Late-Stage Functionalization through Click Chemistry Provides GLUT5-Targeting Glycoconjugate as a Potential PET Imaging Probe
Abstract
:1. Introduction
2. Results
2.1. Design and Synthesis
2.2. ManCou-F Exhibits Retention in Cells
2.3. ManCou-F Passes to the Cells in a Concentration-Dependent Manner
2.4. ManCou-F Exhibits Metabolism-Coupled Uptake and GLUT5 Preference
2.5. Cytotoxicity Analysis
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Plate Preparation
4.2. General Protocol for Cell Imaging and Fluorescence Image Processing Using a Confocal Microscope
4.3. General Protocol for Fluorescence Analysis Using Flow Cytometry
4.4. Uptake Analysis
4.5. Temperature Studies
4.6. Competitive Uptake Inhibition Studies
4.7. GLUT5 Immunofluorescence Analysis
4.8. Cell Viability Analysis (MTS Assay)
4.9. Quantification, Statistical, and Kinetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navale, A.M.; Paranjape, A.N. Glucose transporters: Physiological and pathological roles. Biophys. Rev. 2016, 8, 5–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douard, V.; Ferraris, R.P. The role of fructose transporters in diseases linked to excessive fructose intake. J. Physiol. 2013, 591, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Tanasova, M. Importance of GLUT Transporters in Disease Diagnosis and Treatment. Int. J. Mol. Sci. 2022, 23, 8698–8712. [Google Scholar] [CrossRef] [PubMed]
- Pliszka, M.; Szablewski, L. Glucose Transporters as a Target for Anticancer Therapy. Cancers 2021, 13, 4184–4201. [Google Scholar] [CrossRef] [PubMed]
- Walrand, S.; Hesse, M.; Jamar, F. Update on novel trends in PET/CT technology and its clinical applications. Br. J. Radiol. 2018, 91, 20160534–20160543. [Google Scholar] [CrossRef]
- Wassenaar, W.; Tator, C.H. Glucose analogues as potential agents for brain tumour diagnosis and treatment. Trans. Am. Neurol. Assoc. 1973, 98, 43–48. [Google Scholar]
- Henry, C.; Koumanov, F.; Ghezzi, C.; Morin, C.; Mathieu, J.-P.; Vidal, M.; de Leiris, J.; Comet, M.; Fagret, D. [123I]-6-deoxy-6-iodo-d-glucose (6DIG): A potential tracer of glucose transport. Nucl. Med. Biol. 1997, 24, 527–534. [Google Scholar] [CrossRef]
- Otsuka, Y.; Sasaki, A.; Teshima, T.; Yamada, K.; Yamamoto, T. Syntheses of d-Glucose Derivatives Emitting Blue Fluorescence through Pd-Catalyzed C–N Coupling. Org. Lett. 2016, 18, 1338–1341. [Google Scholar] [CrossRef]
- Zou, C.; Wang, Y.; Shen, Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J. Biochem. Biophys. Methods 2005, 64, 207–215. [Google Scholar] [CrossRef]
- Tanasova, M.; Begoyan, V.V.; Weselinski, L.J. Targeting Sugar Uptake and Metabolism for Cancer Identification and Therapy: An Overview. Curr. Top. Med. Chem. 2018, 18, 467–483. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, S.; Ahmad, S.; Gao, Q. Targeting Key Transporters in Tumor Glycolysis as a Novel Anticancer Strategy. Curr. Top. Med. Chem. 2018, 18, 454–466. [Google Scholar] [CrossRef]
- Nakagawa, T.; Lanaspa, M.A.; Millan, I.S.; Fini, M.; Rivard, C.J.; Sanchez-Lozada, L.G.; Andres-Hernando, A.; Tolan, D.R.; Johnson, R.J. Fructose contributes to the Warburg effect for cancer growth. Cancer Metab. 2020, 8, 16–27. [Google Scholar] [CrossRef]
- McQuade, D.T.; Plutschack, M.B.; Seeberger, P.H. Passive fructose transporters in disease: A molecular overview of their structural specificity. Org. Biomol. Chem. 2013, 11, 4909–4920. [Google Scholar] [CrossRef]
- Douard, V.; Ferraris, R.P. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Metab. 2008, 295, E227–E237. [Google Scholar] [CrossRef] [Green Version]
- Soueidan, O.-M.; Trayner, B.J.; Grant, T.N.; Henderson, J.R.; Wuest, F.; West, F.G.; Cheeseman, C.I. New fluorinated fructose analogs as selective probes of the hexose transporter protein GLUT5. Org. Biomol. Chem. 2015, 13, 6511–6521. [Google Scholar] [CrossRef]
- Wuest, M.; Trayner, B.J.; Grant, T.N.; Jans, H.-S.; Mercer, J.R.; Murray, D.; West, F.G.; McEwan, A.J.; Wuest, F.; Cheeseman, C.I. Radiopharmacological evaluation of 6-deoxy-6-[18F]fluoro-d-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer. Nucl. Med. Biol. 2011, 38, 461–475. [Google Scholar] [CrossRef]
- Haradahira, T.; Tanaka, A.; Maeda, M.; Kanazawa, Y.; Ichiya, Y.-I.; Masuda, K. Radiosynthesis, rodent biodistribution, and metabolism of 1-deoxy-1-[18F]fluoro-d-fructose. Nucl. Med. Biol. 1995, 22, 719–725. [Google Scholar] [CrossRef]
- Wuest, M.; Hamann, I.; Bouvet, V.; Glubrecht, D.; Marshall, A.; Trayner, B.; Soueidan, O.-M.; Krys, D.; Wagner, M.; Cheeseman, C.; et al. Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice. Mol. Pharmacol. 2018, 93, 79–89. [Google Scholar] [CrossRef]
- Begoyan, V.V.; Weseliński, J.; Xia, S.; Fedie, J.; Kannan, S.; Ferrier, A.; Rao, S.; Tanasova, M. Multicolor GLUT5-permeable fluorescent probes for fructose transport analysis. Chem. Commun. 2018, 54, 3855–3858. [Google Scholar] [CrossRef]
- Levi, J.; Cheng, Z.; Gheysens, O.; Patel, M.; Chan, C.T.; Wang, Y.; Namavari, A.M.; Gambhir, S.S. Fluorescent Fructose Derivatives for Imaging Breast Cancer Cells. Bioconjug. Chem. 2007, 18, 628–634. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Dowden, J.; Tatibouët, A.; Hatanaka, Y.; Holman, G.D. Development of high-affinity ligands and photoaffinity labels for the d-fructose transporter GLUT5. Biochem. J. 2002, 367, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Nahrjou, N.; Ghosh, A.; Tanasova, M. Targeting of GLUT5 for Transporter-Mediated Drug-Delivery Is Contingent upon Substrate Hydrophilicity. Int. J. Mol. Sci. 2021, 22, 5037–5054. [Google Scholar] [CrossRef] [PubMed]
- Rana, N.; Aziz, M.A.; Oraby, A.K.; Wuest, M.; Dufour, J.; Abouzid, K.A.M.; Wuest, F.; West, F.G. Towards Selective Binding to the GLUT5 Transporter: Synthesis, Molecular Dynamics and In Vitro Evaluation of Novel C-3-Modified 2,5-Anhydro-D-mannitol Analogs. Pharmaceutics 2022, 14, 828–846. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J.S.; Lin, W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev. 2019, 119, 10403–10519. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, O.; Kiesewetter, D.O.; Chen, X. Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes. Bioconj. Chem. 2015, 26, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.P.; Pham, T.Q.; Doan, J.; Jiang, C.D.; Hambley, T.W.; Greguric, I.; Fraser, B.H. Radiosynthesis and ‘click’ conjugation of ethynyl-4-[18F]fluorobenzene—An improved [18F]synthon for indirect radiolabeling. J. Label. Compd. Radiopharm. 2015, 58, 473–478. [Google Scholar] [CrossRef]
- Oshikawa, Y.; Ojida, A. PET-dependent fluorescence sensing of enzyme reactions using the large and tunable pKa shift of aliphatic amines. Chem. Commun. 2013, 49, 11373–11375. [Google Scholar] [CrossRef]
- Ye, X.-W.; Zheng, Y.-C.; Duan, Y.-C.; Wang, M.-M.; Yu, B.; Ren, J.-L.; Ma, J.-L.; Zhang, E.; Liu, H.-M. Synthesis and biological evaluation of coumarin–1,2,3-triazole–dithiocarbamate hybrids as potent LSD1 inhibitors. MedChemComm 2014, 5, 650–654. [Google Scholar] [CrossRef]
- van Wilderen, L.J.G.W.; Neumann, C.; Rodrigues-Correia, A.; Kern-Michler, D.; Mielke, N.; Reinfelds, M.; Heckel, A.; Bredenbeck, J. Picosecond activation of the DEACM photocage unravelled by VIS-pump-IR-probe spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 6487–6496. [Google Scholar] [CrossRef]
- Hausner, S.H.; Marik, J.; Gagnon, M.K.; Sutcliffe, J.L. In vivo positron emission tomography (PET) imaging with an alphavbeta6 specific peptide radiolabeled using 18F-“click” chemistry: Evaluation and comparison with the corresponding 4-[18F]fluorobenzoyl- and 2-[18F]fluoropropionyl-peptides. J. Med. Chem. 2008, 51, 5901–5904. [Google Scholar] [CrossRef] [Green Version]
- Marik, J.; Sutcliffe, J.L. Click for PET: Rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett. 2006, 47, 6681–6684. [Google Scholar] [CrossRef]
- Kannan, S.; Begoyan, V.V.; Fedie, J.R.; Xia, S.; Weseliński, J.; Tanasova, M.; Rao, S. Metabolism-Driven High-Throughput Cancer Identification with GLUT5-Specific Molecular Probes. Biosensors 2018, 8, e39–e50. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.M.G.; Ursu, O.; Babkin, P.; Iancu, C.V.; Whang, A.; Oprea, T.I.; Choe, J.-Y. Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation. Sci. Rep. 2016, 6, 24240. [Google Scholar] [CrossRef] [Green Version]
- Naftalin, R.J.; Rist, R.J. Evidence that activation of 2-deoxy-d-glucose transport in rat thymocyte suspensions results from enhanced coupling between transport and hexokinase activity. Biochem. J. 1989, 260, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Tanasova, M.; Fedie, J.R. Molecular Tools for Facilitative Carbohydrate Transporters (Gluts). Chembiochem 2017, 18, 1774–1788. [Google Scholar] [CrossRef]
- Tanasova, M.; Plutschack, M.; Muroski, M.E.; Sturla, S.J.; Strouse, G.F.; McQuade, D.T. Fluorescent THF-Based Fructose Analogue Exhibits Fructose-Dependent Uptake. Chembiochem 2013, 14, 1263–1270. [Google Scholar] [CrossRef]
- Augustin, R. The protein family of glucose transport facilitators: It’s not only about glucose after all. IUBMB Life 2010, 62, 315–333. [Google Scholar] [CrossRef]
- Kapoor, K.; Finer-Moore, J.S.; Pedersen, B.P.; Caboni, L.; Waight, A.; Hillig, R.C.; Bringmann, P.; Heisler, I.; Müller, T.; Siebeneicher, H.; et al. Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Proc. Natl. Acad. Sci. USA 2016, 113, 4711–4716. [Google Scholar] [CrossRef] [Green Version]
- Gouyon, F.; Onesto, C.; Dalet, V.; Pages, G.; Leturque, A.; Brot-Laroche, E. Fructose modulates GLUT5 mRNA stability in differentiated Caco-2 cells: Role of cAMP-signalling pathway and PABP (polyadenylated-binding protein)-interacting protein (Paip) 2. Biochem. J. 2003, 375, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.M.; Martel, F. Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds. Cancers 2020, 12, 154–191. [Google Scholar] [CrossRef] [Green Version]
- Zamora-León, S.P.; Golde, D.W.; Concha, I.I.; Rivas, C.I.; Delgado-López, F.; Baselga, J.; Nualart, F.; Vera, J.C. Expression of the fructose transporter GLUT5 in human breast cancer. Proc. Natl. Acad. Sci. USA 1996, 93, 1847–1852. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Liu, H.; Liu, M.; Wang, Y.; Qiu, L.; Cui, Y. Increased utilization of fructose has a positive effect on the development of breast cancer. PeerJ 2017, 5, e3804–e3818. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Wen, X.A.; Jia, Z.J.; Wu, X.M.; Guo, W.H.; Sun, H.B. Synthesis and Preliminary Evaluation of 1-[F-18]Fluoro-1-deoxy-2,5-anhydro-D-mannitol as a PET Radiotracer for Breast Cancer Imaging. Chin. J. Chem. 2013, 31, 1159–1163. [Google Scholar] [CrossRef]
- Tatibouet, A.; Yang, J.; Morin, C.; Holman, G.D. Synthesis and evaluation of fructose analogues as inhibitors of the d -fructose transporter GLUT5. Bioorg. Med. Chem. 2000, 8, 1825–1833. [Google Scholar] [CrossRef]
- Sun, P.; Han, Y.; Zhu, Y.; Hu, K.; Huang, S.; Tan, J.; Wang, M.; Wu, H.; Tang, G. Radiosynthesis and biological evaluation of fluorine-18 labeled N-acetylgalactosamine derivative [(18)F]FPGalNAc for PET imaging of asialoglycoprotein receptor-positive tumors. Nucl. Med. Biol. 2020, 88–89, 1–9. [Google Scholar] [CrossRef]
- Relative Standard Deviation (RSD) Calculator. Available online: https://calculator-online.net/rsd-calculator/ (accessed on 22 October 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oronova, A.; Tanasova, M. Late-Stage Functionalization through Click Chemistry Provides GLUT5-Targeting Glycoconjugate as a Potential PET Imaging Probe. Int. J. Mol. Sci. 2023, 24, 173. https://doi.org/10.3390/ijms24010173
Oronova A, Tanasova M. Late-Stage Functionalization through Click Chemistry Provides GLUT5-Targeting Glycoconjugate as a Potential PET Imaging Probe. International Journal of Molecular Sciences. 2023; 24(1):173. https://doi.org/10.3390/ijms24010173
Chicago/Turabian StyleOronova, Adelina, and Marina Tanasova. 2023. "Late-Stage Functionalization through Click Chemistry Provides GLUT5-Targeting Glycoconjugate as a Potential PET Imaging Probe" International Journal of Molecular Sciences 24, no. 1: 173. https://doi.org/10.3390/ijms24010173
APA StyleOronova, A., & Tanasova, M. (2023). Late-Stage Functionalization through Click Chemistry Provides GLUT5-Targeting Glycoconjugate as a Potential PET Imaging Probe. International Journal of Molecular Sciences, 24(1), 173. https://doi.org/10.3390/ijms24010173