Association of Ligamentum Flavum Hypertrophy with Adolescent Idiopathic Scoliosis Progression—Comparative Microarray Gene Expression Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. MRI Imaging
2.3. Isolation of Human LF cells from AIS Patients
2.4. qPCR
2.5. Hematoxylin-Eosin, Azan, Elastica Van Gieson Staining, and Immunohistochemistry
2.6. Immunohistochemistry
2.7. Western Blotting
2.8. Microarray Analysis
2.9. Statistical Analysis
3. Results
3.1. Measurements of LF Hypertrophy in Patients with AIS
3.2. Histological Analysis of LF Hypertrophy with Comparison between the Concave and Convex Sides
3.3. Quantitative PCR (qPCR) Analysis of LF
3.4. Gene Expression Profiling of LF between Concave and Convex Side
3.5. Gene Expression Profiling of LF between Controls and the Convex Side of the Scoliotic Curvature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIS | adolescent idiopathic scoliosis |
CCN | cellular communication network factor |
COL1A1 | collagen type I alpha 1 chain |
COL2A1 | collagen type II alpha 1 chain |
COL3A1 | collagen type III alpha 1 chain |
COL10A1 | collagen type X alpha 1 chain |
CTGF | connective tissue growth factor |
DCN | decorin |
ECM | extracellular matrix |
ERC2 | ELKS/RAB6-Interacting/CAST Family Member 2 |
EVG | Elastica van Gieson |
HE | hematoxylin-eosin |
IL | interleukin |
LF | ligamentum flavum |
MAFB | V-maf musculoaponeurotic fibrosarcoma oncogene homolog B |
MMP2 | matrix metalloproteinase 2 |
MRI | magnetic resonance imaging |
PDGF | platelet-derived growth factor |
qPCR | quantitative PCR (polymerase chain reaction) |
SMAD3 | SMAD family member 3 |
SNP | single nucleotide polymorphisms |
SOX9 | SRY (sex-determining region Y)-box 9 |
TGF | transforming growth factor-beta 1 |
TIMP2 | TIMP (tissue inhibitor of metalloproteases) metallopeptidase inhibitor 2 |
TNF | tumor necrosis factor |
VEGF | vascular endothelial growth factor |
References
- Kane, W.J. Scoliosis prevalence: A call for a statement of terms. Clin. Orthop. Relat. Res. 1997, 126, 43–46. [Google Scholar] [CrossRef]
- Newton, P.O.; Faro, F.D.; Gollogly, S.; Betz, R.R.; Lenke, L.G.; Lowe, T.G. Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis. A study of six hundred and thirty-one patients. J. Bone Joint Surg. Am. 2005, 87, 1937–1946. [Google Scholar] [CrossRef] [PubMed]
- Theroux, J.; Le May, S.; Hebert, J.J.; Labelle, H. Back pain prevalence is associated with curve-type and severity in adolescents with idiopathic scoliosis: A cross-sectional study. Spine 2017, 42, E914–E919. [Google Scholar] [CrossRef]
- Lonstein, J.E. Scoliosis: Surgical versus nonsurgical treatment. Clin. Orthop. Relat. Res. 2006, 443, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Canavese, F.; Kaelin, A. Adolescent idiopathic scoliosis: Indications and efficacy of nonoperative treatment. Indian J. Orthop. 2011, 45, 7–14. [Google Scholar] [CrossRef]
- Coe, J.D.; Arlet, V.; Donaldson, W.; Berven, S.; Hanson, D.S.; Mudiyam, R.; Perra, J.H.; Shaffrey, C.I. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine 2006, 31, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Kou, I.; Takahashi, A.; Johnson, T.A.; Kono, K.; Kawakami, N.; Uno, K.; Ito, M.; Minami, S.; Yanagida, H.; et al. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat. Genet. 2011, 43, 1237–1240. [Google Scholar] [CrossRef]
- Kou, I.; Takahashi, Y.; Johnson, T.A.; Takahashi, A.; Guo, L.; Dai, J.; Qiu, X.; Sharma, S.; Takimoto, A.; Ogura, Y.; et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat. Genet. 2013, 45, 676–679. [Google Scholar] [CrossRef]
- Noshchenko, A.; Hoffecker, L.; Lindley, E.M.; Burger, E.L.; Cain, C.M.; Patel, V.V.; Bradford, A.P. Predictors of spine deformity progression in adolescent idiopathic scoliosis: A systematic review with meta-analysis. World J. Orthop. 2015, 6, 537–558. [Google Scholar] [CrossRef]
- Roye, B.D.; Wright, M.L.; Williams, B.A.; Matsumoto, H.; Corona, J.; Hyman, J.E.; Roye, D.P., Jr.; Vitale, M.G. Does ScoliScore provide more information than traditional clinical estimates of curve progression? Spine 2012, 37, 2099–2103. [Google Scholar] [CrossRef]
- Tang, Q.L.; Julien, C.; Eveleigh, R.; Bourque, G.; Franco, A.; Labelle, H.; Grimard, G.; Parent, S.; Ouellet, J.; Mac-Thiong, J.M.; et al. A replication study for association of 53 single nucleotide polymorphisms in ScoliScore test with adolescent idiopathic scoliosis in French-Canadian population. Spine 2015, 40, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Sun, X.; Qiu, X.; Li, W.; Zhu, Z.; Zhu, F.; Wang, B.; Yu, Y.; Qian, B. Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic scoliosis. Spine 2007, 32, 2703–2710. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.C.; Man, G.C.; Lam, W.W.; Yeung, B.H.; Chau, W.W.; Ng, B.K.; Lam, T.P.; Lee, K.M.; Cheng, J.C. Morphological and functional electrophysiological evidence of relative spinal cord tethering in adolescent idiopathic scoliosis. Spine 2008, 33, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Shi, L.; Hui, S.C.; Wang, D.; Deng, M.; Chu, W.C.; Cheng, J.C. Variation in anisotropy and diffusivity along the medulla oblongata and the whole spinal cord in adolescent idiopathic scoliosis: A pilot study using diffusion tensor imaging. AJNR Am. J. Neuroradiol. 2014, 35, 1621–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelein, R.M.; van Dieën, J.H.; Smit, T.H. The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis--a hypothesis. Med. Hypotheses 2005, 65, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Aota, Y.; Mitsugi, N.; Kono, M.; Higashi, T.; Kawai, T.; Yamada, K.; Niimura, T.; Kaneko, K.; Tanabe, H.; et al. Relationship between bone density and bone metabolism in adolescent idiopathic scoliosis. Scoliosis 2015, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Azeddine, B.; Letellier, K.; da Wang, S.; Moldovan, F.; Moreau, A. Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis. Clin. Orthop. Relat. Res. 2007, 462, 45–52. [Google Scholar] [CrossRef]
- Alsiddiky, A.; Alfadhil, R.; Al-Aqel, M.; Ababtain, N.; Almajed, N.; Bakarman, K.; Awwad, W.; Alatassi, R. Assessment of serum vitamin D levels in surgical adolescent idiopathic scoliosis patients. BMC Pediatr. 2020, 20, 202. [Google Scholar] [CrossRef]
- Burwell, R.G.; Clark, E.M.; Dangerfield, P.H.; Moulton, A. Adolescent idiopathic scoliosis (AIS): A multifactorial cascade concept for pathogenesis and embryonic origin. Scoliosis Spinal Disord. 2016, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Sairyo, K.; Biyani, A.; Goel, V.; Leaman, D.; Booth, R., Jr.; Thomas, J.; Gehling, D.; Vishnubhotla, L.; Long, R.; Ebraheim, N. Pathomechanism of ligamentum flavum hypertrophy: A multidisciplinary investigation based on clinical, biomechanical, histologic, and biologic assessments. Spine 2005, 30, 2649–2656. [Google Scholar] [CrossRef]
- Altinkaya, N.; Yildirim, T.; Demir, S.; Alkan, O.; Sarica, F.B. Factors associated with the thickness of the ligamentum flavum: Is ligamentum flavum thickening due to hypertrophy or buckling? Spine 2011, 36, E1093–E1097. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, S.; Nakamura, T.; Ikeda, T.; Takagi, K. The effect of mechanical stress on hypertrophy of the lumbar ligamentum flavum. J. Spinal Disord. 1995, 8, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Siebert, E.; Prüss, H.; Klingebiel, R.; Failli, V.; Einhäupl, K.M.; Schwab, J.M. Lumbar spinal stenosis: Syndrome, diagnostics and treatment. Nat. Rev. Neurol. 2009, 5, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Porter, R.W. Idiopathic scoliosis: The relation between the vertebral canal and the vertebral bodies. Spine 2000, 25, 1360–1366. [Google Scholar] [CrossRef] [PubMed]
- Veldhuizen, A.G.; Wever, D.J.; Webb, P.J. The aetiology of idiopathic scoliosis: Biomechanical and neuromuscular factors. Eur. Spine J. 2000, 9, 178–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenke, L.G.; Betz, R.R.; Harms, J.; Bridwell, K.H.; Clements, D.H.; Lowe, T.G.; Blanke, K. Adolescent idiopathic scoliosis: A new classification to determine extent of spinal arthrodesis. J. Bone Jt. Surg. 2001, 83, 1169–1181. [Google Scholar] [CrossRef]
- Kim, Y.U.; Park, J.Y.; Kim, D.H.; Karm, M.H.; Lee, J.Y.; Yoo, J.I.; Chon, S.W.; Suh, J.H. The Role of the Ligamentum Flavum Area as a Morphological Parameter of Lumbar Central Spinal Stenosis. Pain Physician 2017, 20, E419–E424. [Google Scholar]
- Takeda, H.; Nagai, S.; Ikeda, D.; Kaneko, S.; Tsuji, T.; Fujita, N. Collagen profiling of ligamentum flavum in patients with lumbar spinal canal stenosis. J. Orthop. Sci. 2021, 26, 560–565. [Google Scholar] [CrossRef]
- Saito, T.; Yokota, K.; Kobayakawa, K.; Hara, M.; Kubota, K.; Harimaya, K.; Kawaguchi, K.; Hayashida, M.; Matsumoto, Y.; Doi, T.; et al. Experimental Mouse Model of Lumbar Ligamentum Flavum Hypertrophy. PLoS ONE 2017, 12, e0169717. [Google Scholar] [CrossRef]
- Seki, S.; Yahara, Y.; Makino, H.; Kawaguchi, Y.; Kimura, T. Selection of posterior spinal osteotomies for more effective periapical segmental vertebral derotation in adolescent idiopathic scoliosis-An in vivo comparative analysis between Ponte osteotomy and inferior facetectomy alone. J. Orthop. Sci. 2018, 23, 488–494. [Google Scholar] [CrossRef]
- Li, Q.Y.; Zhong, G.B.; Liu, Z.D.; Lao, L.F. Effect of Asymmetric Tension on Biomechanics and Metabolism of Vertebral Epiphyseal Plate in a Rodent Model of Scoliosis. Orthop. Surg. 2017, 9, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Clin, J.; Aubin, C.É.; Lalonde, N.; Parent, S.; Labelle, H. A new method to include the gravitational forces in a finite element model of the scoliotic spine. Med. Biol. Eng. Comput. 2011, 49, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Kosaka, H.; Sairyo, K.; Biyani, A.; Leaman, D.; Yeasting, R.; Higashino, K.; Sakai, T.; Katoh, S.; Sano, T.; Goel, V.K.; et al. Pathomechanism of loss of elasticity and hypertrophy of lumbar ligamentum flavum in elderly patients with lumbar spinal canal stenosis. Spine 2007, 32, 2805–2811. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Suzuki, A.; Abdullah Ahmadi, S.; Terai, H.; Yamada, K.; Hoshino, M.; Toyoda, H.; Takahashi, S.; Tamai, K.; Ohyama, S.; et al. Mechanical stress induces elastic fibre disruption and cartilage matrix increase in ligamentum flavum. Sci. Rep. 2017, 7, 13092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Okada, T.; Endo, M.; Nakamura, T.; Oike, Y.; Mizuta, H. Angiopoietin-like protein 2 promotes inflammatory conditions in the ligamentum flavum in the pathogenesis of lumbar spinal canal stenosis by activating interleukin-6 expression. Eur. Spine J. 2015, 24, 2001–2009. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, K.; Nakamura, T.; Tokunaga, T.; Uehara, Y.; Okada, T.; Taniwaki, T.; Fujimoto, T.; Mizuta, H. Matrix metalloproteinase promotes elastic fiber degradation in ligamentum flavum degeneration. PLoS ONE 2018, 13, e0200872. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Kwon, W.K.; Bae, T.; Kim, S.; Lee, J.B.; Cho, T.H.; Park, J.Y.; Kim, K.; Hur, J.K.; Hur, J.W. CCN5 Reduces Ligamentum Flavum Hypertrophy by Modulating the TGF-β Pathway. J. Orthop. Res. 2019, 37, 2634–2644. [Google Scholar] [CrossRef] [Green Version]
- Yayama, T.; Baba, H.; Furusawa, N.; Kobayashi, S.; Uchida, K.; Kokubo, Y.; Noriki, S.; Imamura, Y.; Fukuda, M. Pathogenesis of calcium crystal deposition in the ligamentum flavum correlates with lumbar spinal canal stenosis. Clin. Exp. Rheumatol. 2005, 23, 637–643. [Google Scholar]
- Park, J.B.; Lee, J.K.; Park, S.J.; Riew, K.D. Hypertrophy of ligamentum flavum in lumbar spinal stenosis associated with increased proteinase inhibitor concentration. J. Bone Joint Surg. Am. 2005, 87, 2750–2757. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zhang, H.; Wang, X.; Liu, X. Ligamentum flavum fibrosis and hypertrophy: Molecular pathways, cellular mechanisms, and future directions. FASEB J. 2020, 34, 9854–9868. [Google Scholar] [CrossRef]
- Kurundkar, A.R.; Kurundkar, D.; Rangarajan, S.; Locy, M.L.; Zhou, Y.; Liu, R.M.; Zmijewski, J.; Thannickal, V.J. The matricellular protein CCN1 enhances TGF-β1/SMAD3-dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury. FASEB J. 2016, 30, 2135–2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimune, H. Active zones of mammalian neuromuscular junctions: Formation, density, and aging. Ann. N. Y. Acad. Sci. 2012, 1274, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Südhof, T.C. The presynaptic active zone. Neuron 2012, 75, 11–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamada, M.; Tsunakawa, Y.; Jeon, H.; Yadav, M.K.; Takahashi, S. Role of MafB in macrophages. Exp. Anim. 2020, 69, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, L.C.; Zhang, A.Y.; Chong, A.K.; Pham, H.; Longaker, M.T.; Chang, J. Expression of a novel gene, MafB, in Dupuytren’s disease. J. Hand Surg. Am. 2006, 31, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, T.; Huang, M.; Liu, Q.; Hu, C.; Wang, B.; Han, D.; Chen, C.; Zhang, J.; Li, Z.; et al. MAFB Promotes Cancer Stemness and Tumorigenesis in Osteosarcoma through a Sox9-Mediated Positive Feedback Loop. Cancer Res. 2020, 80, 2472–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daassi, D.; Hamada, M.; Jeon, H.; Imamura, Y.; Nhu Tran, M.T.; Takahashi, S. Differential expression patterns of MafB and c-Maf in macrophages in vivo and in vitro. Biochem. Biophys. Res. Commun. 2016, 473, 118–124. [Google Scholar] [CrossRef]
Age | Sex | Height (cm) | Weight (kg) | BMI | Risser’s Grade | Lenke Type | Degree of Scoliosis (Cobb) | Degree of Rotation (Apical Vertebral Rotation) | Range of Scoliosis | Apex of Main Thoracic Curvature | Level of Measurement |
---|---|---|---|---|---|---|---|---|---|---|---|
13 | F | 169.6 | 49.5 | 17.2 | 4 | 1 | 55 | 16 | T6-L2 | T9/10 | T8/9-T10/11 |
18 | F | 149 | 40 | 18.0 | 4 | 2 | 53 | 21 | T5-T11 | T7/8 | T6/7-T8/9 |
14 | M | 148 | 47 | 21.5 | 1 | 1 | 45 | 8 | T6-T10 | T8/9 | T7/8-T9/10 |
13 | F | 151 | 43 | 18.9 | 2 | 1 | 54 | 10 | T4-T10 | T7/8 | T6/7-T8/9 |
14 | F | 157 | 39 | 15.8 | 3 | 1 | 60 | 16 | T4-T11 | T7/8 | T6/7-T8/9 |
14 | F | 158.3 | 37.8 | 15.1 | 1 | 2 | 71 | 27 | T5-L2 | T7/8 | T6/7-T8/9 |
17 | F | 152.4 | 45.7 | 19.7 | 5 | 2 | 55 | 18 | T5-T12 | T8/9 | T7/8-T9/10 |
12 | F | 163.1 | 47.7 | 17.9 | 3 | 2 | 60 | 20 | T5-T11 | T7/8 | T6/7-T8/9 |
14 | F | 157.5 | 42.4 | 17.1 | 2 | 1 | 58 | 15 | T4-T11 | T8/9 | T7/8-T9/10 |
12 | F | 149.8 | 38.5 | 17.2 | 2 | 2 | 64 | 18 | T4-T11 | T8/9 | T7/8-T9/10 |
17 | F | 160 | 54.8 | 21.4 | 4 | 1 | 48 | 14 | T5-L2 | T9/10 | T8/9-T10/11 |
14 | F | 155 | 46 | 19.1 | 4 | 1 | 53 | 16 | T6-T11 | T7/8 | T6/7-T8/9 |
14 | F | 155.8 | 46.4 | 19.1 | 4 | 1 | 45 | 17 | T4-T10 | T6/7 | T5/6-T7/8 |
14 | F | 158.7 | 55.7 | 22.1 | 4 | 2 | 45 | 15 | T5-T11 | T7/8 | T6/7-T8/9 |
13 | F | 154 | 43 | 18.1 | 4 | 1 | 47 | 13 | T5-T11 | T7/8 | T6/7-T8/9 |
16 | M | 163.5 | 43.1 | 16.1 | 4 | 1 | 52 | 16 | T6-L2 | T9/10 | T8/9-T10/11 |
12 | F | 158.3 | 37.8 | 15.1 | 4 | 2 | 49 | 10 | T6-T12 | T8/9 | T7/8-T9/10 |
14 | F | 149 | 40 | 18.0 | 2 | 2 | 52 | 12 | T5-T12 | T7/8 | T6/7-T8/9 |
15 | F | 157.4 | 53.5 | 21.6 | 4 | 1 | 48 | 12 | T5-T12 | T8/9 | T7/8-T9/10 |
14 | F | 154 | 43 | 18.1 | 4 | 1 | 51 | 14 | T6-T12 | T9/10 | T8/9-T10/11 |
15 | F | 156 | 55 | 22.6 | 4 | 1 | 54 | 15 | T6-T11 | T9/10 | T8/9-T10/11 |
13 | F | 161 | 61 | 23.5 | 4 | 1 | 48 | 13 | T4-L3 | T10/11 | T9/10-T11/12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seki, S.; Iwasaki, M.; Makino, H.; Yahara, Y.; Kondo, M.; Kamei, K.; Futakawa, H.; Nogami, M.; Watanabe, K.; Tran Canh Tung, N.; et al. Association of Ligamentum Flavum Hypertrophy with Adolescent Idiopathic Scoliosis Progression—Comparative Microarray Gene Expression Analysis. Int. J. Mol. Sci. 2022, 23, 5038. https://doi.org/10.3390/ijms23095038
Seki S, Iwasaki M, Makino H, Yahara Y, Kondo M, Kamei K, Futakawa H, Nogami M, Watanabe K, Tran Canh Tung N, et al. Association of Ligamentum Flavum Hypertrophy with Adolescent Idiopathic Scoliosis Progression—Comparative Microarray Gene Expression Analysis. International Journal of Molecular Sciences. 2022; 23(9):5038. https://doi.org/10.3390/ijms23095038
Chicago/Turabian StyleSeki, Shoji, Mami Iwasaki, Hiroto Makino, Yasuhito Yahara, Miho Kondo, Katsuhiko Kamei, Hayato Futakawa, Makiko Nogami, Kenta Watanabe, Nguyen Tran Canh Tung, and et al. 2022. "Association of Ligamentum Flavum Hypertrophy with Adolescent Idiopathic Scoliosis Progression—Comparative Microarray Gene Expression Analysis" International Journal of Molecular Sciences 23, no. 9: 5038. https://doi.org/10.3390/ijms23095038
APA StyleSeki, S., Iwasaki, M., Makino, H., Yahara, Y., Kondo, M., Kamei, K., Futakawa, H., Nogami, M., Watanabe, K., Tran Canh Tung, N., Hirokawa, T., Tsuji, M., & Kawaguchi, Y. (2022). Association of Ligamentum Flavum Hypertrophy with Adolescent Idiopathic Scoliosis Progression—Comparative Microarray Gene Expression Analysis. International Journal of Molecular Sciences, 23(9), 5038. https://doi.org/10.3390/ijms23095038