Circulating MicroRNA Profiling Identifies Distinct MicroRNA Signatures in Acute Ischemic Stroke and Transient Ischemic Attack Patients
Abstract
:1. Introduction
2. Results
2.1. Identification of Differentially Regulated Circulating miRNAs in AIS Patients Compared to TIA Patients
2.2. Predictive Capacity of the Identified miRNA Panel in AIS Patients
2.3. Identification of Molecular Pathways Modulated by Circulating miRNAs in AIS Patients
2.4. Cellular Processes and Clinical Pathology Endpoints Associated with Gene Targets of the Dysregulated miRNAs in AIS Patients
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Study Design
4.3. miRNA Isolation and Sequencing
4.4. Data Curation and Analyses
4.5. Discriminant Analyses
4.6. Downstream Pathway and Network Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collaborators, G.B.D.S. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.; Culebras, A.; Elkind, M.S.; George, M.G.; Hamdan, A.D.; Higashida, R.T.; et al. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahjouei, S.; Sadighi, A.; Chaudhary, D.; Li, J.; Abedi, V.; Holland, N.; Phipps, M.; Zand, R. A 5-Decade Analysis of Incidence Trends of Ischemic Stroke After Transient Ischemic Attack: A Systematic Review and Meta-analysis. JAMA Neurol. 2021, 78, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Appelros, P.; Hals Berglund, M.; Strom, J.O. Long-Term Risk of Stroke after Transient Ischemic Attack. Cerebrovasc. Dis. 2017, 43, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.D.; Yiannakoulias, N.; Jeerakathil, T.; Tu, J.V.; Svenson, L.W.; Schopflocher, D.P. The high risk of stroke immediately after transient ischemic attack: A population-based study. Neurology 2004, 62, 2015–2020. [Google Scholar] [CrossRef]
- Mendelson, S.J.; Prabhakaran, S. Diagnosis and Management of Transient Ischemic Attack and Acute Ischemic Stroke: A Review. JAMA 2021, 325, 1088–1098. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Warlow, C.P. Timing of TIAs preceding stroke: Time window for prevention is very short. Neurology 2005, 64, 817–820. [Google Scholar] [CrossRef]
- Touze, E.; Varenne, O.; Chatellier, G.; Peyrard, S.; Rothwell, P.M.; Mas, J.L. Risk of myocardial infarction and vascular death after transient ischemic attack and ischemic stroke: A systematic review and meta-analysis. Stroke 2005, 36, 2748–2755. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.C.; Fayad, P.B.; Gorelick, P.B.; Hanley, D.F.; Shwayder, P.; van Husen, D.; Weiskopf, T. Prevalence and knowledge of transient ischemic attack among US adults. Neurology 2003, 60, 1429–1434. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Q.; Zhang, R.; Dai, X.; Chen, W.; Xing, D. Circulating microRNAs: Biomarkers of disease. Clin. Chim. Acta 2021, 516, 46–54. [Google Scholar] [CrossRef]
- Gupta, S.K.; Bang, C.; Thum, T. Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ. Cardiovasc. Genet. 2010, 3, 484–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyileten, C.; Wicik, Z.; De Rosa, S.; Mirowska-Guzel, D.; Soplinska, A.; Indolfi, C.; Jastrzebska-Kurkowska, I.; Czlonkowska, A.; Postula, M. MicroRNAs as Diagnostic and Prognostic Biomarkers in Ischemic Stroke-A Comprehensive Review and Bioinformatic Analysis. Cells 2018, 7, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coenen-Stass, A.M.L.; Magen, I.; Brooks, T.; Ben-Dov, I.Z.; Greensmith, L.; Hornstein, E.; Fratta, P. Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol. 2018, 15, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- He, X.W.; Shi, Y.H.; Liu, Y.S.; Li, G.F.; Zhao, R.; Hu, Y.; Lin, C.C.; Zhuang, M.T.; Su, J.J.; Liu, J.R. Increased plasma levels of miR-124-3p, miR-125b-5p and miR-192-5p are associated with outcomes in acute ischaemic stroke patients receiving thrombolysis. Atherosclerosis 2019, 289, 36–43. [Google Scholar] [CrossRef]
- Mick, E.; Shah, R.; Tanriverdi, K.; Murthy, V.; Gerstein, M.; Rozowsky, J.; Kitchen, R.; Larson, M.G.; Levy, D.; Freedman, J.E. Stroke and Circulating Extracellular RNAs. Stroke 2017, 48, 828–834. [Google Scholar] [CrossRef]
- Nguyen, T.T.M.; van der Bent, M.L.; Wermer, M.J.H.; van den Wijngaard, I.R.; van Zwet, E.W.; de Groot, B.; Quax, P.H.A.; Kruyt, N.D.; Nossent, A.Y. Circulating tRNA Fragments as a Novel Biomarker Class to Distinguish Acute Stroke Subtypes. Int. J. Mol. Sci. 2020, 22, 135. [Google Scholar] [CrossRef]
- Xu, X.; Zhuang, C.; Chen, L. Exosomal Long Non-Coding RNA Expression from Serum of Patients with Acute Minor Stroke. Neuropsychiatr. Dis. Treat. 2020, 16, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Aldous, E.K.; Toor, S.M.; Parray, A.; Al-Sarraj, Y.; Diboun, I.; Abdelalim, E.M.; Arredouani, A.; El-Agnaf, O.; Thornalley, P.J.; Akhtar, N.; et al. Identification of Novel Circulating miRNAs in Patients with Acute Ischemic Stroke. Int. J. Mol. Sci. 2022, 23, 3387. [Google Scholar] [CrossRef]
- Toor, S.M.; Aldous, E.K.; Parray, A.; Akhtar, N.; Al-Sarraj, Y.; Abdelalim, E.M.; Arredouani, A.; El-Agnaf, O.; Thornalley, P.J.; Pananchikkal, S.V.; et al. Identification of Distinct Circulating miRNAs in Acute Ischemic Stroke Patients with Type 2 Diabetes Mellitus. Front. Cardiovasc. Med. 2022, 9, 1024790. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, X.; Liu, Y.; Chang, W.; Song, Y.; Zhu, S. Uncovering the Potential Differentially Expressed miRNAs and mRNAs in Ischemic Stroke Based on Integrated Analysis in the Gene Expression Omnibus Database. Eur. Neurol. 2020, 83, 404–414. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Li, X.; Wang, L.; Yu, H.; Huang, J.; Liu, Q.; Wang, C.; Jiang, A. Diagnostic and prognostic significance of aberrant miR-652-3p levels in patients with acute decompensated heart failure and acute kidney injury. J. Int. Med. Res. 2020, 48, 300060520967829. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.; Liu, Y.; Zhang, M.; Ji, W. Diagnostic and Prognostic Significance of serum miR-18a-5p in Patients with Atherosclerosis. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211050642. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Rannikmae, K.; Traylor, M.; Georgakis, M.K.; Sargurupremraj, M.; Markus, H.S.; Hopewell, J.C.; Debette, S.; Sudlow, C.L.M.; Dichgans, M.; et al. Genome-wide meta-analysis identifies 3 novel loci associated with stroke. Ann. Neurol. 2018, 84, 934–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartiala, J.A.; Han, Y.; Jia, Q.; Hilser, J.R.; Huang, P.; Gukasyan, J.; Schwartzman, W.S.; Cai, Z.; Biswas, S.; Tregouet, D.A.; et al. Genome-wide analysis identifies novel susceptibility loci for myocardial infarction. Eur. Heart J. 2021, 42, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Zhou, M.X.; Zhou, F.K.; Luo, X.M.; Zhong, S.X.; Zhou, Y.F.; Qin, Y.S.; Li, P.P.; Qin, C. Exosome-Derived MiRNAs as Biomarkers of the Development and Progression of Intracranial Aneurysms. J. Atheroscler. Thromb. 2020, 27, 545–610. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chyr, J.; Jia, Z.; Wang, L.; Hu, X.; Wu, X.; Song, C. Identification of Hub Genes Associated with Hypertension and Their Interaction with miRNA Based on Weighted Gene Coexpression Network Analysis (WGCNA) Analysis. Med. Sci. Monit. 2020, 26, e923514. [Google Scholar] [CrossRef]
- Rodriguez-Rius, A.; Lopez, S.; Martinez-Perez, A.; Souto, J.C.; Soria, J.M. Identification of a Plasma MicroRNA Profile Associated with Venous Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1392–1399. [Google Scholar] [CrossRef] [Green Version]
- Tiedt, S.; Prestel, M.; Malik, R.; Schieferdecker, N.; Duering, M.; Kautzky, V.; Stoycheva, I.; Bock, J.; Northoff, B.H.; Klein, M.; et al. RNA-Seq Identifies Circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as Potential Biomarkers for Acute Ischemic Stroke. Circ. Res. 2017, 121, 970–980. [Google Scholar] [CrossRef]
- Chen, L.T.; Jiang, C.Y. MicroRNA Expression Profiles Identify Biomarker for Differentiating the Embolic Stroke from Thrombotic Stroke. BioMed Res. Int. 2018, 2018, 4514178. [Google Scholar] [CrossRef]
- Escudero, C.; Acurio, J.; Lopez, E.; Rodriguez, A.; Benavente, A.; Lara, E.; Korzeniewski, S.J. Vascular endothelial growth factor and poor prognosis after ischaemic stroke. Eur. J. Neurol. 2021, 28, 1759–1764. [Google Scholar] [CrossRef]
- Bhasin, A.; Srivastava, M.V.P.; Vivekanandhan, S.; Moganty, R.; Talwar, T.; Sharma, S.; Kuthiala, N.; Kumaran, S.; Bhatia, R. Vascular Endothelial Growth Factor as Predictive Biomarker for Stroke Severity and Outcome; An Evaluation of a New Clinical Module in Acute Ischemic Stroke. Neurol. India 2019, 67, 1280–1285. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.W.; Wells, G.A.; Stewart, A.F.; Erdmann, J.; Shah, S.H.; Ferguson, J.F.; Hall, A.S.; Anand, S.S.; Burnett, M.S.; Epstein, S.E.; et al. A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex. Circ. Cardiovasc. Genet. 2012, 5, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keene, K.L.; Hyacinth, H.I.; Bis, J.C.; Kittner, S.J.; Mitchell, B.D.; Cheng, Y.C.; Pare, G.; Chong, M.; O’Donnell, M.; Meschia, J.F.; et al. Genome-Wide Association Study Meta-Analysis of Stroke in 22 000 Individuals of African Descent Identifies Novel Associations With Stroke. Stroke 2020, 51, 2454–2463. [Google Scholar] [CrossRef] [PubMed]
- Kee, H.J.; Kim, G.R.; Cho, S.N.; Kwon, J.S.; Ahn, Y.; Kook, H.; Jeong, M.H. miR-18a-5p MicroRNA Increases Vascular Smooth Muscle Cell Differentiation by Downregulating Syndecan4. Korean Circ. J. 2014, 44, 255–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wang, D.; Wang, Z.; Li, X.; Xia, W.; Han, Y.; Su, L.; Fan, X. MiR-18a-5p acts as a novel serum biomarker for venous malformation and promotes angiogenesis by regulating the thrombospondin-1/P53 signaling axis. Am. J. Transl. Res. 2021, 13, 11271–11286. [Google Scholar]
- Cicha, I.; Yilmaz, A.; Klein, M.; Raithel, D.; Brigstock, D.R.; Daniel, W.G.; Goppelt-Struebe, M.; Garlichs, C.D. Connective tissue growth factor is overexpressed in complicated atherosclerotic plaques and induces mononuclear cell chemotaxis in vitro. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1008–1013. [Google Scholar] [CrossRef]
- Leeuwis, J.W.; Nguyen, T.Q.; Theunissen, M.G.; Peeters, W.; Goldschmeding, R.; Pasterkamp, G.; Vink, A. Connective tissue growth factor is associated with a stable atherosclerotic plaque phenotype and is involved in plaque stabilization after stroke. Stroke 2010, 41, 2979–2981. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Dimitrov, L.; Chen, S.H.; Bielak, L.F.; Bis, J.C.; Feitosa, M.F.; Lu, L.; Kavousi, M.; Raffield, L.M.; Smith, A.V.; et al. Multiethnic Genome-Wide Association Study of Subclinical Atherosclerosis in Individuals with Type 2 Diabetes. Circ. Genom. Precis Med. 2021, 14, e003258. [Google Scholar] [CrossRef]
- Tian, C.; Li, Z.; Yang, Z.; Huang, Q.; Liu, J.; Hong, B. Plasma MicroRNA-16 Is a Biomarker for Diagnosis, Stratification, and Prognosis of Hyperacute Cerebral Infarction. PLoS ONE 2016, 11, e0166688. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.P.; McKay, W.; Edwards, J.S.; Swaminathan, R.; SantaCruz, K.S.; Mims, R.L.; Yonas, H.; Roitbak, T. MicroRNA Analysis of Human Stroke Brain Tissue Resected during Decompressive Craniectomy/Stroke-Ectomy Surgery. Genes 2021, 12, 1860. [Google Scholar] [CrossRef]
- Bui, T.; Sequeira, J.; Wen, T.C.; Sola, A.; Higashi, Y.; Kondoh, H.; Genetta, T. ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS ONE 2009, 4, e4373. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lang, W.; Zhou, C.; Wu, C.; Zhang, F.; Liu, Q.; Yang, S.; Hao, J. Upregulation of Microglial ZEB1 Ameliorates Brain Damage after Acute Ischemic Stroke. Cell Rep. 2018, 22, 3574–3586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, C.J.; Dickerson, R.; Zhang, S.W.; Rink, C.; Roy, S.; Sen, C.K. Human cerebrospinal fluid microRNA: Temporal changes following subarachnoid hemorrhage. Physiol. Genom. 2016, 48, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.X.; Springer, J.E.; Xie, K.; Fardo, D.W.; Hatton, K.W. A Highly Predictive MicroRNA Panel for Determining Delayed Cerebral Vasospasm Risk Following Aneurysmal Subarachnoid Hemorrhage. Front. Mol. Biosci. 2021, 8, 657258. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zhen, L.; Wang, S.; Zhang, Y.; Wang, K.; Jia, P.; Zhang, Y.; Wu, Z.; Yang, Q.; Hou, W.; et al. De novo Lipogenesis in Astrocytes Promotes the Repair of Blood-Brain Barrier after Transient Cerebral Ischemia Through Interleukin-33. Neuroscience 2022, 481, 85–98. [Google Scholar] [CrossRef]
- Ye, X.C.; Hao, Q.; Ma, W.J.; Zhao, Q.C.; Wang, W.W.; Yin, H.H.; Zhang, T.; Wang, M.; Zan, K.; Yang, X.X.; et al. Dectin-1/Syk signaling triggers neuroinflammation after ischemic stroke in mice. J. Neuroinflamm. 2020, 17, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xu, C.; Chao, D.; Chen, Z.; Li, S.; Shi, M.; Pei, Y.; Dai, Y.; Ji, J.; Ji, Y.; et al. Acute Cerebral Ischemia Increases a Set of Brain-Specific miRNAs in Serum Small Extracellular Vesicles. Front. Mol. Neurosci. 2022, 15, 874903. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, T.; Han, S.; Liu, C.; Liu, M.; Li, S.; Li, J. Activin A improves the neurological outcome after ischemic stroke in mice by promoting oligodendroglial ACVR1B-mediated white matter remyelination. Exp. Neurol. 2021, 337, 113574. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Stanne, T.M.; Giese, A.K.; Ho, W.K.; Traylor, M.; Amouyel, P.; Holliday, E.G.; Malik, R.; Xu, H.; Kittner, S.J.; et al. Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near HABP2. Stroke 2016, 47, 307–316. [Google Scholar] [CrossRef]
- Carty, C.L.; Keene, K.L.; Cheng, Y.C.; Meschia, J.F.; Chen, W.M.; Nalls, M.; Bis, J.C.; Kittner, S.J.; Rich, S.S.; Tajuddin, S.; et al. Meta-Analysis of Genome-Wide Association Studies Identifies Genetic Risk Factors for Stroke in African Americans. Stroke 2015, 46, 2063–2068. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.S.; Bergmeijer, T.O.; Gong, L.; Reny, J.L.; Lewis, J.P.; Mitchell, B.D.; Alexopoulos, D.; Aradi, D.; Altman, R.B.; Bliden, K.; et al. Genomewide Association Study of Platelet Reactivity and Cardiovascular Response in Patients Treated With Clopidogrel: A Study by the International Clopidogrel Pharmacogenomics Consortium. Clin. Pharmacol. Ther. 2020, 108, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Vishnubalaji, R.; Alajez, N.M. Epigenetic regulation of triple negative breast cancer (TNBC) by TGF-beta signaling. Sci. Rep. 2021, 11, 15410. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yan, S.; Wang, P.; Wang, G. Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis. J. Korean Neurosurg. Soc. 2022, 65, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Ajoolabady, A.; Shademan, B.; Avci, C.B.; Nikanfar, M.; Nourazarian, A.; Laghousi, D. Diagnostic Potential of Autophagy-5 Protein, Apolipoprotein B-48, and Oxidative Stress Markers in Serum of Patients with Early-Stage Ischemic Stroke. World Neurosurg 2022, 167, e656–e663. [Google Scholar] [CrossRef]
- Xie, G.H.; Dai, H.J.; Liu, F.; Zhang, Y.P.; Zhu, L.; Nie, J.J.; Wu, J.H. A Dual Role of ATM in Ischemic Preconditioning and Ischemic Injury. Cell Mol. Neurobiol. 2020, 40, 785–799. [Google Scholar] [CrossRef]
- Degano, I.R.; Camps-Vilaro, A.; Subirana, I.; Garcia-Mateo, N.; Cidad, P.; Munoz-Aguayo, D.; Puigdecanet, E.; Nonell, L.; Vila, J.; Crepaldi, F.M.; et al. Association of Circulating microRNAs with Coronary Artery Disease and Usefulness for Reclassification of Healthy Individuals: The REGICOR Study. J. Clin. Med. 2020, 9, 1402. [Google Scholar] [CrossRef]
- Traylor, M.; Zhang, C.R.; Adib-Samii, P.; Devan, W.J.; Parsons, O.E.; Lanfranconi, S.; Gregory, S.; Cloonan, L.; Falcone, G.J.; Radmanesh, F.; et al. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke. Neurology 2016, 86, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Xiong, Y.; Liu, J.; Yang, X.; Wang, L.; Zhang, S.; Liu, M.; Wang, D. MMP-9-Related microRNAs as Prognostic Markers for Hemorrhagic Transformation in Cardioembolic Stroke Patients. Front. Neurol. 2019, 10, 945. [Google Scholar] [CrossRef]
- Radak, D.; Katsiki, N.; Resanovic, I.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Mousad, S.A.; Isenovic, E.R. Apoptosis and Acute Brain Ischemia in Ischemic Stroke. Curr. Vasc. Pharmacol. 2017, 15, 115–122. [Google Scholar] [CrossRef]
- Broughton, B.R.; Reutens, D.C.; Sobey, C.G. Apoptotic mechanisms after cerebral ischemia. Stroke 2009, 40, e331–e339. [Google Scholar] [CrossRef] [Green Version]
- Sekerdag, E.; Solaroglu, I.; Gursoy-Ozdemir, Y. Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Curr. Neuropharmacol. 2018, 16, 1396–1415. [Google Scholar] [CrossRef] [PubMed]
- Nouri-Vaskeh, M.; Khalili, N.; Sadighi, A.; Yazdani, Y.; Zand, R. Biomarkers for Transient Ischemic Attack: A Brief Perspective of Current Reports and Future Horizons. J. Clin. Med. 2022, 11, 1046. [Google Scholar] [CrossRef] [PubMed]
- Dagonnier, M.; Donnan, G.A.; Davis, S.M.; Dewey, H.M.; Howells, D.W. Acute Stroke Biomarkers: Are We There Yet? Front. Neurol. 2021, 12, 619721. [Google Scholar] [CrossRef] [PubMed]
- Glickman, S.W.; Phillips, S.; Anstrom, K.J.; Laskowitz, D.T.; Cairns, C.B. Discriminative capacity of biomarkers for acute stroke in the emergency department. J. Emerg. Med. 2011, 41, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Worthmann, H.; Tryc, A.B.; Goldbecker, A.; Ma, Y.T.; Tountopoulou, A.; Hahn, A.; Dengler, R.; Lichtinghagen, R.; Weissenborn, K. The temporal profile of inflammatory markers and mediators in blood after acute ischemic stroke differs depending on stroke outcome. Cerebrovasc. Dis. 2010, 30, 85–92. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Kern, F.; Aparicio-Puerta, E.; Li, Y.; Fehlmann, T.; Kehl, T.; Wagner, V.; Ray, K.; Ludwig, N.; Lenhof, H.P.; Meese, E.; et al. miRTargetLink 2.0-interactive miRNA target gene and target pathway networks. Nucleic Acids Res. 2021, 49, W409–W416. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Kramer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef]
Characteristic | Discovery Cohort | Validation Cohort | ||
---|---|---|---|---|
TIA † | AIS ‡ | TIA | AIS | |
Number | 31 | 96 | 30 | 95 |
Age | 48.23 ± 9.68 | 50.38 ± 9.40 | 49.43 ± 10.84 | 50.01 ± 9.50 |
Gender (Male/Female) | 28/3 | 86/10 | 26/4 | 90/5 |
Diabetes mellitus (DM) (no/yes) | 19/12 | 49/47 | 17/13 | 50/45 |
Hypertension (no/yes) | 19/12 | 26/70 * | 13/17 | 25/70 * |
Smoking (no/yes) | 14/17 | 56/40 | 19/11 | 51/44 |
DM medication (no/yes) | 23/8 | 73/23 | 22/8 | 66/29 |
Statin medication (no/yes) | 22/9 | 83/13 * | 21/9 | 78/17 |
Total cholesterol (mmol/L) | 4.16 ± 0.96 | 4.85 ± 1.22 * | 4.54 ± 0.73 | 5.16 ± 1.20 * |
LDL-C (mmol/L) | 2.65 ± 1.04 | 3.15 ± 1.08 | 2.84 ± 0.82 | 3.34 ± 1.12 * |
Triacyl glycerides (mmol/L) | 1.74 ± 0.63 | 1.54 ± 0.81 | 1.38 ± 0.60 | 1.90 ± 1.09 * |
Discovery | Validation | Combined | ||||
---|---|---|---|---|---|---|
miRNA | FC * | FDR ** | FC | FDR | FC | FDR |
hsa-miR-548c-5p | 1.80 | 2.44 × 10−2 | 1.90 | 1.56 × 10−2 | 1.70 | 1.13 × 10−4 |
hsa-miR-20a-5p | 1.69 | 1.52 × 10−7 | 1.73 | 1.19 × 10−4 | 1.69 | 1.72 × 10−14 |
hsa-miR-18a-5p | 1.55 | 2.29 × 10−2 | 1.73 | 1.48 × 10−2 | 1.72 | 5.01 × 10−6 |
hsa-miR-484 | 1.52 | 1.08 × 10−3 | 1.55 | 8.32 × 10−3 | 1.47 | 2.64 × 10−6 |
hsa-miR-652-3p | 1.49 | 4.76 × 10−3 | 1.62 | 1.08 × 10−3 | 1.53 | 2.31 × 10−7 |
hsa-miR-486-3p | 1.46 | 3.93 × 10−3 | 1.49 | 9.51 × 10−3 | 1.46 | 5.73 × 10−7 |
hsa-miR-24-3p | 1.45 | 3.93 × 10−3 | 1.63 | 6.79 × 10−4 | 1.48 | 1.13 × 10−7 |
hsa-miR-181a-5p | 1.45 | 4.25 × 10−3 | 1.61 | 1.19 × 10−4 | 1.44 | 2.44 × 10−7 |
hsa-miR-222-3p | 1.19 | 4.46 × 10−2 | 1.34 | 3.85 × 10−3 | 1.24 | 1.39 × 10−5 |
hsa-miR-500a-3p | −1.67 | 1.41 × 10−2 | −1.65 | 4.02 × 10−2 | −1.63 | 8.05 × 10−5 |
hsa-miR-206 | −3.18 | 3.92 × 10−4 | −2.39 | 2.57 × 10−2 | −3.20 | 2.95 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toor, S.M.; Aldous, E.K.; Parray, A.; Akhtar, N.; Al-Sarraj, Y.; Abdelalim, E.M.; Arredouani, A.; El-Agnaf, O.; Thornalley, P.J.; Pananchikkal, S.V.; et al. Circulating MicroRNA Profiling Identifies Distinct MicroRNA Signatures in Acute Ischemic Stroke and Transient Ischemic Attack Patients. Int. J. Mol. Sci. 2023, 24, 108. https://doi.org/10.3390/ijms24010108
Toor SM, Aldous EK, Parray A, Akhtar N, Al-Sarraj Y, Abdelalim EM, Arredouani A, El-Agnaf O, Thornalley PJ, Pananchikkal SV, et al. Circulating MicroRNA Profiling Identifies Distinct MicroRNA Signatures in Acute Ischemic Stroke and Transient Ischemic Attack Patients. International Journal of Molecular Sciences. 2023; 24(1):108. https://doi.org/10.3390/ijms24010108
Chicago/Turabian StyleToor, Salman M., Eman K. Aldous, Aijaz Parray, Naveed Akhtar, Yasser Al-Sarraj, Essam M. Abdelalim, Abdelilah Arredouani, Omar El-Agnaf, Paul J. Thornalley, Sajitha V. Pananchikkal, and et al. 2023. "Circulating MicroRNA Profiling Identifies Distinct MicroRNA Signatures in Acute Ischemic Stroke and Transient Ischemic Attack Patients" International Journal of Molecular Sciences 24, no. 1: 108. https://doi.org/10.3390/ijms24010108
APA StyleToor, S. M., Aldous, E. K., Parray, A., Akhtar, N., Al-Sarraj, Y., Abdelalim, E. M., Arredouani, A., El-Agnaf, O., Thornalley, P. J., Pananchikkal, S. V., Pir, G. J., Ayadathil, R., Shuaib, A., Alajez, N. M., & Albagha, O. M. E. (2023). Circulating MicroRNA Profiling Identifies Distinct MicroRNA Signatures in Acute Ischemic Stroke and Transient Ischemic Attack Patients. International Journal of Molecular Sciences, 24(1), 108. https://doi.org/10.3390/ijms24010108