Low Concentration of the Neutrophil Proteases Cathepsin G, Cathepsin B, Proteinase-3 and Metalloproteinase-9 Induce Biofilm Formation in Non-Biofilm-Forming Staphylococcus epidermidis Isolates
Abstract
:1. Introduction
2. Results
2.1. Genotypic Characterization and Induction of Biofilm in Non-Biofilm-Forming Staphylococcus Epidermidis Isolates
2.2. Induction of Biofilm by Neutrophil Protein Extract
2.3. Induction of Biofilm by Neutrophil Proteases in Commensal and Clinical Isolates
2.4. Role of Neutrophil’s Protease in Biofilm Formation
2.5. Protease-Induced Biofilm in a Mouse Model
2.6. Biofilm Induction by the Presence of Neutrophils
3. Discussion
4. Materials and Methods
4.1. Isolates
4.2. Genomic DNA Extraction
4.3. Amplification of Genes by PCR
4.4. Biofilm Formation
4.5. Biofilm Formation Kinetics
4.6. Mouse Model of Catheter Infection
4.7. Biofilm Induced by Neutrophils
4.8. Neutrophils Extracellular Traps (NETs)
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NETs | neutrophils extracellular traps |
MOI | multiplicity of infection |
PNAG/PIA | poly-N-acetyl glucosamine |
Aap | accumulation-associated protein |
eDNA | extracellular DNA |
Esp | serine protease |
EcpA | cysteine protease A |
SepA | metalloprotease A |
AtlE | autolysin E |
CFU | colony-forming unit |
MM-9 | metalloproteinase-9 |
PMSF | phenylmethylsulfonyl fluoride |
PMA | phorbol 12-myristate 13-acetate |
ALP | Anti-leukoprotease |
References
- Otto, M. Virulence factors of the coagulase-negative staphylococci. Front. Biosci. 2004, 9, 841–863. [Google Scholar] [CrossRef] [PubMed]
- Duszynska, W.; Rosenthal, V.D.; Szczesny, A.; Zajaczkowska, K.; Fulek, M.; Tomaszewski, J. Device associated -health care associated infections monitoring, prevention and cost assessment at intensive care unit of University Hospital in Poland (2015–2017). BMC Infect. Dis. 2020, 20, 761. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.; Brito, C.I.; Oliveira, A.; Pereira, V.C.; de Cunha, M.L. Staphylococcus epidermidis and Staphylococcus haemolyticus: Detection of biofilm genes and biofilm formation in blood culture isolates from patients in a Brazilian teaching hospital. Diagn. Microbiol. Infect. Dis. 2016, 86, 11–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fey, P.D.; Olson, M.E. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol. 2010, 5, 917–933. [Google Scholar] [CrossRef] [Green Version]
- Shivaee, A.; Mohammadzadeh, R.; Shahbazi, S.; Pardakhtchi, E.; Ohadi, E.; Kalani, B.S. Time-variable expression levels of mazF, atlE, sdrH, and bap genes during biofilm formation in Staphylococcus epidermidis. Acta Microbiol. Immunol. Hung. 2019, 66, 499–508. [Google Scholar] [CrossRef]
- Patti, J.M.; Allen, B.L.; McGavin, M.J.; Höök, M. MSCRAMM-mediated adherence of microorganisms to host tissues. Ann. Rev. Microbiol. 1994, 48, 585–617. [Google Scholar] [CrossRef]
- McKenney, D.; Hübner, J.; Muller, E.; Wang, Y.; Goldmann, D.A.; Pier, G.B. The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect. Immun. 1998, 66, 4711–4720. [Google Scholar] [CrossRef] [Green Version]
- Conlon, K.M.; Humphreys, H.; O’Gara, J.P. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J. Bacteriol. 2002, 184, 4400–4408. [Google Scholar] [CrossRef] [Green Version]
- Knobloch, J.K.; Bartscht, K.; Sabottke, A.; Rohde, H.; Feucht, H.H.; Mack, D. Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: Differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. 2001, 183, 2624–2633. [Google Scholar] [CrossRef] [Green Version]
- Dobinsky, S.; Kiel, K.; Rohde, H.; Bartscht, K.; Knobloch, J.K.; Horstkotte, M.A.; Mack, D. Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: Evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J. Bacteriol. 2003, 185, 2879–2886. [Google Scholar] [CrossRef] [Green Version]
- Rachid, S.; Ohlsen, K.; Witte, W.; Hacker, J.; Ziebuhr, W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 3357–3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argudín, M.A.; Vanderhaeghen, W.; Vandendriessche, S.; Vandecandelaere, I.; Denis, O.; Coenye, T.; Butaye, P. Biofilm formation of ica operon-positive Staphylococcus epidermidis from different sources. APMIS 2015, 123, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Stevens, N.T.; Tharmabala, M.; Dillane, T.; Greene, C.M.; O’Gara, J.P.; Humphreys, H. Biofilm and the role of the ica operon and aap in Staphylococcus epidermidis isolates causing neurosurgical meningitis. Clin. Microbiol. Infect. 2008, 14, 719–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juárez-Verdayes, M.A.; Ramón-Peréz, M.L.; Flores-Páez, L.A.; Camarillo-Márquez, O.; Zenteno, J.C.; Jan-Roblero, J.; Cancino-Diaz, M.E.; Cancino-Diaz, J.C. Staphylococcus epidermidis with the icaA⁻/icaD⁻/IS256⁻ genotype and protein or protein/extracellular-DNA biofilm is frequent in ocular infections. J. Med. Microbiol. 2013, 62, 1579–1587. [Google Scholar] [CrossRef] [Green Version]
- Weiser, J.; Henke, H.A.; Hector, N.; Both, A.; Christner, M.; Büttner, H.; Kaplan, J.B.; Rohde, H. Sub-inhibitory tigecycline concentrations induce extracellular matrix binding protein Embp dependent Staphylococcus epidermidis biofilm formation and immune evasion. Int. J. Med. Microbiol. 2016, 306, 471–478. [Google Scholar] [CrossRef]
- Christner, M.; Franke, G.C.; Schommer, N.N.; Wendt, U.; Wegert, K.; Pehle, P.; Kroll, G.; Schulze, C.; Buck, F.; Mack, D.; et al. The giant extracelular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol. Microbiol. 2010, 75, 187–207. [Google Scholar] [CrossRef]
- Rohde, H.; Burandt, E.C.; Siemssen, N.; Frommelt, L.; Burdelski, C.; Wurster, S.; Scherpe, S.; Davies, A.P.; Harris, L.G.; Horstkotte, M.A.; et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007, 28, 1711–1720. [Google Scholar] [CrossRef]
- Heilmann, C.; Hussain, M.; Peters, G.; Götz, F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 1997, 24, 1013–1024. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Hu, J.; Xu, T.; Wang, J.; Qu, D. Role of the two-component regulatory system arlRS in ica operon and aap positive but non-biofilm-forming Staphylococcus epidermidis isolates from hospitalized patients. Microb. Pathog. 2014, 76, 89–98. [Google Scholar] [CrossRef]
- Rohde, H.; Burdelsk, C.; Bartscht, K.; Hussain, M.; Buck, F.; Horstkotte, M.A.; Knobloch, J.K.; Heilmann, C.; Herrmann, M.; Mack, D. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol. 2005, 55, 1883–1895. [Google Scholar] [CrossRef]
- Paharik, A.E.; Kotasinska, M.; Both, A.; Hoang, T.N.; Büttner, H.; Roy, P.; Fey, P.D.; Horswill, A.R.; Rohde, H. The metalloprotease SepA governs processing of accumulation-associated protein and shapes intercellular adhesive surface properties in Staphylococcus epidermidis. Mol. Microbiol. 2017, 103, 860–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshida, T.; Sugai, M.; Komatsuzawa, H.; Hong, Y.M.; Suginaka, H.; Tomasz, A. A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: Cloning, sequence analysis, and characterization. Proc. Natl. Acad. Sci. USA 1995, 92, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christner, M.; Heinze, C.; Busch, M.; Franke, G.; Hentschke, M.; Bayard Dühring, S.; Büttner, H.; Kotasinska, M.; Wischnewski, V.; Kroll, G.; et al. sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis-dependent release of eDNA. Mol. Microbiol. 2012, 86, 394–410. [Google Scholar] [CrossRef] [PubMed]
- Irimia, D. Neutrophil swarms are more than the accumulation of cells. Microbiol. Insights 2020, 13, 1178636120978272. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.S.; Tomlin, K.L.; Worthen, G.S.; Poch, K.R.; Lieber, J.G.; Saavedra, M.T.; Fessler, M.B.; Malcolm, K.C.; Vasil, M.L.; Nick, J.A. Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect. Immun. 2005, 73, 3693–3701. [Google Scholar] [CrossRef] [Green Version]
- Parks, Q.M.; Young, R.L.; Poch, K.R.; Malcolm, K.C.; Vasil, M.L.; Nick, J.A. Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: Human F-actin and DNA as targets for therapy. J. Med. Microbiol. 2009, 58, 492–502. [Google Scholar] [CrossRef]
- Shiau, A.L.; Wu, C.L. The inhibitory effect of Staphylococcus epidermidis slime on the phagocytosis of murine peritoneal macrophages is interferon-independent. Microbiol. Immunol. 1998, 42, 33–40. [Google Scholar] [CrossRef]
- Schommer, N.N.; Christner, M.; Hentschke, M.; Ruckdeschel, K.; Aepfelbacher, M.; Rohde, H. Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A.1. Infect. Immun. 2011, 79, 2267–2276. [Google Scholar] [CrossRef] [Green Version]
- Månsson, E.; Sahdo, B.; Nilsdotter-Augustinsson, Å.; Särndahl, E.; Söderquist, B. Lower activation of caspase-1 by Staphylococcus epidermidis isolated from prosthetic joint infections compared to commensals. J. Bone Jt. Infect. 2018, 3, 10–14. [Google Scholar] [CrossRef]
- Månsson, E.; Söderquist, B.; Nilsdotter-Augustinsson, Å.; Särndahl, E.; Demirel, I. Staphylococcus epidermidis from prosthetic joint infections induces lower IL-1β release from human neutrophils than isolates from normal flora. APMIS 2018, 126, 678–684. [Google Scholar] [CrossRef]
- Meyle, E.; Brenner-Weiss, G.; Obst, U.; Prior, B.; Hänsch, G.M. Immune defense against S. epidermidis biofilms: Components of the extracelular polymeric substance activate distinct bactericidal mechanisms of phagocytic cells. Int. J. Artif. Organs 2012, 35, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Meyle, E.; Stroh, P.; Günther, F.; Hoppy-Tichy, T.; Wagner, C.; Hänsch, G.M. Destruction of bacterial biofilms by polymorphonuclear neutrophils: Relative contribution of phagocytosis, DNA release, and degranulation. Int. J. Artif. Organs 2010, 33, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Dapunt, U.; Gaida, M.M.; Meyle, E.; Prior, B.; Hänsch, G.M. Activation of phagocytic cells by Staphylococcus epidermidis biofilms: Effects of extracellular matrix proteins and the bacterial stress protein GroEL on netosis and MRP-14 release. Pathog. Dis. 2016, 74, ftw035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreirinha, P.; Pérez-Cabezas, B.; Correia, A.; Miyazawa, B.; França, A.; Carvalhais, V.; Faustino, A.; Cordeiro-da-Silva, A.; Teixeira, L.; Pier, G.B.; et al. Poly-N-acetylglucosamine production by Staphylococcus epidermidis cells increases their in vivo proinflammatory effect. Infect. Immun. 2016, 84, 2933–2943. [Google Scholar] [CrossRef] [Green Version]
- Cheung, G.Y.; Rigby, K.; Wang, R.; Queck, S.Y.; Braughton, K.R.; Whitney, A.R.; Teintze, M.; DeLeo, F.R.; Otto, M. Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS Pathog. 2010, 6, e1001133. [Google Scholar] [CrossRef]
- de Vor, L.; Rooijakkers, S.H.M.; van Strijp, J.A.G. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Lett. 2020, 594, 2556–2569. [Google Scholar] [CrossRef] [Green Version]
- Martínez-García, S.; Ortega-Peña, S.; De Haro-Cruz, M.J.; Aguilera-Arreola, M.G.; Alcántar-Curiel, M.D.; Betanzos-Cabrera, G.; Jan-Roblero, J.; Pérez-Tapia, S.M.; Rodríguez-Martínez, S.; Cancino-Diaz, M.E.; et al. Non-biofilm-forming commensal Staphylococcus epidermidis isolates produce biofilm in the presence of trypsin. Microbiologyopen 2019, 8, e906. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Spoto, M.; Hardy, R.; Guan, C.; Fleming, E.; Larson, P.J.; Brown, J.S.; Oh, J. Host-specific evolutionary and transmission dynamics shape the functional diversification of Staphylococcus epidermidis in human skin. Cell 2020, 180, 454–470.e18. [Google Scholar] [CrossRef]
- Wiedow, O.; Harder, J.; Bartels, J.; Streit, V.; Christophers, E. Antileukoprotease in human skin: An antibiotic peptide constitutively produced by keratinocytes. Biochem. Biophys. Res. Commun. 1998, 248, 904–909. [Google Scholar] [CrossRef]
- López, D.; Vlamakis, H.; Kolter, R. Biofilms. Cold Spring Harb. Perspect. Biol. 2010, 2, a000398. [Google Scholar] [CrossRef]
- Waters, E.M.; Rowe, S.E.; O’Gara, J.P.; Conlon, B.P. Convergence of Staphylococcus aureus persister and biofilm research: Can biofilms be defined as communities of adherent persister cells? PLoS Pathog. 2016, 12, e1006012. [Google Scholar] [CrossRef] [PubMed]
- Cerca, F.; Andrade, F.; França, Â.; Andrade, E.B.; Ribeiro, A.; Almeida, A.A.; Cerca, N.; Pier, G.; Azeredo, J.; Vilanova, M. Staphylococcus epidermidis biofilms with higher proportions of dormant bacteria induce a lower activation of murine macrophages. J. Med. Microbiol. 2011, 60, 1717–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Z.; Ou, Y.; Yang, L.; Zhu, Y.; Tolker-Nielsen, T.; Molin, S.; Qu, D. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 2007, 153, 2083–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, N.B.; Hinojosa, J.A.; Zhu, M.; Robertson, D.M. Acceleration of the formation of biofilms on contact lens surfaces in the presence of neutrophil-derived celular debris is conserved across multiple genera. Mol. Vis. 2018, 24, 94–104. [Google Scholar] [PubMed]
- Stapels, D.A.; Ramyar, K.X.; Bischoff, M.; von Köckritz-Blickwede, M.; Milder, F.J.; Ruyken, M.; Eisenbeis, J.; McWhorter, W.J.; Herrmann, M.; van Kessel, K.P.; et al. Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors. Proc. Natl. Acad. Sci. USA 2014, 111, 13187–13192. [Google Scholar] [CrossRef] [Green Version]
- Proctor, R.A.; Kriegeskorte, A.; Kahl, B.C.; Becker, K.; Löffler, B.; Peters, G. Staphylococcus aureus small colony variants (SCVs): A road map for the metabolic pathways involved in persistent infections. Front. Cell. Infect. Microbiol. 2014, 4, 99. [Google Scholar] [CrossRef]
- Lourtet-Hascoët, J.; Bicart-See, A.; Félicé, M.P.; Giordano, G.; Bonnet, E. Staphylococcus lugdunensis, a serious pathogen in periprosthetic joint infections: Comparison to Staphylococcus aureus and Staphylococcus epidermidis. Int. J. Infect. Dis. 2016, 51, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Triffault-Fillit, C.; Ferry, T.; Laurent, F.; Pradat, P.; Dupieux, C.; Conrad, A.; Becker, A.; Lustig, S.; Fessy, M.H.; Chidiac, C.; et al. Microbiologic epidemiology depending on time to occurrence of prosthetic joint infection: A prospective cohort study. Clin. Microbiol. Infect. 2019, 25, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Christensen, G.D.; Simpson, W.A.; Younger, J.J.; Baddour, L.M.; Barrett, F.F.; Melton, D.M.; Beachey, E.H. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985, 22, 996–1006. [Google Scholar] [CrossRef] [Green Version]
- Sander, G.; Börner, T.; Kriegeskorte, A.; von Eiff, C.; Becker, K.; Mahabir, E. Catheter colonization and abscess formation due to Staphylococcus epidermidis with normal and small-colony-variant phenotype is mouse strain dependent. PLoS ONE 2012, 7, e36602. [Google Scholar] [CrossRef]
Genotype | Number Isolates | aap | sepA | Esp | ecpA | icaA | icaD | Glucose 1% | NaCl 4% | Ethanol 4% |
---|---|---|---|---|---|---|---|---|---|---|
P1 | 30 | + | + | + | + | − | − | 8 (26.6) | 2 (6.6) | 5 (16.6) |
P1A | 1 | − | + | + | + | − | − | 0 | 0 | 0 |
P2 | 11 | + | − | − | − | − | − | 1 (9.1) | 3 (27.3) | 1 (9.1) |
P2A | 4 | − | − | − | − | − | − | 1 (25) | 0 | 0 |
P3 | 9 | + | + | + | + | + | + | 5 (55.5) | 0 | 1 (11.1) |
P3A | 1 | − | + | + | + | + | + | 0 | 0 | 1 (100) |
P4 | 10 | + | + | − | − | − | − | 0 | 0 | 1 (10) |
P4A | 4 | − | + | − | − | − | − | 0 | 0 | 0 |
P5 | 5 | + | + | − | + | − | − | 0 | 0 | 0 |
P6 | 2 | + | + | + | − | − | − | 0 | 0 | 0 |
P7 | 2 | + | + | + | − | − | + | 0 | 0 | 0 |
P8 | 2 | − | + | − | + | − | − | 0 | 0 | 0 |
Total | 81 | 69 | 65 | 45 | 48 | 10 | 12 | 15 (18.5) | 5 (6.2) | 9 (11.1) |
Isolates (n = 53) | Cathepsin G n (%) | Proteinase-3 n (%) | Cathepsin B n (%) | MMP-9 n (%) |
---|---|---|---|---|
Commensal isolates n = 22 | 8 (36.4) | 19 (86.4) * | 7 (31.8) | 9 (40.9) |
Clinical isolates n = 31 | 6 (19.6) | 12 (38.7) | 7 (22.6) | 8 (25.8) |
Source of Isolation (n = 53) | Cathepsin G n (%) | Proteinase-3 n (%) | Cathepsin B n (%) | MMP-9 n (%) |
---|---|---|---|---|
healthy conjunctiva (HC), n = 10 (18.8%) | 4 (40) | 10 (100) * | 3 (30) | 5 (50) |
healthy skin (HS), n = 12 (22.6%) | 4 (33.3) | 9 (75) | 4 (33.3) | 4 (33.3) |
ocular infection (OI), n = 8 (15%) | 5 (52.5%) | 7 (87.5) | 3 (37.5) | 5 (52.5) |
prosthetic joint infection (PJI), n = 23 (43.4%) | 1 (4.3) | 5 (21.7) | 4 (17.4) | 3 (13) |
Gene | Sequence (5′→3′) |
---|---|
sepA | Fw:CCAGGGAGCAGCCTCGATGAAGAATTTTTCTAAATTC Rv:GCAAAGCACCGGCCTCGTTACTACACGCCAACAC |
esp | Fw: CCAGGGAGCAGCCTCGATGAAAAAGAGATTTTTATC Rv:GCAAAGCACCGGCCTCGTTACTGAATATTTATATCAGG |
ecpA | Fw: CCAGGGAGCAGCCTCGATGAAGAAAAAATTAAG Rv: GCAAAGCACCGGCCTCGTTAATAACCATAAATTGATG |
icaA | Fw: TCTCTTGCAGGAGCAATCAA Rv: AGGCACTAACATCCAGCA |
icaD | Fw: ATGGTCAAGCCCAGACAGAG Rv: CGTGTTTTCAACATTTAATGCAA |
aap | Fw: AGAAACAAGCTGGTCAAG Rv: CTGCGTAGTTAAGAAAATC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Alonso, I.S.; Martínez-García, S.; Betanzos-Cabrera, G.; Juárez, E.; Sarabia-León, M.C.; Herrera, M.T.; Gómez-Chávez, F.; Sanchez-Torres, L.; Rodríguez-Martínez, S.; Cancino-Diaz, M.E.; et al. Low Concentration of the Neutrophil Proteases Cathepsin G, Cathepsin B, Proteinase-3 and Metalloproteinase-9 Induce Biofilm Formation in Non-Biofilm-Forming Staphylococcus epidermidis Isolates. Int. J. Mol. Sci. 2022, 23, 4992. https://doi.org/10.3390/ijms23094992
Gómez-Alonso IS, Martínez-García S, Betanzos-Cabrera G, Juárez E, Sarabia-León MC, Herrera MT, Gómez-Chávez F, Sanchez-Torres L, Rodríguez-Martínez S, Cancino-Diaz ME, et al. Low Concentration of the Neutrophil Proteases Cathepsin G, Cathepsin B, Proteinase-3 and Metalloproteinase-9 Induce Biofilm Formation in Non-Biofilm-Forming Staphylococcus epidermidis Isolates. International Journal of Molecular Sciences. 2022; 23(9):4992. https://doi.org/10.3390/ijms23094992
Chicago/Turabian StyleGómez-Alonso, Itzia S., Sergio Martínez-García, Gabriel Betanzos-Cabrera, Esmeralda Juárez, María C. Sarabia-León, María Teresa Herrera, Fernando Gómez-Chávez, Luvia Sanchez-Torres, Sandra Rodríguez-Martínez, Mario E. Cancino-Diaz, and et al. 2022. "Low Concentration of the Neutrophil Proteases Cathepsin G, Cathepsin B, Proteinase-3 and Metalloproteinase-9 Induce Biofilm Formation in Non-Biofilm-Forming Staphylococcus epidermidis Isolates" International Journal of Molecular Sciences 23, no. 9: 4992. https://doi.org/10.3390/ijms23094992
APA StyleGómez-Alonso, I. S., Martínez-García, S., Betanzos-Cabrera, G., Juárez, E., Sarabia-León, M. C., Herrera, M. T., Gómez-Chávez, F., Sanchez-Torres, L., Rodríguez-Martínez, S., Cancino-Diaz, M. E., Cancino, J., & Cancino-Diaz, J. C. (2022). Low Concentration of the Neutrophil Proteases Cathepsin G, Cathepsin B, Proteinase-3 and Metalloproteinase-9 Induce Biofilm Formation in Non-Biofilm-Forming Staphylococcus epidermidis Isolates. International Journal of Molecular Sciences, 23(9), 4992. https://doi.org/10.3390/ijms23094992