Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development
Abstract
:1. Introduction: Atherosclerosis as a Free Radical Disease
2. Stages of Free Radical Peroxidation of Unsaturated Phospholipids in LDL Particles: MDA Accumulation Mechanism
3. Which LDL Are Atherogenic: LOOH-Containing (“Oxidized”) or MDA-Modified Ones?
4. Role of MDA-Modified LDL in Endothelial Dysfunction
5. Impact of Free Radical Peroxidation of LDL and MDA Accumulation on Glycocalyx Preservation
6. Free Radical Peroxidation of Lipids and Preventive Treatment for Atherosclerosis: From Identifying Molecular Mechanisms of Atherogenesis to Justification for New Approaches to Pharmacotherapy
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Harman, D. The free radical theory of aging: The “free radical” diseases. Age 1984, 7, 111–131. [Google Scholar] [CrossRef]
- Lankin, V.Z.; Tikhaze, A.K. Atherosclerosis as a free radical pathology and antioxidative therapy of this disease. In Free Radicals, NO and Inflammation; IOS Press: Amsterdam, The Netherlands, 2003; Volume 344, pp. 218–231. [Google Scholar]
- Lankin, V.Z.; Tikhaze, A.K. Role of oxidative stress in the genesis of atherosclerosis and diabetes mellitus: A personal look back on 50 years of research. Curr. Aging Sci. 2017, 10, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, J.L.; Ho, Y.K.; Basu, S.K.; Brown, M.S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA 1979, 76, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Witztum, J.L.; Steinberg, D. Role of oxidized low-density lipoprotein in atherogenesis. J. Clin. Investig. 1991, 88, 1785–1792. [Google Scholar] [CrossRef]
- Yla-Herttuala, S. Role of lipid and lipoprotein oxidation in the pathogenesis of atherosclerosis. Drugs Today 1994, 30, 507–514. [Google Scholar]
- Steinberg, D. Role of oxydized LDL and antioxidants in atherosclerosis. In Nutrition and Biotechnology in Heart Desease and Cancer; Plenum Press: New York, NY, USA, 1995; Volume 369, pp. 39–48. [Google Scholar]
- Witztum, J.L.; Steinberg, D. The oxidative modification hypothesis of atherosclerosis: Does it hold for humans? Trends Cardiovasc. Med. 2001, 11, 93–102. [Google Scholar] [CrossRef]
- Steinberg, D.; Witztum, J.L. Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 2002, 105, 2107–2111. [Google Scholar] [CrossRef] [Green Version]
- Estévez, M.; Padilla, P.; Carvalho, L.; Martín, L.; Carrapiso, A.; Delgadoa, J. Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins. Redox Biol. 2019, 26, 101277. [Google Scholar] [CrossRef]
- Kumskova, E.M.; Antonova, O.A.; Balashov, S.A.; Tikhaze, A.K.; Melkumyants, A.M.; Lankin, V.Z. Malonyldialdehyde and glyoxal act differently on low-density lipoproteins and endotheliocytes. Mol. Cell. Biochem. 2014, 396, 79–85. [Google Scholar] [CrossRef]
- Fogelman, A.M.; Schechter, I.; Seager, J.; Hokum, M.; Child, J.S.; Edwards, P.E. Malondialdehyde alteration of low density lipoproteins leads to the cholesteryl ester accumulation in human monocyte macrophages. Proc. Natl. Acad. Sci. USA 1980, 77, 2214–2218. [Google Scholar] [CrossRef] [PubMed]
- Lankin, V.Z.; Tikhaze, A.K.; Osis, Y.u.G. Modeling the cascade of enzymatic reactions in liposomes including successive free radical peroxidation, reduction, and hydrolysis of phospholipid polyenoic acyls for studying the effect of these processes on the structural-dynamic parameters of the membranes. Biochemistry 2002, 67, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Lankin, V.Z.; Tikhaze, A.K.; Kumskova, E.M. Macrophages actively accumulate malonyldialdehyde-modified but not enzymatically oxidized low density lipoprotein. Mol. Cell. Biochem. 2012, 365, 93–98. [Google Scholar] [CrossRef]
- Schewe, T.; Rapoport, S.M.; Kühn, H. Enzymology and physiology of reticulocyte lipoxygenase: Comparison with other lipoxygenases. Adv. Enzymol. 1986, 58, 191–272. [Google Scholar] [CrossRef] [PubMed]
- Lankin, V.Z.; Tikhaze, A.K.; Melkumyants, A.M. Dicarbonyl-Dependent Modification of LDL as a Key Factor of Endothelial Dysfunction and Atherosclerotic Vascular Wall Damage. Antioxidants 2022, 11, 1565. [Google Scholar] [CrossRef] [PubMed]
- Lankin, V.; Viigimaa, M.; Tikhaze, A.; Kumskova, G.; Konovalova, G.; Abina, E.; Zemtsovskaya, G.; Kotkina, T.; Yanushevskaya, E.; Vlasik, T. Cholesterol-rich low density lipoproteins are also more oxidized. Mol. Cell. Biochem. 2011, 355, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Khlebus, E.; Kutsenko, V.; Meshkov, A.; Ershova, A.; Kiseleva, A.; Shcherbakova, N.; Zharikova, A.; Drapkina, O.; Shevtsov, A.; Yarovaya, E.; et al. Multiple rare and common variants in APOB gene locus associated with oxidatively modified low-density lipoprotein levels. PLoS ONE 2019, 14, e0217620. [Google Scholar] [CrossRef] [Green Version]
- Lankin, V.Z.; Shumaev, K.B.; Tikhaze, A.K.; Kurganov, B.I. Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase. Dokl. Biochem. Biophys. 2017, 475, 287–290. [Google Scholar] [CrossRef]
- Samsonov, M.V.; Khapchaev, A.Y.; Vorotnikov, A.V.; Vlasik, T.N.; Yanushevskaya, E.V.; Sidorova, M.V.; Efremov, E.E.; Lankin, V.Z.; Shirinsky, V.P. Impact of Atherosclerosis- and Diabetes-Related Dicarbonyls on Vascular Endothelial Permeability: A Comparative Assessment. Oxidative Med. Cell. Longev. 2017, 2017, 1625130. [Google Scholar] [CrossRef] [Green Version]
- Pirillo, A.; Norata, G.D.; Catapano, A.L. LOX-1, OxLDL, and atherosclerosis. Mediat. Inflamm. 2013, 2013, 152786. [Google Scholar] [CrossRef] [Green Version]
- Lubrano, V.; Balzan, S. LOX-1 and ROS, inseparable factors in the process of endothelial damage. Free. Radic. Res. 2014, 48, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshevet, Y.u.V. LOX-1-mediated effects on vascular cells in atherosclerosis. Cell. Physiol. Biochem. 2016, 38, 1851–1859. [Google Scholar] [CrossRef] [PubMed]
- Kattoor, A.J.; Kanuri, S.H.; Mehta, J.L. Role of Ox-LDL and LOX-1 in atherogenesis. Curr. Med. Chem. 2019, 26, 1693–1700. [Google Scholar] [CrossRef]
- Galle, J.; Schneider, R.; Heinloth, A.; Wanner, C.; Galle, P.R.; Conzelmann, E.; Dimmeler, S.; Heermeier, K. Lp(a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: Role of oxidative stress. Kidney Int. 1999, 55, 1450–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lankin, V.Z.; Sharapov, M.G.; Goncharov, R.G.; Antonova, O.A.; Tikhaze, A.K.; Konovalova, G.G. Expression of LOX-1 and NADPH Oxidase in Endotheliocytes by Dicarbonyl-Modified LDL; Pleiades Publishing, Ltd.: Moscow, Russia, 2022; manuscript in preparation. [Google Scholar]
- Sharapov, M.G.; Goncharov, R.G.; Gordeeva, A.E.; Novoselov, V.I.; Antonova, O.A.; Tikhaze, A.K.; Lankin, V.Z. Enzymatic antioxidant system of endotheliocytes. Dokl. Biochem. Biophys. 2016, 471, 410–412. [Google Scholar] [CrossRef]
- Lankin, V.Z.; Sharapov, M.G.; Goncharov, R.G.; Tikhaze, A.K.; Novoselov, V.I. Natural dicarbonyls inhibit peroxidase activity of peroxiredoxins. Dokl. Biochem. Biophys. 2019, 485, 132–134. [Google Scholar] [CrossRef]
- Weinbaum, S.; Tarbell, J.M.; Damiano, E.R. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 2007, 9, 121–167. [Google Scholar] [CrossRef]
- Reitsma, S.; Slaaf, D.W.; Vink, H.; Zandvoort, M.A.; Egbrink, M.G. The endothelial glycocalyx: Composition, functions, and visualization. Pflug. Arch. 2007, 454, 345–359. [Google Scholar] [CrossRef] [Green Version]
- Weinbaum, S.; Zhang, X.; Han, Y.; Vink, H.; Cowin, S.C. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 2003, 100, 7988–7995. [Google Scholar] [CrossRef] [Green Version]
- Nieuwdorp, M.; Meuwese, M.C.; Vink, H.; Hoekstra, J.B.; Kastelein, J.J.; Stroes, E.S. The endothelial glycocalyx: A potential barrier between health and vascular disease. Curr. Opin. Lipidol. 2005, 16, 507–511. [Google Scholar] [CrossRef]
- Alphonsus, C.S.; Rodseth, R.N. The endothelial glycocalyx: A review of the vascular barrier. Anaesthesia 2014, 69, 777–784. [Google Scholar] [CrossRef]
- Curry, F.E.; Adamson, R.H. Endothelial glycocalyx: Permeability barrier and mechanosensor. Ann. Biomed. Eng. 2012, 40, 828–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, M.I.M.; Drake-Holland, A.J.; Vink, H. Hypothesis: Arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM Int. J. Med. 2008, 101, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y. Endothelial glycocalyx: Novel insight into atherosclerosis. J. Biomed. 2017, 2, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Lankin, V.Z.; Tikhaze, A.K.; Kapel’ko, V.I.; Shepel’kova, G.S.; Shumaev, K.B.; Panasenko, O.M.; Konovalova, G.G.; Belenkov, Y.N. Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress. Biochemistry 2007, 72, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, D.; Witztum, J.L. Oxidized low-density lipoprotein and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2311–2316. [Google Scholar] [CrossRef] [Green Version]
- Lankin, V.Z.; Tikhaze, A.K.; Konovalova GGKumskova, E.M.; Shumaev, K.B. Aldehyde-dependent modification of low density lipoproteins. In Handbook of Lipoprotein Research; Rathbound, J.E., Ed.; NOVA Sci Publish Inc.: New York, NY, USA, 2010; pp. 85–107. [Google Scholar]
- Lankin, V.Z.; Konovalova, G.G.; Tikhaze, A.K.; Nedosugova, L.V. The influence of glucose on free radical peroxidation of low density lipoproteins in vitro and in vivo. Biochem. Suppl. Ser. B Biomed. Chem. 2011, 5, 284–292. [Google Scholar] [CrossRef]
- Donato, H. Lipid peroxidation, cross-linking reactions, and aging. In Age Pigments; Sohal, R.S., Ed.; Elsevier: Amsterdam, The Netherlands, 1981; pp. 63–81. [Google Scholar]
- Melkumyants, A.M.; Balashov, S.A.; Smiesko, V.; Khayutin, V.M. Selective blocking of arterial sensitivity to blood flow rate by glutaraldehyde. Bull. Exp. Biol. Med. 1986, 102, 568–570. (In Russian) [Google Scholar] [CrossRef]
- Melkumyants, A.M.; Balashov, S.A.; Khayutin, V.M. Control of arterial lumen by shear stress on endothelium. Physiology 1995, 10, 204–210. [Google Scholar] [CrossRef]
- Ermishkin, V.V.; Lukoshkova, E.V.; Melkumyants, A.M. Malonyldialdehyde-and methylglyoxal-induced suppression of endothelium-mediated dilation of rat iliac artery in response to elevation of blood flow. J. Evol. Biochem. Physiol. 2021, 57, 792–802. [Google Scholar] [CrossRef]
- Tarbell, J.M.; Ebong, E.E. The endothelial glycocalyx: A mechano-sensor and-transducer. Sci. Signal. 2008, 1, pt8. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, X.F.; Fu, B.M.; Tarbell, J.M. The role of endothelial surface glycocalyx in mechanosensing and transduction. Mol. Cell. Tissue Eng. Vasc. Syst. 2018, 1097, 1–27. [Google Scholar] [CrossRef]
- Pahakis, M.Y.; Kosky, J.R.; Tarbell, J.M. The role of endothelial glycocalyx components in mechanotrasduction of fluid shear stress. Biochem. Biophys. Res. Commun. 2007, 355, 228–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florian, J.A.; Kosky, J.A.; Ainslie, K.; Pang, Z.; Dull, R.O.; Tarbell, J.M. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res. 2003, 93, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Melkumyants, A.M.; Balashov, S.A.; Khayutin, V.M. Endothelium-dependent control of arterial diameter by blood viscosity. Cardiovasc. Res. 1989, 23, 741–747. [Google Scholar] [CrossRef]
- Koller, A.; Sun, D.; Kaley, G. Role of shear stress and endothelial prostaglandins in flow-and viscosity-induced dilation of arterioles in vitro. Circ. Res. 1993, 72, 1276–1284. [Google Scholar] [CrossRef] [Green Version]
- Tesfamariam, B.; Cohen, R.A. Inhibition of adrenergic vasoconstriction by endothelial cell shear stress. Circ. Res. 1988, 63, 720–725. [Google Scholar] [CrossRef] [Green Version]
- Melkumyants, A.M.; Balashov, S.A.; Kartamyshev, S.P. Anticonstrictor effect of endothelium sensitivity to shear stress. Pflug Arch. 1994, 427, 264–269. [Google Scholar] [CrossRef]
- Gouverneur, M.; van den Berg, B.; Nieuwdorp, M.; Stroes, E.; Vink, H. Vasculoprotective properties of the endothelial glycocalyx: Effects of fluid shear stress. J. Intern. Med. 2006, 259, 393–400. [Google Scholar] [CrossRef]
- Van den Berg, B.M.; Spaan, J.A.; Vink, H. Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflüg. Arch. 2009, 457, 1199–1206. [Google Scholar] [CrossRef] [Green Version]
- Dogné, S.; Flamion, B. Endothelial glycocalyx impairment in disease: Focus on hyaluronan shedding. Amer J. Pathol. 2020, 190, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Koo, A.; Dewey, C.F., Jr.; García-Cardeña, G. Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am. J. Physiol. Physiol. 2013, 304, 137–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulivor, A.W.; Lipowsky, H.H. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am. J. Physiol. Circ. Physiol. 2004, 286, H1672–H1680. [Google Scholar] [CrossRef] [Green Version]
- Rehm, M.; Bruegger, D.; Christ, F.; Conzen, P.; Thiel, M.; Jacob, M.; Chappell, D.; Stoeckelhuber, M.; Welsch, U.; Reichart, B.; et al. Shedding of the Endothelial Glycocalyx in Patients Undergoing Major Vascular Surgery With Global and Regional Ischemia. Circulation 2007, 116, 1896–1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappell, D.; Jacob, M.; Hofmann-Kiefer, K.; Rehm, M.; Welsch, U.; Conzen, P.; Becker, B.F. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc. Res. 2009, 83, 388–396. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Gayosso, I.; Platts, S.H.; Duling, B.R. Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am. J. Physiol. Circ. Physiol. 2006, 290, H2247–H2256. [Google Scholar] [CrossRef] [PubMed]
- Vink, H.; Constantinescu, A.A.; Spaan, J.A.E. Oxidized Lipoproteins Degrade the Endothelial Surface Layer. Circulation 2000, 101, 1500–1502. [Google Scholar] [CrossRef] [Green Version]
- Constantinescu, A.A.; Vink, H.; Spaan, J.A.E. Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized LDL. Am. J. Physiol. Circ. Physiol. 2001, 280, H1051–H1057. [Google Scholar] [CrossRef]
- Patel, R.P.; Darley-Usmar, V. Molecular mechanisms of the copper dependent oxidation of low-density lipoprotein. Free. Radic. Res. 1999, 30, 1–9. [Google Scholar] [CrossRef]
- Burkitt, M.J. A Critical Overview of the Chemistry of Copper-Dependent Low Density Lipoprotein Oxidation: Roles of Lipid Hydroperoxides, α-Tocopherol, Thiols, and Ceruloplasmin. Arch. Biochem. Biophys. 2001, 394, 117–135. [Google Scholar] [CrossRef]
- Spiteller, G. Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation end products. Ann. N. Y. Acad. Sci. 2008, 1126, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Lankin, V.; Konovalova, G.; Tikhaze, A.; Shumaev, K.; Kumskova, E.; Viigimaa, M. The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: A common molecular mechanism of vascular wall injure in atherosclerosis and diabetes. Mol. Cell. Biochem. 2014, 395, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Varon, D.; Tamarin, I.; Zivelin, A.; Salomon, O.; Shenkman, B.; Savion, N.; Dardik, R. Homocysteine and Oxidized Low Density Lipoprotein Enhance Platelet Adhesion to Endothelial Cells under Flow Conditions: Distinct Mechanisms of Thrombogenic Modulation. Thromb. Haemost. 2000, 83, 338–344. [Google Scholar] [CrossRef]
- Jeng, J.R.; Chang, C.H.; Shieh, S.M.; Chiu, H.C. Oxidized low-density lipoprotein enhances monocyte-endothelial cell binding against shear-stress-induced detachment. Biochim. Biophys. Acta 1993, 1178, 221–227, PMID: 7688576. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.; Erl, W.; Weber, K.S.; Weber, P.C. Effects of oxidized low density lipoprotein, lipid mediators and statins on vascular cell interactions. Clin. Chem. Lab. Med. 1999, 37, 243–251, PMID: 10353467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappell, D.; Dörfler, N.; Jacob, M.; Rehm, M.; Welsch, U.; Conzen, P.; Becker, B.F. Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion. Shock 2010, 34, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Tikhaze, A.K.; Domogatsky, S.P.; Lankin, V.Z. Clearance of Carbonyl-Modified Low-Density Lipoproteins in Rabbits. Biochem. Suppl. Ser. B Biomed. Chem. 2021, 15, 119–124. [Google Scholar] [CrossRef]
- Stocker, R.; Bowry, V.W.; Frei, B. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc. Natl. Acad. Sci. USA 1991, 88, 1646–1650. [Google Scholar] [CrossRef] [Green Version]
- Ahmadvand, H.; Mabuchi, H.; Nohara, A.; Kobayahi, J.; Kawashiri, M.A. Effects of coenzyme Q (10) on LDL oxidation in vitro. Acta Med. Iran. 2013, 51, 12–18. [Google Scholar]
- Lankin, V.Z.; Tikhaze, A.K.; Kukharchuk, V.V.; Konovalova, G.G.; Pisarenko, O.I.; Kaminnyi, A.I.; Shumaev, K.B.; Belenkov, Y.N. Antioxidants decreases the intensification of low density lipoprotein in vivo peroxidation during therapy with statins. Mol. Cell. Biochem. 2003, 249, 129–140. [Google Scholar] [CrossRef]
- Mohr, D.; Bowry, V.W.; Stocker, R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim. Biophys. Acta 1992, 1126, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.W.; Scanu, A.M.; Kézdy, F.J. Structure of human serum lipoproteins inferred from compositional analysis. Proc. Natl. Acad. Sci. USA 1977, 74, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Neuzil, J.; Witting, P.K.; Stocker, R. α-Tocopheryl hydroquinone is an efficient multifunctional inhibitor of radical-initiated oxidation of low density lipoprotein lipids. Proc. Natl. Acad. Sci. USA 1997, 94, 7885–7890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta 2012, 1826, 443–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packer, J.E.; Slater, T.F.; Willson, R.L. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 1979, 278, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Kagan, V.E.; Freisleben, H.-J.; Tsuchiya, M.; Forte, T.; Packer, L. Generation of Probucol Radicals and Their Reduction by Ascorbate and Dihydrolipoic Acid in Human Low Density Lipoproteins. Free Radic. Res. Commun. 1991, 15, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Shumaev, K.B.; Ruuge, E.K.; Dmitrovsky, A.A.; Bykhovsky VYa Kukharchuk, V.V. Effect of lipid peroxidation products and antioxidants on the formation of probucol radical in low density lipoproteins. Biochemistry 1997, 62, 657–660. [Google Scholar]
- Tikhaze, A.K.; Lankin, V.Z.; Konovalova, G.G.; Shumaev, K.B.; Kaminnyi, A.I.; Kozachenko, A.I.; Gurevich, S.M.; Nagler, L.G.; Zaitseva, T.M.; Kukharchuk, V.V. Antioxidant probucol as an effective scavenger of lipid radicals in low density lipoproteins in vivo and in vitro. Bull. Exp. Biol. Med. 1999, 128, 818–821. [Google Scholar] [CrossRef]
- Ruggiero-Lopez, D.; Lecomte, M.; Moinet, G.; Patereau, G.; Lagarde, M.; Wiernsperger, N. Reaction of metformin with dicarbonyl compounds. Biochem. Pharmacol. 1999, 58, 1765–1773. [Google Scholar] [CrossRef]
- Reddy, V.P.; Beyaz, A. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov. Today 2006, 11, 646–654. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and Pathophysiology of Carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, O.I.; Stvolinsky, S.L.; Migulin, V.A.; Andreeva, L.A.; Nagaev, I.Y.; Lopacheva, O.M.; Kulichenkova, K.N.; Lopachev, A.V.; Trubitsina, I.E.; Fedorova, T.N. A new derivative of acetylsalicylic acid and carnosine: Synthesis, physical and chemical properties, biological activity. DARU J. Pharm. Sci. 2020, 28, 119–130. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lankin, V.Z.; Tikhaze, A.K.; Melkumyants, A.M. Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development. Int. J. Mol. Sci. 2023, 24, 128. https://doi.org/10.3390/ijms24010128
Lankin VZ, Tikhaze AK, Melkumyants AM. Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development. International Journal of Molecular Sciences. 2023; 24(1):128. https://doi.org/10.3390/ijms24010128
Chicago/Turabian StyleLankin, Vadim Z., Alla K. Tikhaze, and Arthur M. Melkumyants. 2023. "Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development" International Journal of Molecular Sciences 24, no. 1: 128. https://doi.org/10.3390/ijms24010128
APA StyleLankin, V. Z., Tikhaze, A. K., & Melkumyants, A. M. (2023). Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development. International Journal of Molecular Sciences, 24(1), 128. https://doi.org/10.3390/ijms24010128