Analytical Perspectives in the Study of Polyvalent Interactions of Free and Surface-Bound Oligonucleotides and Their Implications in Affinity Biosensing
Abstract
:1. Introduction
2. Results and Discussion
2.1. CGE Analysis
2.1.1. Binary and Ternary Complex Assessment
2.1.2. Binding Stoichiometry in Binary ssDNA Interactions
2.1.3. Binding Selectivity
2.2. Microcalorimetric Study
2.2.1. Binary and Ternary Interactions
2.2.2. Binding Selectivity
2.3. Molecular Dynamics Simulations
3. Materials and Methods
3.1. Materials
3.2. ssDNA Oligonucleotides Hybridization Conditions
3.3. Capillary Gel Electrophoresis (CGE)
3.4. Isothermal Titration Calorimetry
3.5. Computational Modeling of ssDNA Oligonucleotides Interacting System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Du, Y.; Dong, S. Nucleic Acid Biosensors: Recent Advances and Perspectives. Anal. Chem. 2017, 89, 189–215. [Google Scholar] [CrossRef] [PubMed]
- Topkaya, S.N.; Cetin, A.E. Electrochemical Aptasensors for Biological and Chemical Analyte Detection. Electroanalysis 2021, 33, 277–291. [Google Scholar] [CrossRef]
- Zhou, S.; Gan, Y.; Kong, L.; Sun, J.; Liang, T.; Wang, X.; Wan, H.; Wang, P. A novel portable biosensor based on aptamer functionalized gold nanoparticles for adenosine detection. Anal. Chim. Acta 2020, 1120, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Xu, Y.; Zhu, N.; He, P.; Fang, Y. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst 2002, 127, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Leach, J.C.; Wang, A.; Ye, K.; Jin, S. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery. Int. J. Mol. Sci. 2016, 17, 380. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.; Stoltenburg, R.; Strehlitz, B.; Frense, D.; Beckmann, D. Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus. Int. J. Mol. Sci. 2017, 18, 2484. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, H.; Savory, N.; Abe, K.; Ikebukuro, K. Methods for Improving Aptamer Binding Affinity. Molecules 2016, 21, 421. [Google Scholar] [CrossRef]
- Fu, Z.; Xiang, J. Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 9123. [Google Scholar] [CrossRef]
- Elskens, J.P.; Elskens, J.M.; Madder, A. Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int. J. Mol. Sci. 2020, 21, 4522. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J. Molecular Imprinted Polymers with DNA Aptamer Fragments as Macromonomers. ACS Appl. Mater. Interfaces 2016, 8, 6371–6378. [Google Scholar] [CrossRef]
- Pica, A.; Krauss, I.R.; Parente, V.; Karimata, H.-T.; Nagatoishi, S.; Tsumoto, K.; Sugimoto, N.; Sica, F. Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers. Nucleic Acids Res. 2016, 45, 461–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraz, R.A.C.; Lopes, A.L.G.; da Silva, J.A.F.; Moreira, D.F.V.; Ferreira, M.J.N.; Coimbra, S.V.d.A. DNA–protein interaction studies: A historical and comparative analysis. Plant Methods 2021, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.; Larkin, C.; Guja, K.; Schildbach, J. Chapter 12 Using Fluorophore-Labeled Oligonucleotides to Measure Affinities of Protein-DNA Interactions. Methods Enzymol. 2008, 450, 253–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, M.; Bowser, M. Methods for measuring aptamer-protein equilibria: A review. Anal. Chim. Acta 2011, 686, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Onel, B.; Wu, G.; Sun, D.; Lin, C.; Yang, D. Electrophoretic Mobility Shift Assay and Dimethyl Sulfate Footprinting for Characterization of G-Quadruplexes and G-Quadruplex-Protein Complexes. Methods Mol. Biol. 2019, 2035, 201–222. [Google Scholar] [CrossRef]
- Neaga, I.; Bodoki, E.; Hambye, S.; Blankert, B.; Oprean, R. Study of nucleic acid-ligand interactions by capillary electrophoretic techniques: A review. Talanta 2015, 148, 247–256. [Google Scholar] [CrossRef]
- Shahmuradyan, A.; Moazami-Goudarzi, M.; Kitazume, F.; Espie, G.S.; Krull, U.J. Paper-based platform for detection by hybridization using intrinsically labeled fluorescent oligonucleotide probes on quantum dots. Analyst 2019, 144, 1223–1229. [Google Scholar] [CrossRef]
- Minagawa, H.; Kataoka, Y.; Fujita, H.; Kuwahara, M.; Horii, K.; Shiratori, I.; Waga, I. Modified DNA Aptamers for C-Reactive Protein and Lactate Dehydrogenase-5 with Sub-Nanomolar Affinities. Int. J. Mol. Sci. 2020, 21, 2683. [Google Scholar] [CrossRef]
- Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2016, 16, 440. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; McKeague, M.; Smolke, C. Facile Characterization of Aptamer Kinetic and Equilibrium Binding Properties Using Surface Plasmon Resonance. Methods Enzymol. 2014, 549, 451–466. [Google Scholar] [CrossRef]
- Hong, T.; Qiu, L.; Zhou, S.; Cai, Z.; Cui, P.; Zheng, R.; Wang, J.; Tan, S.; Jiang, P. How does DNA ‘meet’ capillary-based microsystems? Analyst 2021, 146, 48–63. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Martinez, M.; Carrilho, E.; Berka, J.; Kieleczawa, J.; Miller, A.; Foret, F.; Carson, S.; Karger, B. DNA Sequencing by Capillary Electrophoresis Using Short Oligonucleotide Primer Libraries. Biotechniques 1996, 20, 1058–1064+1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, Z.; Yu, Y.; Wang, M.; Li, J.; Zhang, Z.; Liu, J.; Wu, X.; Lu, A.; Zhang, G.; Zhang, B. Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine. Int. J. Mol. Sci. 2017, 18, 2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, C.; Hayes, M.; Stettler, G.; Hickey, S.; Axelrod, T.; Giustini, N.; Suljak, S. Capillary Electrophoretic Development of Aptamers for a Glycosylated VEGF Peptide Fragment. Analyst 2010, 135, 2945–2951. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Cho, H.-Y.; Choi, H.K.; Lee, J.-Y.; Choi, J.-W. Application of Gold Nanoparticle to Plasmonic Biosensors. Int. J. Mol. Sci. 2018, 19, 2021. [Google Scholar] [CrossRef] [Green Version]
- miRBase. Available online: https://www.mirbase.org/cgi-bin/get_read.pl?acc=MI0000077 (accessed on 2 November 2022).
- Alexandre, D.; Teixeira, B.; Rico, A.; Valente, S.; Craveiro, A.; Baptista, P.V.; Cruz, C. Molecular Beacon for Detection miRNA-21 as a Biomarker of Lung Cancer. Int. J. Mol. Sci. 2022, 23, 3330. [Google Scholar] [CrossRef]
- Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. miRNAs in Cancer (Review of Literature). Int. J. Mol. Sci. 2022, 23, 2805. [Google Scholar] [CrossRef]
- Yan, L.-X.; Huang, X.-F.; Shao, Q.; Huang, M.-Y.; Deng, L.; Wu, Q.-L.; Zeng, Y.-X.; Shao, J.-Y. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008, 14, 2348–2360. [Google Scholar] [CrossRef] [Green Version]
- Arisan, E.D.; Rencuzogullari, O.; Cieza-Borrella, C.; Arenas, F.M.; Dwek, M.; Lange, S.; Uysal-Onganer, P. MiR-21 Is Required for the Epithelial–Mesenchymal Transition in MDA-MB-231 Breast Cancer Cells. Int. J. Mol. Sci. 2021, 22, 1557. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Wang, Y.; Ma, Y.; Guo, Z.; Liu, Z. Controllably Prepared Aptamer-Molecularly Imprinted Polymer Hybrid for High-Specificity and High-Affinity Recognition of Target Proteins. Anal. Chem. 2019, 91, 4831–4837. [Google Scholar] [CrossRef]
- Bai, W.; Gariano, N. Macromolecular Amplification of Binding Response in Superaptamer Hydrogels. J. Am. Chem. Soc. 2013, 135, 6977–6984. [Google Scholar] [CrossRef] [PubMed]
- Radi, A.-E.; Abd-Ellatief, M.R. Electrochemical Aptasensors: Current Status and Future Perspectives. Diagnostics 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Sandström, P.; Boncheva, M.; Åkerman, B. Nonspecific and Thiol-Specific Binding of DNA to Gold Nanoparticles. Langmuir 2003, 19, 7537–7543. [Google Scholar] [CrossRef]
- Taton, T.A. Preparation of gold nanoparticle-DNA conjugates. Curr. Protoc. Nucleic Acid Chem. 2002, 9, 12.2.1–12.2.12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salim, N.N.; Feig, A.L. Isothermal titration calorimetry of RNA. Methods 2009, 47, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Xu, Y. Application of ITC-Based Characterization of Thermodynamic and Kinetic Association of Ligands with Proteins in Drug Design. Front. Pharmacol. 2018, 9, 1133. [Google Scholar] [CrossRef]
- Jorgensen, W.; Chandrasekhar, J.; Madura, J.; Impey, R.; Klein, M. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Petrova, S.S.; Solovev, A.D. The Origin of the Method of Steepest Descent. Hist. Math. 1997, 24, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.J.; Holian, B.L. The Nose–Hoover thermostat. J. Chem. Phys. 1998, 83, 4069–4074. [Google Scholar] [CrossRef]
- Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.; Berendsen, H. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Brooks, B.; Brooks, C.; MacKerell, A.; Nilsson, L.; Petrella, R.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.A.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darden, T.A.; York, D.M.; Pedersen, L.G. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markham, N.; Zuker, M. UNAFold BT—Bioinformatics: Structure, Function and Applications; Keith, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 3–31. [Google Scholar] [CrossRef]
Nominal (miR21) (µM) | Detected (Free) (miR21) (µM) | |||
---|---|---|---|---|
miR21–A1 System | A2–miR21 System | A2@GNRs–miR21 System | A2@GNRs–miR21–A1 System | |
0 | 0.00 | 0.00 | 0.00 | 0.00 |
0.55 | 0.00 | 0.00 | 0.00 | 0.00 |
1.11 | 0.00 | 0.00 | 0.41 | 0.00 |
2.22 | 0.00 | 0.94 | 1.48 | 0.00 |
3.33 | 0.00 | 1.52 | 2.49 | 0.00 |
4.44 | 0.00 | 2.47 | 4.01 | 0.45 |
6.66 | 0.53 | 4.23 | 6.50 | 1.74 |
8.88 | 1.61 | 5.83 | 8.81 | 3.80 |
A1 10 µM + miR21 30 µM | A1 30 µM + miR21-sp 90 µM | A1 10 µM + Random/anti-miR21 30 µM | A2 10 µM + miR21 30 µM | A2 10 µM + miR21 30 µM * | (A1 10 µM + A2 10 µM) + miR21 30 µM | |
---|---|---|---|---|---|---|
KD (μM) (RSD%) | 0.38 (38.25) | 9.40 (24.56) | NB | 1.25 (11.13) | 1.55 (12.35) | 0.55 (4.84) |
N (RSD%) | 1.118 (14.10) | 0.973 (6.09) | - | 0.96 (10.42) | 1.018 (6.90) | 0.45 (5.08) |
ΔG (kJ/mol) (RSD%) | −36.767 (−2.93) | −28.69 (-2.57) | - | −33.7 (−0.79) | −33.17 (−0.91) | −35.70 (−0.33) |
ΔH (kJ/mol) (RSD%) | −201.23 (−4.15) | −18.36 (26.01) | - | −164.93 (−11.39) | −174.9 (−4.86) | −508.5 (−1.45) |
−TΔS (kJ/mol) (RSD%) | 164.467 (5.72) | −10.33 (30.79) | - | 131.23 (14.12) | 141.76 (6.01) | 472.76 (1.55) |
A2@GNRs 0.97 µM + miR21 30 µM | A2@GNRs 0.97 µM + miR21-sp 30 µM | A2@GNRs 0.97 µM + Random 30 µM | |
---|---|---|---|
KD (μM) | 0.022 | 0.011 | 1.85 |
N | 3.169 | 3.23 | 0.994 |
ΔH (kJ/mol) | −83.35 | −37.85 | −49.2 |
−TΔS (kJ/mol) | 39.77 | −6.279 | 16.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gliga, L.-E.; Iacob, B.-C.; Moldovean, S.-N.; Spivak, D.A.; Bodoki, A.E.; Bodoki, E.; Oprean, R. Analytical Perspectives in the Study of Polyvalent Interactions of Free and Surface-Bound Oligonucleotides and Their Implications in Affinity Biosensing. Int. J. Mol. Sci. 2023, 24, 175. https://doi.org/10.3390/ijms24010175
Gliga L-E, Iacob B-C, Moldovean S-N, Spivak DA, Bodoki AE, Bodoki E, Oprean R. Analytical Perspectives in the Study of Polyvalent Interactions of Free and Surface-Bound Oligonucleotides and Their Implications in Affinity Biosensing. International Journal of Molecular Sciences. 2023; 24(1):175. https://doi.org/10.3390/ijms24010175
Chicago/Turabian StyleGliga, Laura-Elena, Bogdan-Cezar Iacob, Sanda-Nastasia Moldovean, David A. Spivak, Andreea Elena Bodoki, Ede Bodoki, and Radu Oprean. 2023. "Analytical Perspectives in the Study of Polyvalent Interactions of Free and Surface-Bound Oligonucleotides and Their Implications in Affinity Biosensing" International Journal of Molecular Sciences 24, no. 1: 175. https://doi.org/10.3390/ijms24010175
APA StyleGliga, L. -E., Iacob, B. -C., Moldovean, S. -N., Spivak, D. A., Bodoki, A. E., Bodoki, E., & Oprean, R. (2023). Analytical Perspectives in the Study of Polyvalent Interactions of Free and Surface-Bound Oligonucleotides and Their Implications in Affinity Biosensing. International Journal of Molecular Sciences, 24(1), 175. https://doi.org/10.3390/ijms24010175