RNAi-Mediated Knockdown of Calreticulin3a Impairs Pollen Tube Growth in Petunia
Abstract
:1. Introduction
2. Results
2.1. PhCRT3a Gene Cloning, Analysis of the Deduced Amino Acid Sequence of the PhCRT3a cDNA Clone, and Phylogenetic Analysis
2.2. Knockdown of PhCRT3a Expression Impairs Pollen Tube Elongation
2.3. Loss of PhCRT3a Causes Several Ultrastructural Defects in Elongating Pollen Tubes
2.4. PhCRT3a Is Required for Normal F-actin Organization in Growing Pollen Tubes
3. Discussion
3.1. PhCRT3a Is a Highly Conserved Gene Belonging to the Plant-Specific CRT3 Subfamily
3.2. Exogenous Delivery of PhCRT3a-Specific siRNA Effectively Impairs Pollen Tube Elongation
3.3. CRT Is Required for Polarized Pollen Tube Cytoplasm and Functional Organization of the Actin Cytoskeleton
3.4. CRT Is Crucial for ER Structure and Function in Growing Pollen Tubes
4. Materials and Methods
4.1. Plant Material and Pollen Tube Cultures
4.2. RNA Extraction
4.3. Random Amplification of cDNA Ends (RACE) and Amplification of the Full-Length PhCRT3a cDNA
4.4. siRNA and scrRNA Oligonucleotides Used in PTGS Experiments
4.5. sqRT-PCR Analysis and Quantification
4.6. Plasmid Construction, Molecular Probe Synthesis, and FISH
4.7. F-actin Staining
4.8. Light and Transmission Electron Microscopy
4.9. In Silico Sequence Analysis, Sequence Selection, and Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheung, A.Y.; Boavida, L.C.; Aggarwal, M.; Wu, H.M.; Feijo, J.A. The pollen tube journey in the pistil and imaging the in vivo process by two-photon microscopy. J. Exp. Bot. 2010, 61, 1907–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, A.Y.; Wu, H.M. Structural and functional compartmentalization in pollen tubes. J. Exp. Bot. 2007, 58, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hepler, P.K.; Winship, L.J. The pollen tube clear zone: Clues mechanism of polarized growth. J. Integr. Plant Biol. 2015, 57, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Grebnev, G.; Ntefidou, M.; Kost, B. Secretion and endocytosis in pollen tubes: Models of tip growth in the spot light. Front. Plant Sci. 2017, 8, 154. [Google Scholar] [CrossRef]
- Zhao, L.; Rehmani, M.S.; Wang, H. Exocytosis and endocytosis: Yin-yang crosstalk for sculpting a dynamic growing pollen tube tip. Front. Plant Sci. 2020, 11, 572848. [Google Scholar] [CrossRef]
- Cascallares, M.; Setzes, N.; Marchetti, F.; López, G.A.; Distéfano, A.M.; Cainzos, M.; Zabaleta, E.; Pagnussat, G.C. A complex journey: Cell wall remodeling, interactions, and integrity during pollen tube growth. Front. Plant Sci. 2020, 11, 599247. [Google Scholar] [CrossRef]
- Qu, X.; Jiang, Y.; Chang, M.; Liu, X.; Zhang, R.; Huang, S. Organization and regulation of the actin cytoskeleton in the pollen tube. Front. Plant Sci. 2015, 5, 786. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Huang, S. Control of the actin cytoskeleton within apical and subapical regions of pollen tubes. Front. Cell Dev. Biol. 2020, 8, 614821. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, C.; Xie, M.; Liu, J.; Kong, Z.; Su, H. Actin bundles in the pollen tube. Int. J. Mol. Sci. 2018, 19, 3710. [Google Scholar] [CrossRef] [Green Version]
- Lenartowska, M.; Michalska, A. Actin filament organization and polarity in pollen tubes revealed by myosin II subfragment 1 decoration. Planta 2008, 228, 891–896. [Google Scholar] [CrossRef]
- Lovy-Wheeler, A.; Wilsen, K.L.; Baskin, T.I.; Hepler, P.K. Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 2005, 221, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidali, L.; Rounds, C.M.; Hepler, P.K.; Bezanilla, M. Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS ONE 2009, 4, e5744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çetinbaş-Genç, A.; Conti, V.; Cai, G. Let’s shape again: The concerted molecular action that builds the pollen tube. Plant Reprod. 2022. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.H.; Su, D.S.; Xiao, H.; Tian, H.Q. Calcium: A critical factor in pollen germination and tube elongation. Int. J. Mol. Sci. 2019, 20, 420. [Google Scholar] [CrossRef] [Green Version]
- Suwińska, A.; Lenartowski, R.; Smoliński, D.J.; Lenartowska, M. Molecular evidence that rough endoplasmic reticulum is the site of calreticulin translation in Petunia pollen tubes growing in vitro. Plant Cell Rep. 2015, 34, 1189–1899. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.Y.; He, L.H.; Jing, R.L.; Li, R.Z. Calreticulin: Conserved protein and diverse functions in plants. Phys. Plant. 2009, 136, 127–138. [Google Scholar] [CrossRef]
- Persson, S.; Rosenquist, M.; Svensson, K.; Galvao, R.; Boss, W.F.; Sommarin, M. Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants. Plant Physiol. 2003, 133, 1385–1396. [Google Scholar] [CrossRef] [Green Version]
- Thelin, L.; Mutwil, M.; Sommarin, M.; Persson, S. Diverging functions among calreticulin isoforms in higher plants. Plant Signal. Behav. 2011, 6, 905–910. [Google Scholar] [CrossRef] [Green Version]
- Wasąg, P.; Grajkowski, T.; Suwińska, A.; Lenartowska, M.; Lenartowski, R. Phylogenetic analysis of plant calreticulin homologs. Mol. Phylogenet. Evol. 2019, 134, 99–110. [Google Scholar] [CrossRef]
- Lenartowski, R.; Suwińska, A.; Prusińska, J.; Gumowski, K.; Lenartowska, M. Molecular cloning and transcriptional activity of a new Petunia calreticulin gene involved in pistil transmitting tract maturation, progamic phase, and double fertilization. Planta 2014, 239, 437–454. [Google Scholar] [CrossRef] [Green Version]
- Suwińska, A.; Wasąg, P.; Bednarska-Kozakiewicz, E.; Lenartowska, M.; Lenartowski, R. Calreticulin expression and localization in relation to exchangeable Ca2+ during pollen development in Petunia. BMC Plant Biol. 2022, 22, 24. [Google Scholar] [CrossRef] [PubMed]
- Suwińska, A.; Wasąg, P.; Zakrzewski, P.; Lenartowska, M.; Lenartowski, R. Calreticulin is required for calcium homeostasis and proper pollen tube tip growth in Petunia. Planta 2017, 245, 909–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevins, J.R. The pathway of eukaryotic mRNA formation. Annu. Rev. Biochem. 1983, 52, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005. [Google Scholar]
- Gupta, R.; Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 2002, 7, 310–322. [Google Scholar]
- Goujon, M.; McWilliam, H.; Li, W.; Valentin, F.; Squizzato, S.; Paern, J.; Lopez, R.A. new bioinformatics analysis tools framework at EMBL-EBI. Nuc. Acids Res. 2010, 38, 695–699. [Google Scholar] [CrossRef]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nuc. Acids Res. 2019, 47, 636–641. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, J. A conserved basic residue cluster is essential for the protein quality control function of the Arabidopsis calreticulin 3. Plant Signal Behav. 2013, 8, e23864. [Google Scholar] [CrossRef] [Green Version]
- Matsukawa, M.; Shibata, Y.; Ohtsu, M.; Mizutani, A.; Mori, H.; Wang, P.; Ojika, M.; Kawakita, K.; Takemoto, D. Nicotiana benthamiana calreticulin 3a is required for the ethylene-mediated production of phytoalexins and disease resistance against oomycete pathogen Phytophthora infestans. Mol. Plant Microbe Interact. 2013, 26, 880–892. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Lu, Y.H.; Song, M.; Wang, Y.; Xu, W.; Wu, L.; Wang, H.; Ma, Z. Overexpression of a Triticum aestivum calreticulin gene (TaCRT1) improves salinity tolerance in tobacco. PLoS ONE 2015, 10, e0140591. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Cai, G.; Parrota, L.; Cresti, M. Organelle trafficking, the cytoskeleton, and pollen tube growth. J. Integr. Plant Biol. 2015, 57, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.; Svensson, K.; Thelin, L.; Zhang, W.; Tintor, N.; Prins, D.; Funke, N.; Michalak, M.; Schulze-Lefert, P.; Saijo, Y.; et al. Higher plant calreticulins have acquired specialized functions in Arabidopsis. PLoS ONE 2010, 5, e11342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Yang, T.Y.; Wu, W.Y.; Zheng, B.L. Small RNAs in pollen. Sci. China Life. Sci. 2015, 58, 246–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Trionnaire, G.; Grant-Downton, R.T.; Kourmpetli, S.; Dickinson, H.G.; Twell, D. Small RNA activity and function in angiosperm gametophytes. J. Exp. Bot. 2011, 62, 1601–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatri, M.; Rajam, M.V. Targeting polyamines of Aspergillus nidulans by siRNA specific to fungal ornithine decarboxylase gene. Med. Mycol. 2007, 45, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Boothby, T.C.; Zipper, R.S.; van der Weele, C.M.; Wolniak, S.M. Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita. Dev. Cell 2013, 24, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Faleri, C.; Del Casino, C.; Emons, A.M.C.; Cresti, M. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol. 2011, 155, 1169–1190. [Google Scholar] [CrossRef] [Green Version]
- Bhuja, P.; McLachlan, K.; Stephens, J.; Taylor, G. Accumulation of 1,3-β-D-glucans in response to aluminum and cytosolic calcium in Triticum aestivum. Plant Cell Physiol. 2004, 45, 543–549. [Google Scholar] [CrossRef]
- Staiger, C.J.; Poulter, N.S.; Henty, J.L.; Franklin-Tong, V.E.; Blanchoin, L. Regulation of actin dynamics by actin-binding proteins in pollen. J. Exp. Bot. 2010, 61, 1969–1986. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Sheng, X.; Tian, X.; Zhang, Y.; Li, Y. Organelle movement and apical accumulation of secretory vesicles in pollen tubes of Arabidopsis thaliana depend on class XI myosins. Plant J. 2020, 104, 1685–1697. [Google Scholar] [CrossRef]
- Jasik, J.; Micieta, K.; Siao, W.; Voigt, B.; Stuchlik, S.; Schmelzer, E.; Turna, J.; Baluska, F. Actin3 promoter reveals undulating F-actin bundles at shanks and dynamic F-actin meshworks at tips of tip-growing pollen tubes. Plant. Signal. Behav. 2016, 11, e1146845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tominaga, M.; Kojima, H.; Yokota, E.; Nakamori, R.; Anson, M.; Shimmen, T.; Oiwa, K. Calcium-induced mechanical change in the neck domain alters the activity of plant myosin XI. J. Biol. Chem. 2012, 287, 30711–30718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardi, C.N.; Feron, R.; Navazio, L.; Mariani, P.; Pierson, E.; Wolters-Arts, M.; Knuiman, B.; Mariani, C.; Derksen, J. Expression and localization of calreticulin in tabacco anthers and pollen tubes. Planta 2006, 223, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Lenartowska, M.; Lenartowski, R.; Smoliński, D.J.; Wróbel, B.; Niedojadło, J.; Jaworski, K.; Bednarska, E. Calreticulin expression and localization in plant cells during pollen-pistil interactions. Planta 2009, 231, 67–77. [Google Scholar] [CrossRef]
- Lenartowska, M.; Karaś, K.; Marshall, J.; Napier, R.; Bednarska, E. Immunocytochemical evidence of calreticulin-like protein in pollen tubes and styles of Petunia hybrida Hort. Protoplasma 2002, 219, 23–30. [Google Scholar] [CrossRef]
- Lenartowski, R.; Suwińska, A.; Lenartowska, M. Calreticulin expression in relation to exchangeable Ca2+ level that changes dynamically during anthesis, progamic phase, and double fertilization in Petunia. Planta 2015, 241, 209–227. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Hong, Z.; Su, W.; Li, J. A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2009, 106, 13612–13617. [Google Scholar] [CrossRef] [Green Version]
- Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 24, 494–498. [Google Scholar] [CrossRef]
- Marone, M.; Mozzetti, S.; De Ritis, D.; Pierelli, L.; Scambia, G. Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol. Proced. Online 2001, 3, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
RACE | 3′-RACE—GSP Outer primer | 5′CTAATAGGGAGGCTGAAAAGGA3′ |
3′-RACE—GSP Inner primer | 5′GCAGAGAAAGTGAGAAAAGCAA3′ | |
5′-RACE—GSP Outer primer | 5′GCCACCACACTCAATGTCTTGT3′ | |
5′-RACE—GSP Inner primer | 5′AATGTTTGGCATCGGTTGAC3′ | |
sqRT-PCR | PhCRT3a | 5′GAGACAGAAAGCCAGCTTCATT3′ 5′ACGCCTCCTCTAGAAAGGTTTT3′ |
PhTUB | 5′CTAGAGGTCTCTCAATGGCATC3′ 5′TCCTCCTCATCCTCATATTCAC3′ | |
RT-PCR | Full-length PhCRT3a gene-specific primers | 5′AAAATTCACAGTAATGAGCAAATGGCTC3′ 5′CGACTGAAGAGTAATTTTTTTCGATTTATTTATC3′ |
PTGS experiments | siPhCRT3a scr_siPhCRT3a | 5′GCAGGAUCAUUUAAGCACA[dT][dT]3′ 5′GCUACAGAUUGCGUAACAA[dT][dT]3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasąg, P.; Suwińska, A.; Lenartowska, M.; Lenartowski, R. RNAi-Mediated Knockdown of Calreticulin3a Impairs Pollen Tube Growth in Petunia. Int. J. Mol. Sci. 2022, 23, 4987. https://doi.org/10.3390/ijms23094987
Wasąg P, Suwińska A, Lenartowska M, Lenartowski R. RNAi-Mediated Knockdown of Calreticulin3a Impairs Pollen Tube Growth in Petunia. International Journal of Molecular Sciences. 2022; 23(9):4987. https://doi.org/10.3390/ijms23094987
Chicago/Turabian StyleWasąg, Piotr, Anna Suwińska, Marta Lenartowska, and Robert Lenartowski. 2022. "RNAi-Mediated Knockdown of Calreticulin3a Impairs Pollen Tube Growth in Petunia" International Journal of Molecular Sciences 23, no. 9: 4987. https://doi.org/10.3390/ijms23094987
APA StyleWasąg, P., Suwińska, A., Lenartowska, M., & Lenartowski, R. (2022). RNAi-Mediated Knockdown of Calreticulin3a Impairs Pollen Tube Growth in Petunia. International Journal of Molecular Sciences, 23(9), 4987. https://doi.org/10.3390/ijms23094987