Morphological and Biological Evaluations of Human Periodontal Ligament Fibroblasts in Contact with Different Bovine Bone Grafts Treated with Low-Temperature Deproteinisation Protocol
Abstract
:1. Introduction
2. Results
2.1. Proliferation Assay
2.2. Morphological Analysis—LM
2.3. Morphological Analysis—SEM
2.4. Morphological Analysis—CLSM
3. Discussion
3.1. Xenograft Physiochemical Properties Given by the Manufacturing Process Play a Crucial Role in Cellular Stimulation
3.2. Effects of Graft Chemical Deproteinisation on Cellular Morphology
3.3. Strengths and Limitations
4. Materials and Methods
4.1. Biomaterials
- Group Bone E: cancellous granules with a size between 0.25 and 1 mm, exposed to NaOH for 1 h for deproteinisation;
- Group Bone B: cortical and cancellous granules with a size between 0.25 and 1 mm, not exposed to NaOH for deproteinisation;
- Group Bone D: cortical and cancellous granules with a size between 0.25 and 1 mm, exposed to NaOH for 1 h for deproteinisation;
- Group Bone G: cancellous granules with a size between 1 and 2 mm, exposed to NaOH for 1 h for deproteinisation;
4.2. Cell Culture
4.3. Cell Proliferation Assay and Statistical Analysis
4.4. Morphological Analysis
4.4.1. Morphological Analysis—LM
4.4.2. Morphological Analysis—SEM
4.4.3. Morphological Analysis—CLSM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindhe, J.; Socransky, S.; Nyman, S.; Westfelt, E.; Haffajee, A. Effect of age on healing following periodontal therapy. J. Clin. Periodontol. 1985, 12, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Melcher, A.H. On the repair potential of periodontal tissues. J. Periodontol. 1976, 47, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Urban, I.A.; Monje, A. Guided Bone Regeneration in Alveolar Bone Reconstruction. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, A.; Sartori, M.; Parrilli, A.; Aldini, N.N.; Vignudelli, E.; Corinaldesi, G. Histological and histomorphometric analysis of bone tissue after guided bone regeneration with non-resorbable membranes vs. resorbable membranes and titanium mesh. Clin. Implant Dent. Relat. Res. 2019, 21, 693–701. [Google Scholar] [CrossRef] [PubMed]
- García-Gareta, E.; Coathup, M.J.; Blunn, G.W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015, 81, 112–121. [Google Scholar] [CrossRef]
- Sanz, M.; Dahlin, C.; Apatzidou, D.; Artzi, Z.; Bozic, D.; Calciolari, E.; De Bruyn, H.; Dommisch, H.; Donos, N.; Eickholz, P.; et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J. Clin. Periodontol. 2019, 46 (Suppl. S2), 82–91. [Google Scholar] [CrossRef]
- Sakkas, A.; Wilde, F.; Heufelder, M.; Winter, K.; Schramm, A. Autogenous bone grafts in oral implantology-is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int. J. Implant Dent. 2017, 3, 23. [Google Scholar] [CrossRef]
- Pinchi, V.; Varvara, G.; Pradella, F.; Focardi, M.; Donati, M.D.; Norelli, G. Analysis of professional malpractice claims in implant dentistry in Italy from insurance company technical reports, 2006 to 2010. Int. J. Oral Maxillofac. Implants 2014, 29, 1177–1184. [Google Scholar] [CrossRef] [Green Version]
- Al-Moraissi, E.A.; Alkhutari, A.S.; Abotaleb, B.; Altairi, N.H.; Del Fabbro, M. Do osteoconductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis. Int. J. Oral Maxillofac. Surg. 2020, 49, 107–120. [Google Scholar] [CrossRef]
- Meenu, G.; George, V.T.; Manohar, R.; Thomas, N.G. Applications of xenografts in periodontal regeneration. IP Int. J. Periodontol. Implantol. 2021, 6, 184–191. [Google Scholar]
- Dellavia, C.; Giammattei, M.; Carmagnola, D.; Musto, F.; Canciani, E.; Chiapasco, M. Iliac Crest Fresh-Frozen Allografts Versus Autografts in Oral Pre-Prosthetic Bone Reconstructive Surgery: Histologic and Histomorphometric Study. Implant Dent. 2016, 25, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Restoy-Lozano, A.; Dominguez-Mompell, J.-L.; Infante-Cossio, P.; Lara-Chao, J.; Lopez-Pizarro, V. Calvarial Bone Grafting for Three-Dimensional Reconstruction of Severe Maxillary Defects: A Case Series. Int. J. Oral Maxillofac. Implants 2015, 30, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Nkenke, E.; Neukam, F.W. Autogenous bone harvesting and grafting in advanced jaw resorption: Morbidity, resorption and implant survival. Eur. J. Oral Implantol. 2014, 7 (Suppl. S2), S203–S217. [Google Scholar] [PubMed]
- Ng, V.Y. Risk of disease transmission with bone allograft. Orthopedics 2012, 35, 679–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temmerman, A.; Cortellini, S.; Van Dessel, J.; De Greef, A.; Jacobs, R.; Dhondt, R.; Teughels, W.; Quirynen, M. Bovine-derived xenograft in combination with autogenous bone chips versus xenograft alone for the augmentation of bony dehiscences around oral implants: A randomized, controlled, split-mouth clinical trial. J. Clin. Periodontol. 2020, 47, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Sculean, A.; Nikolidakis, D.; Nikou, G.; Ivanovic, A.; Chapple, I.L.; Stavropoulos, A. Biomaterials for promoting periodontal regeneration in human intrabony defects: A systematic review. Periodontology 2000 2015, 68, 182–216. [Google Scholar] [CrossRef] [PubMed]
- Mancini, L.; Romandini, M.; Fratini, A.; Americo, L.M.; Panda, S.; Marchetti, E. Biomaterials for Periodontal and Peri-Implant Regeneration. Materials 2021, 14, 3319. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulos, A.; Bertl, K.; Spineli, L.M.; Sculean, A.; Cortellini, P.; Tonetti, M. Medium and long-term clinical benefits of periodontal regenerative/reconstructive procedures in intrabony defects: Systematic review and network meta-analysis of randomized controlled clinical studies. J. Clin. Periodontol. 2021, 48, 410–430. [Google Scholar] [CrossRef]
- Mancini, L.; Manilia, C.; Casalena, F.; Capogreco, M.; Marzo, G.; Marchetti, E. Histomorphometric evaluation of bovine bone and equine bone matrix in maxillary sinus floor augmentation: A systematic review. J. Biol. Regul. Homeost Agents 2020, 34 (Suppl. S1), 181–191, DENTAL SUPPLEMENT. [Google Scholar]
- Xu, A.-T.; Qi, W.-T.; Lin, M.-N.; Zhu, Y.-H.; He, F.-M. The optimization of sintering treatment on bovine-derived bone grafts for bone regeneration: In vitro and in vivo evaluation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 272–281. [Google Scholar] [CrossRef]
- Sponer, P.; Strnadová, M.; Urban, K. In vivo behaviour of low-temperature calcium-deficient hydroxyapatite: Comparison with deproteinised bovine bone. Int. Orthop. 2011, 35, 1553–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munar, M.L.; Udoh, K.; Ishikawa, K.; Matsuya, S.; Nakagawa, M. Effects of sintering temperature over 1,300 degrees C on the physical and compositional properties of porous hydroxyapatite foam. Dent. Mater. J. 2006, 25, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Li, W.; Zhang, C.; Wu, Z.; Liu, J. Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds. Adv. Healthc. Mater. 2020, 9, 2000724. [Google Scholar] [CrossRef] [PubMed]
- Accorsi-Mendonça, T.; Conz, M.B.; Barros, T.C.; Sena, L.Á.D.; Soares, G.D.A.; Granjeiro, J.M. Physicochemical characterization of two deproteinized bovine xenografts. Braz. Oral Res. 2008, 22, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Li, D.-C.; Huang, Z.-S.; Yuan, Z. Effects of sodium hydroxide, sodium hypochlorite, and gaseous hydrogen peroxide on the natural properties of cancellous bone. Artif. Organs 2013, 37, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef] [Green Version]
- Prieto, E.M.; Talley, A.D.; Gould, N.R.; Zienkiewicz, K.J.; Drapeau, S.J.; Kalpakci, K.N.; Guelcher, S.A. Effects of particle size and porosity on in vivo remodeling of settable allograft bone/polymer composites. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 1641–1651. [Google Scholar] [CrossRef] [Green Version]
- Klüppel, L.E.; Antonini, F.; Olate, S.; Nascimento, F.F.; Albergaria-Barbosa, J.R.; Mazzonetto, R. Bone repair is influenced by different particle sizes of anorganic bovine bone matrix: A histologic and radiographic study in vivo. J. Craniofac. Surg. 2013, 24, 1074–1077. [Google Scholar] [CrossRef]
- Leiblein, M.; Koch, E.; Winkenbach, A.; Schaible, A.; Nau, C.; Büchner, H.; Schröder, K.; Marzi, I.; Henrich, D. Size matters: Effect of granule size of the bone graft substitute (Herafill®) on bone healing using Masquelet us induced membrane in a critical size defect model in the rat’s femur. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 1469–1482. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.T.; Rosenbaum, A.J. Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012, 8, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Mazzoni, S.; Mohammadi, S.; Tromba, G.; Diomede, F.; Piattelli, A.; Trubiani, O.; Giuliani, A. Role of Cortico-Cancellous Heterologous Bone in Human Periodontal Ligament Stem Cell Xeno-Free Culture Studied by Synchrotron Radiation Phase-Contrast Microtomography. Int. J. Mol. Sci. 2017, 18, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conz, M.B.; Granjeiro, J.M.; Soares, G.D.A. Hydroxyapatite crystallinity does not affect the repair of critical size bone defects. J. Appl. Oral Sci. 2011, 19, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez Fernández, M.P.; Gehrke, S.A.; Pérez Albacete Martinez, C.; Calvo Guirado, J.L.; De Aza, P.N. SEM-EDX Study of the Degradation Process of Two Xenograft Materials Used in Sinus Lift Procedures. Materials 2017, 10, 542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Block, M.S. Does the Use of High-Temperature-Processed Xenografts for Ridge Augmentation Result in Ridge Width Stability Over Time? J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 2020, 78, 1717–1725. [Google Scholar] [CrossRef]
- Gehrke, S.A.; Mazón, P.; Pérez-Díaz, L.; Calvo-Guirado, J.L.; Velásquez, P.; Aragoneses, J.M.; Fernández-Domínguez, M.; De Aza, P.N. Study of Two Bovine Bone Blocks (Sintered and Non-Sintered) Used for Bone Grafts: Physico-Chemical Characterization and In Vitro Bioactivity and Cellular Analysis. Materials 2019, 12, 452. [Google Scholar] [CrossRef] [Green Version]
- Giusti, I.; Bianchi, S.; Nottola, S.A.; Macchiarelli, G.; Dolo, V. Clinical electron microscopy in the study of human ovarian tissues. EuroMediterranean Biomed. J. 2019, 14, 145–151. [Google Scholar]
- WHO. WHO Infection Control Guidelines for Transmissible Spongiform Encephalopathies: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- Lei, P.; Sun, R.; Wang, L.; Zhou, J.; Wan, L.; Zhou, T.; Hu, Y. A New Method for Xenogeneic Bone Graft Deproteinization: Comparative Study of Radius Defects in a Rabbit Model. PLoS ONE 2015, 10, e0146005. [Google Scholar] [CrossRef] [Green Version]
- Murakami, Y.; Kojima, T.; Nagasawa, T.; Kobayashi, H.; Ishikawa, I. Novel isolation of alkaline phosphatase-positive subpopulation from periodontal ligament fibroblasts. J. Periodontol. 2003, 74, 780–786. [Google Scholar] [CrossRef]
- Takashiba, S.; Naruishi, K.; Murayama, Y. Perspective of cytokine regulation for periodontal treatment: Fibroblast biology. J. Periodontol. 2003, 74, 103–110. [Google Scholar] [CrossRef]
Dunnett’s Multiple Comparisons Test | Mean Diff. | 95.00% CI of Diff. | Adjusted p Value |
---|---|---|---|
T0 | |||
CONTROL vs. E | 0.000 | −0.03112 to 0.03112 | >0.9999 |
CONTROL vs. B | 0.000 | −0.03112 to 0.03112 | >0.9999 |
CONTROL vs. D | 0.000 | −0.03112 to 0.03112 | >0.9999 |
CONTROL vs. G | 0.000 | −0.03112 to 0.03112 | >0.9999 |
CONTROL vs. BIOS | 0.000 | −0.03112 to 0.03112 | >0.9999 |
T1 | |||
CONTROL vs. E | −0.04433 | −0.08196 to −0.006706 | 0.0293 |
CONTROL vs. B | 0.01500 | −0.1319 to 0.1619 | 0.9411 |
CONTROL vs. D | −0.06233 | −0.3709 to 0.2463 | 0.6323 |
CONTROL vs. G | −0.07700 | −0.1584 to 0.004411 | 0.0572 |
CONTROL vs. BIOS | −0.06733 | −0.1283 to −0.006324 | 0.0383 |
T2 | |||
CONTROL vs. E | 0.1517 | −0.1327 to 0.4360 | 0.1765 |
CONTROL vs. B | 0.06467 | −0.01648 to 0.1458 | 0.0969 |
CONTROL vs. D | 0.02300 | −0.03654 to 0.08254 | 0.4412 |
CONTROL vs. G | 0.07267 | −0.1858 to 0.3312 | 0.4911 |
CONTROL vs. BIOS | −0.08500 | −0.3450 to 0.1750 | 0.4022 |
T3 | |||
CONTROL vs. E | 0.2557 | −0.1434 to 0.6547 | 0.1567 |
CONTROL vs. B | 0.1223 | −0.3039 to 0.5486 | 0.5478 |
CONTROL vs. D | 0.009333 | −0.4114 to 0.4300 | 0.9999 |
CONTROL vs. G | −0.01467 | −0.4908 to 0.4614 | 0.9992 |
CONTROL vs. BIOS | 0.03733 | −0.3601 to 0.4348 | 0.9863 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, S.; Bernardi, S.; Mattei, A.; Cristiano, L.; Mancini, L.; Torge, D.; Varvara, G.; Macchiarelli, G.; Marchetti, E. Morphological and Biological Evaluations of Human Periodontal Ligament Fibroblasts in Contact with Different Bovine Bone Grafts Treated with Low-Temperature Deproteinisation Protocol. Int. J. Mol. Sci. 2022, 23, 5273. https://doi.org/10.3390/ijms23095273
Bianchi S, Bernardi S, Mattei A, Cristiano L, Mancini L, Torge D, Varvara G, Macchiarelli G, Marchetti E. Morphological and Biological Evaluations of Human Periodontal Ligament Fibroblasts in Contact with Different Bovine Bone Grafts Treated with Low-Temperature Deproteinisation Protocol. International Journal of Molecular Sciences. 2022; 23(9):5273. https://doi.org/10.3390/ijms23095273
Chicago/Turabian StyleBianchi, Serena, Sara Bernardi, Antonella Mattei, Loredana Cristiano, Leonardo Mancini, Diana Torge, Giuseppe Varvara, Guido Macchiarelli, and Enrico Marchetti. 2022. "Morphological and Biological Evaluations of Human Periodontal Ligament Fibroblasts in Contact with Different Bovine Bone Grafts Treated with Low-Temperature Deproteinisation Protocol" International Journal of Molecular Sciences 23, no. 9: 5273. https://doi.org/10.3390/ijms23095273
APA StyleBianchi, S., Bernardi, S., Mattei, A., Cristiano, L., Mancini, L., Torge, D., Varvara, G., Macchiarelli, G., & Marchetti, E. (2022). Morphological and Biological Evaluations of Human Periodontal Ligament Fibroblasts in Contact with Different Bovine Bone Grafts Treated with Low-Temperature Deproteinisation Protocol. International Journal of Molecular Sciences, 23(9), 5273. https://doi.org/10.3390/ijms23095273