compounds prior to gas chromatographic–combustion—Isotope ratio mass spectrometric analysis: Identification of isotope fractionation processes. Analyst 1994, 119, 915–919. [Google Scholar] [CrossRef]
- Joubert, V.; Silvestre, V.; Lelièvre, M.; Ladroue, V.; Besacier, F.; Akoka, S.; Remaud, G.S. Position-specific 15N isotope analysis in organic molecules: A high-precision 15N NMR method to determine the intramolecular 15N isotope composition and fractionation at natural abundance. Org. Magn. Reson. 2019, 57, 1136–1142. [Google Scholar] [CrossRef]
- Sacks, G.L.; Brenna, J.T. 15N/14N Position-Specific Isotopic Analyses of Polynitrogenous Amino Acids. Anal. Chem. 2005, 77, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Tcherkez, G. Natural 15N/14N isotope composition in C3 leaves: Are enzymatic isotope effects informative for predicting the 15N-abundance in key metabolites? Funct. Plant Biol. 2011, 38, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hardarson, G.; Danso, S.K.A. Methods for measuring biological nitrogen fixation in grain legumes. Plant Soil 1993, 152, 19–23. [Google Scholar] [CrossRef]
- Andrews, M.; James, E.; Sprent, J.I.; Boddey, R.; Gross, E.; dos Reis, F.B., Jr. Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: Values obtained using 15N natural abundance. Plant Ecol. Divers. 2011, 4, 131–140. [Google Scholar] [CrossRef]
- Ledgard, S. Nutrition, moisture and rhizobial strain influence isotopic fractionation during N2, fixation in pasture legumes. Soil Biol. Biochem. 1989, 21, 65–68. [Google Scholar] [CrossRef]
- Kendall, I.P.; Woodward, P.; Clark, J.P.; Styring, A.K.; Hanna, J.V.; Evershed, R.P. Compound-specific δ15N values express differences in amino acid metabolism in plants of varying lignin content. Phytochemistry 2019, 161, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Rishavy, M.A.; Cleland, W.W.; Lusty, C.J. 15N Isotope Effects in Glutamine Hydrolysis Catalyzed by Carbamyl Phosphate Synthetase: Evidence for a Tetrahedral Intermediate in the Mechanism. Biochemistry 2000, 39, 7309–7315. [Google Scholar] [CrossRef]
- Schmidt, H.-L.; Medina, R. Possibilities and Scope of the Double Isotope Effect Method in the Elucidation of Mechanisms of Enzyme Catalyzed Reactions. Isot. Environ. Health Stud. 1991, 27, 1–4. [Google Scholar] [CrossRef]
- Olleros-Izard, T. Kinetische Isotopeneffekte der Arginase-und Nitratreduktase-Reaktion; University of Munich: Munich, Germany, 1983. [Google Scholar]
- Kim, S.C.; Raushel, F.M. Isotopic probes of the argininosuccinate lyase reaction. Biochemistry 1986, 25, 4744–4749. [Google Scholar] [CrossRef]
- Werner, R.A.; Schmidt, H.-L. The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochemistry 2002, 61, 465–484. [Google Scholar] [CrossRef]
- Hayashi, H.; Chino, M. Collection of Pure Phloem Sap from Wheat and its Chemical Composition. Plant Cell Physiol. 1986, 27, 1387–1393. [Google Scholar] [CrossRef]
- Fisher, D.B.; MacNicol, P.K. Amino Acid Composition Along the Transport Pathway during Grain Filling in Wheat. Plant Physiol. 1986, 82, 1019–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, R.; Baker, A. Cycling of amino compounds in symbiotic lupin. J. Exp. Bot. 1996, 47, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Sandström, J.; Pettersson, J. Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance. J. Insect Physiol. 1994, 40, 947–955. [Google Scholar] [CrossRef]
- Weigelt, K.; Küster, H.; Radchuk, R.; Müller, M.; Weichert, H.; Fait, A.; Fernie, A.R.; Saalbach, I.; Weber, H. Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. Plant J. 2008, 55, 909–926. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, M.; Wang, G.; Galili, G. New insights into the metabolism of aspartate-family amino acids in plant seeds. Plant Reprod. 2018, 31, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C.J.A.; Hedges, R.E.M. Nitrogen isotopic discrimination in dietary amino acids: The threonine anomaly. Rapid Commun. Mass Spectrom. 2016, 30, 2442–2446. [Google Scholar] [CrossRef]
δ15NGC-C-IRMS | δ15NEA-IRMS | Statistics | |||
---|---|---|---|---|---|
Pure amino acids | |||||
Arg | −5.31 ± 0.76 | −5.51 ± 0.11 | NS | ||
Glu | −7.97 ± 0.80 | −7.29 ± 0.11 | NS | ||
Norleucine | 14.85 ± 0.30 | 14.02 ± 0.11 | NS | ||
Thr | 0.54 ± 0.53 | −0.19 ± 0.11 | NS | ||
Protein hydrolysates | |||||
Gliadin | Lupine | Alfalfa | |||
Ala 2TMS | n/a | −9.24 ± 2.56 | −7.94 ± 2.07 | NS | |
Val 2TMS | 2.72 ± 2.13a | −3.91 ± 2.25b | −5.27 ± 0.20b | S | |
Leu 2TMS | 0.45 ± 1.77a | −5.42 ± 1.19b | −3.78 ± 0.42b | S | |
Ile 2TMS | 6.74 ± 1.05 ** | −4.64 ± 1.66 | 1.31 ± 0.88 | - | |
Pro 2TMS | 1.5 ± 0.50 | 8.03 ± 0.70 | - | ||
Gly 3TMS | −3.28 ± 0.65 | −0.94 ± 0.30 | - | ||
Ser 3TMS | 0.55 ± 1.72 | 1.18 ± 2.65 | 0.99 ± 1.9 | NS | |
Thr 3TMS | −2.67 ± 3.2a | 14.06 ± 1.34b | 14.68 ± 1.6b | S | |
Ornithine lactam 2TMS | 3.20 ± 1.82a | 0.68 ± 1.35a | −6.37 ± 1.25b | S | |
Asp 3TMS | −0.02 ± 2.60a | 2.69 ± 0.28a | 5.79 ± 0.05b | S | |
Pyroglutamic 2TMS | 7.02 ± 1.26a | 2.53 ± 0.36b | 4.46 ± 0.75c | S | |
Glu 3TMS | 5.82 ± 1.45a | 2.48 ± 0.57b | 2.90 ± 0.55b | S | |
Phe 2TMS | 12.35 ± 2.75 | 8.70 ± 0.99 | 9.69 ± 1.30 | NS | |
Lys 4TMS | 1.10 ± 0.74a | −1.48 ± 0.50b | 1.29 ± 0.08a | S | |
Tyr 3TMS | 7.56 ± 2.33a | −1.4 ± 0.49b | 0.31 ± 1.16b | S | |
Protein isolates | |||||
Gliadin | 4.86 ± 1.76 * | 3.53 ± 0.05 | NS | ||
Lupine | 0.57 ± 1.06 * | 0.93 ± 0.05 | NS | ||
Alfalfa | 2.14 ± 0.82 * | 1.06 ± 0.04 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domergue, J.-B.; Lalande, J.; Abadie, C.; Tcherkez, G. Compound-Specific 14N/15N Analysis of Amino Acid Trimethylsilylated Derivatives from Plant Seed Proteins. Int. J. Mol. Sci. 2022, 23, 4893. https://doi.org/10.3390/ijms23094893
Domergue J-B, Lalande J, Abadie C, Tcherkez G. Compound-Specific 14N/15N Analysis of Amino Acid Trimethylsilylated Derivatives from Plant Seed Proteins. International Journal of Molecular Sciences. 2022; 23(9):4893. https://doi.org/10.3390/ijms23094893
Chicago/Turabian StyleDomergue, Jean-Baptiste, Julie Lalande, Cyril Abadie, and Guillaume Tcherkez. 2022. "Compound-Specific 14N/15N Analysis of Amino Acid Trimethylsilylated Derivatives from Plant Seed Proteins" International Journal of Molecular Sciences 23, no. 9: 4893. https://doi.org/10.3390/ijms23094893
APA StyleDomergue, J. -B., Lalande, J., Abadie, C., & Tcherkez, G. (2022). Compound-Specific 14N/15N Analysis of Amino Acid Trimethylsilylated Derivatives from Plant Seed Proteins. International Journal of Molecular Sciences, 23(9), 4893. https://doi.org/10.3390/ijms23094893