Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications
Abstract
:1. Introduction
2. Liposome- and Niosome-Loaded Hydrogels for Drug Delivery
3. Turning Hydrogels into Magnetic Materials
4. Composite-Loaded Gels for Tissue Engineering: Silica and Clay Nanoparticles
5. Gold/Silver Nanoparticle-Loaded Gels for Biomedical and Environmental Applications
6. Carbonaceous Composites for Biomedical and Environmental Applications
7. Composites for Electronic, Catalytic, and Environmental Applications
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Mooney, D.J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Li, S.; Cong, Y.; Fu, J. Tissue adhesive hydrogel bioelectronics. J. Mater. Chem. B 2021, 9, 4423–4443. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Hydrogels for Tissue Engineering. Chem. Rev. 2001, 101, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Koffler, J.; Zhu, W.; Qu, X.; Platoshyn, O.; Dulin, J.N.; Brock, J.; Graham, L.; Lu, P.; Sakamoto, J.; Marsala, M.; et al. Biomimetic 3D-Printed Scaffolds for Spinal Cord Injury Repair. Nat. Med. 2019, 25, 263–269. [Google Scholar] [CrossRef]
- Burdick, J.A.; Anseth, K.S. Photoencapsulation of Osteoblasts in Injectable RGD-Modified PEG Hydrogels for Bone Tissue Engineering. Biomaterials 2002, 23, 4315–4323. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Hendricks, M.P.; Palmer, L.C.; Stupp, S.I. Peptide Supramolecular Materials for Therapeutics. Chem. Soc. Rev. 2018, 47, 7539–7551. [Google Scholar] [CrossRef]
- Li, L.; Xie, L.; Zheng, R.; Sun, R. Self-Assembly Dipeptide Hydrogel: The Structures and Properties. Front. Chem. 2021, 9, 1–15. [Google Scholar] [CrossRef]
- Takei, T.; Nakahara, H.; Ijima, H.; Kawakami, K. Synthesis of a Chitosan Derivative Soluble at Neutral PH and Gellable by Freeze-Thawing, and Its Application in Wound Care. Acta Biomater. 2012, 8, 686–693. [Google Scholar] [CrossRef]
- Li, J.; Xing, R.; Bai, S.; Yan, X. Recent Advances of Self-Assembling Peptide-Based Hydrogels for Biomedical Applications. Soft Matter 2019, 15, 1704–1715. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.Q.; Feng, C.L. Amino Acids and Peptide-Based Supramolecular Hydrogels for Three-Dimensional Cell Culture. Adv. Mater. 2017, 29, 1604062. [Google Scholar] [CrossRef] [PubMed]
- Puiu, M.; Bala, C. Peptide-Based Biosensors: From Self-Assembled Interfaces to Molecular Probes in Electrochemical Assays. Bioelectrochemistry 2018, 120, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Yang, C.; Shi, S.; Jin, L.; Luo, Z.; Yu, J.; Zhang, Z.; Yang, Z.; Chen, H. Supramolecular Nanofibers of Triamcinolone Acetonide for Uveitis Therapy. Nanoscale 2014, 6, 14488–14494. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, N.L.; Bond, C.W.; Tang, Y.; Harrington, D.A.; Zhang, S.; Stupp, S.I.; McKenna, K.E.; Podlasek, C.A. Regeneration of the Cavernous Nerve by Sonic Hedgehog Using Aligned Peptide Amphiphile Nanofibers. Biomaterials 2011, 32, 1091–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Rahim, M.; Ng, Q.; Segura, T. Hyaluronic Acid and Fibrin Hydrogels with Concentrated DNA/PEI Polyplexes for Local Gene Delivery. J. Control. Release 2011, 153, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giraud, T.; Bouguet-Bonnet, S.; Stébé, M.J.; Richaudeau, L.; Pickaert, G.; Averlant-Petit, M.C.; Stefan, L. Co-Assembly and Multicomponent Hydrogel Formation upon Mixing Nucleobase-Containing Peptides. Nanoscale 2021, 13, 10566–10578. [Google Scholar] [CrossRef] [PubMed]
- Draper, E.R.; Adams, D.J. Controlling the Assembly and Properties of Low-Molecular-Weight Hydrogelators. Langmuir 2019. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Kuang, Y.; Gao, Y.; Zhang, Y.; Gao, P.; Xu, B. Aromatic−Aromatic Interactions Induce the Self-Assembly of Pentapeptidic Derivatives in Water To Form Nanofibers and Supramolecular Hydrogels. J. Am. Chem. Soc. 2010, 132, 2719–2728. [Google Scholar] [CrossRef]
- De Leon Rodriguez, L.M.; Hemar, Y.; Cornish, J.; Brimble, M.A. Structure-Mechanical Property Correlations of Hydrogel Forming β-Sheet Peptides. Chem. Soc. Rev. 2016, 45, 4797–4824. [Google Scholar] [CrossRef]
- Panja, S.; Fuentes-Caparrós, A.M.; Cross, E.R.; Cavalcanti, L.; Adams, D.J. Annealing Supramolecular Gels by a Reaction Relay. Chem. Mater. 2020, 32, 5264–5271. [Google Scholar] [CrossRef]
- Levin, A.; Hakala, T.A.; Schnaider, L.; Bernardes, G.J.L.; Gazit, E.; Knowles, T.P.J. Biomimetic Peptide Self-Assembly for Functional Materials. Nat. Rev. Chem. 2020, 4, 615–634. [Google Scholar] [CrossRef]
- Jonker, A.M.; Löwik, D.W.P.M.; van Hest, J.C.M. Peptide- and Protein-Based Hydrogels. Chem. Mater. 2012, 24, 759–773. [Google Scholar] [CrossRef]
- Cardoso, A.Z.; Alvarez Alvarez, A.E.; Cattoz, B.N.; Griffiths, P.C.; King, S.M.; Frith, W.J.; Adams, D.J. The Influence of the Kinetics of Self-Assembly on the Properties of Dipeptide Hydrogels. Faraday Discuss. 2013, 166, 101. [Google Scholar] [CrossRef]
- Fichman, G.; Gazit, E. Self-Assembly of Short Peptides to Form Hydrogels: Design of Building Blocks, Physical Properties and Technological Applications. Acta Biomater. 2014, 10, 1671–1682. [Google Scholar] [CrossRef]
- Dong, R.; Pang, Y.; Su, Y.; Zhu, X. Supramolecular Hydrogels: Synthesis, Properties and Their Biomedical Applications. Biomater. Sci. 2015, 3, 937–954. [Google Scholar] [CrossRef] [PubMed]
- Veloso, S.R.S.; Jervis, P.J.; Silva, J.F.G.; Hilliou, L.; Moura, C.; Pereira, D.M.; Coutinho, P.J.G.; Martins, J.A.; Castanheira, E.M.S.; Ferreira, P.M.T. Supramolecular Ultra-Short Carboxybenzyl-Protected Dehydropeptide-Based Hydrogels for Drug Delivery. Mater. Sci. Eng. C 2021, 122, 111869. [Google Scholar] [CrossRef] [PubMed]
- Panda, J.J.; Kaul, A.; Kumar, S.; Alam, S.; Mishra, A.K.; Kundu, G.C.; Chauhan, V.S. Modified Dipeptide-Based Nanoparticles: Vehicles for Targeted Tumor Drug Delivery. Nanomedicine 2013, 8, 1927–1942. [Google Scholar] [CrossRef]
- Yan, C.; Pochan, D.J. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem. Soc. Rev. 2010, 39, 3528–3540. [Google Scholar] [CrossRef] [Green Version]
- Okesola, B.O.; Smith, D.K. Applying Low-Molecular Weight Supramolecular Gelators in an Environmental Setting-Self-Assembled Gels as Smart Materials for Pollutant Removal. Chem. Soc. Rev. 2016, 45, 4226–4251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, K.; Levin, A.; Adler-Abramovich, L.; Gazit, E. Fmoc-Modified Amino Acids and Short Peptides: Simple Bio-Inspired Building Blocks for the Fabrication of Functional Materials. Chem. Soc. Rev. 2016, 45, 3935–3953. [Google Scholar] [CrossRef]
- Christoff-Tempesta, T.; Lew, A.J.; Ortony, J.H. Beyond Covalent Crosslinks: Applications of Supramolecular Gels. Gels 2018, 4, 40. [Google Scholar] [CrossRef] [PubMed]
- Mehwish, N.; Dou, X.; Zhao, Y.; Feng, C.L. Supramolecular Fluorescent Hydrogelators as Bio-Imaging Probes. Mater. Horiz. 2019, 6, 14–44. [Google Scholar] [CrossRef]
- Raeburn, J.; Cardoso, A.Z.; Adams, D.J. The Importance of the Self-Assembly Process to Control Mechanical Properties of Low Molecular Weight Hydrogels. Chem. Soc. Rev. 2013, 42, 5143–5156. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Falcone, N.; Kraatz, H.B. Supramolecular Peptide Gels: Influencing Properties by Metal Ion Coordination and Their Wide-Ranging Applications. ACS Omega 2020, 5, 1312–1317. [Google Scholar] [CrossRef]
- Raymond, D.M.; Nilsson, B.L. Multicomponent Peptide Assemblies. Chem. Soc. Rev. 2018, 47, 3659–3720. [Google Scholar] [CrossRef] [PubMed]
- Chivers, P.R.A.; Smith, D.K. Shaping and Structuring Supramolecular Gels. Nat. Rev. Mater. 2019, 4, 463–478. [Google Scholar] [CrossRef] [Green Version]
- Jervis, P.J.; Amorim, C.; Pereira, T.; Martins, J.A.; Ferreira, P.M.T. Exploring the Properties and Potential Biomedical Applications of NSAID-Capped Peptide Hydrogels. Soft Matter 2020, 16, 10001–10012. [Google Scholar] [CrossRef] [PubMed]
- Jervis, P.J.; Amorim, C.; Pereira, T.; Martins, J.A.; Ferreira, P.M.T. Dehydropeptide Supramolecular Hydrogels and Nanostructures as Potential Peptidomimetic Biomedical Materials. Int. J. Mol. Sci. 2021, 22, 2528. [Google Scholar] [CrossRef]
- Tanaka, W.; Shigemitsu, H.; Fujisaku, T.; Kubota, R.; Minami, S.; Urayama, K.; Hamachi, I. Post-Assembly Fabrication of a Functional Multicomponent Supramolecular Hydrogel Based on a Self-Sorting Double Network. J. Am. Chem. Soc. 2019, 141, 4997–5004. [Google Scholar] [CrossRef]
- Li, R.; Boyd-Moss, M.; Long, B.; Martel, A.; Parnell, A.; Dennison, A.J.C.; Barrow, C.J.; Nisbet, D.R.; Williams, R.J. Facile Control over the Supramolecular Ordering of Self-Assembled Peptide Scaffolds by Simultaneous Assembly with a Polysacharride. Sci. Rep. 2017, 7, 4797. [Google Scholar] [CrossRef] [Green Version]
- Du, E.Y.; Ziaee, F.; Wang, L.; Nordon, R.E.; Thordarson, P. The Correlations between Structure, Rheology, and Cell Growth in Peptide-Based Multicomponent Hydrogels. Polym. J. 2020, 52, 947–957. [Google Scholar] [CrossRef]
- Falcone, N.; Shao, T.; Andoy, N.M.O.; Rashid, R.; Sullan, R.M.A.; Sun, X.; Kraatz, H.B. Multi-Component Peptide Hydrogels-a Systematic Study Incorporating Biomolecules for the Exploration of Diverse, Tuneable Biomaterials. Biomater. Sci. 2020, 8, 5601–5614. [Google Scholar] [CrossRef]
- Datta, D.; Tiwari, O.; Gupta, M.K. Self-Assembly of Diphenylalanine-Peptide Nucleic Acid Conjugates. ACS Omega 2019, 4, 10715–10728. [Google Scholar] [CrossRef] [Green Version]
- Cornwell, D.J.; Daubney, O.J.; Smith, D.K. Photopatterned Multidomain Gels: Multi-Component Self-Assembled Hydrogels Based on Partially Self-Sorting 1,3:2,4-Dibenzylidene- d -Sorbitol Derivatives. Stoch. Process. Their Appl. 2016, 126, 337–359. [Google Scholar] [CrossRef] [Green Version]
- Panja, S.; Seddon, A.; Adams, D.J. Controlling Hydrogel Properties by Tuning Non-Covalent Interactions in a Charge Complementary Multicomponent System. Chem. Sci. 2021, 12, 11197–11203. [Google Scholar] [CrossRef]
- Panja, S.; Dietrich, B.; Shebanova, O.; Smith, A.J.; Adams, D.J. Programming Gels Over a Wide PH Range Using Multicomponent Systems. Angew. Chem. 2021, 133, 10061–10065. [Google Scholar] [CrossRef]
- Raeburn, J.; Adams, D.J. Multicomponent Low Molecular Weight Gelators. Chem. Commun. 2015, 51, 5170–5180. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Caparrós, A.M.; De Paula Gómez-Franco, F.; Dietrich, B.; Wilson, C.; Brasnett, C.; Seddon, A.; Adams, D.J. Annealing Multicomponent Supramolecular Gels. Nanoscale 2019, 11, 3281–3291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draper, E.R.; Adams, D.J. How Should Multicomponent Supramolecular Gels Be Characterised? Chem. Soc. Rev. 2018, 47, 3395–3405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grijalvo, S.; Mayr, J.; Eritja, R.; Díaz, D.D. Biodegradable Liposome-Encapsulated Hydrogels for Biomedical Applications: A Marriage of Convenience. Biomater. Sci. 2016, 4, 555–574. [Google Scholar] [CrossRef] [Green Version]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Hydrogels as Drug Delivery Systems; Pros and Cons. Trends Pharm. Sci. 2019, 5, 7–24. [Google Scholar] [CrossRef]
- Lee, J.-H.H.; Oh, H.; Baxa, U.; Raghavan, S.R.; Blumenthal, R. Biopolymer-Connected Liposome Networks as Injectable Biomaterials Capable of Sustained Local Drug Delivery. Biomacromolecules 2012, 13, 3388–3394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billard, A.; Pourchet, L.; Malaise, S.; Alcouffe, P.; Montembault, A.; Ladavière, C. Liposome-Loaded Chitosan Physical Hydrogel: Toward a Promising Delayed-Release Biosystem. Carbohydr. Polym. 2015, 115, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Hemmingsen, L.M.; Giordani, B.; Pettersen, A.K.; Vitali, B.; Basnet, P.; Škalko-Basnet, N. Liposomes-in-Chitosan Hydrogel Boosts Potential of Chlorhexidine in Biofilm Eradication in Vitro. Carbohydr. Polym. 2021, 262, 117939. [Google Scholar] [CrossRef]
- Ciobanu, B.C.; Cadinoiu, A.N.; Popa, M.; Desbrières, J.; Peptu, C.A.C.A. Modulated Release from Liposomes Entrapped in Chitosan/Gelatin Hydrogels. Mater. Sci. Eng. C 2014, 43, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Veloso, S.R.S.; Andrade, R.G.D.; Castanheira, E.M.S. Review on the Advancements of Magnetic Gels: Towards Multifunctional Magnetic Liposome-Hydrogel Composites for Biomedical Applications. Adv. Colloid Interface Sci. 2021, 288, 102351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Shum, P.; Yates, M.; Messersmith, P.B.; Thompson, D.H. Formation of Fibrinogen-Based Hydrogels Using Phototriggerable Diplasmalogen Liposomes. Bioconjug. Chem. 2002, 13, 640–646. [Google Scholar] [CrossRef]
- Westhaus, E.; Messersmith, P.B. Triggered Release of Calcium from Lipid Vesicles: A Bioinspired Strategy for Rapid Gelation of Polysaccharide and Protein Hydrogels. Biomaterials 2001, 22, 453–462. [Google Scholar] [CrossRef]
- Sanborn, T.J.; Messersmith, P.B.; Barron, A.E. In Situ Crosslinking of a Biomimetic Peptide-PEG Hydrogel via Thermally Triggered Activation of Factor XIII. Biomaterials 2002, 23, 2703–2710. [Google Scholar] [CrossRef]
- Ruel-Gariépy, E.; Leroux, J.C. In Situ-Forming Hydrogels - Review of Temperature-Sensitive Systems. Eur. J. Pharm. Biopharm. 2004, 58, 409–426. [Google Scholar] [CrossRef]
- Martín-Saavedra, F.; Ruiz-Hernández, E.; Escudero-Duch, C.; Prieto, M.; Arruebo, M.; Sadeghi, N.; Deckers, R.; Storm, G.; Hennink, W.E.; Santamaría, J.; et al. Lipogels Responsive to Near-Infrared Light for the Triggered Release of Therapeutic Agents. Acta Biomater. 2017, 61, 54–65. [Google Scholar] [CrossRef]
- Wickremasinghe, N.C.; Kumar, V.A.; Hartgerink, D. Two-Step Self-Assembly of Liposome-Multidomain Peptide Nanofiber Hydrogel for Time-Controlled Release. Biomacromolecules 2014, 15, 3587–3595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumder, P.; Baxa, U.; Walsh, S.T.R.; Schneider, J.P. Design of a Multicompartment Hydrogel that Facilitates Time-Resolved Delivery of Combination Therapy and Synergized Killing of Glioblastoma. Angew. Chem. 2018, 130, 15260–15264. [Google Scholar] [CrossRef]
- Veloso, S.R.S.; Andrade, R.G.D.; Ribeiro, B.C.; Fernandes, A.V.F.; Rodrigues, A.R.O.; Martins, J.A.; Ferreira, P.M.T.; Coutinho, P.J.G.; Castanheira, E.M.S. Magnetoliposomes Incorporated in Peptide-Based Hydrogels: Towards Development of Magnetolipogels. Nanomaterials 2020, 10, 1702. [Google Scholar] [CrossRef] [PubMed]
- Rosa, E.; Diaferia, C.; Gallo, E.; Morelli, G.; Accardo, A. Stable Formulations of Peptide-Based Nanogels. Molecules 2020, 25, 3455. [Google Scholar] [CrossRef]
- Gallo, E.; Diaferia, C.; Rosa, E.; Smaldone, G.; Morelli, G.; Accardo, A. Peptide-Based Hydrogels and Nanogels for Delivery of Doxorubicin. Int. J. Nanomed. 2021, 16, 1617–1630. [Google Scholar] [CrossRef]
- Ischakov, R.; Adler-Abramovich, L.; Buzhansky, L.; Shekhter, T.; Gazit, E. Peptide-Based Hydrogel Nanoparticles as Effective Drug Delivery Agents. Bioorganic Med. Chem. 2013, 21, 3517–3522. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A Review on Niosomal Research in the Last Decade. J. Drug Deliv. Sci. Technol. 2020, 56, 101581. [Google Scholar] [CrossRef]
- Muzzalupo, R.; Tavano, L. Niosomal Drug Delivery for Transdermal Targeting: Recent Advances. Res. Rep. Transdermal Drug Deliv. 2015, 2015, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Abdelkader, H.; Alani, A.W.G.; Alany, R.G. Recent Advances in Non-Ionic Surfactant Vesicles (Niosomes): Self-Assembly, Fabrication, Characterization, Drug Delivery Applications and Limitations. Drug Deliv. 2014, 21, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Wei, M.; He, S.; Yuan, W.-E. Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics 2019, 11, 55. [Google Scholar] [CrossRef]
- Grijalvo, S.; Puras, G.; Zárate, J.; Pons, R.; Pedraz, J.L.; Eritja, R.; Díaz, D.D. Nioplexes Encapsulated in Supramolecular Hybrid Biohydrogels as Versatile Delivery Platforms for Nucleic Acids. RSC Adv. 2016, 6, 39688–39699. [Google Scholar] [CrossRef] [Green Version]
- Veloso, S.; Ferreira, P.; Martins, J.; Coutinho, P.; Castanheira, E. Magnetogels: Prospects and Main Challenges in Biomedical Applications. Pharmaceutics 2018, 10, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras-Montoya, R.; Bonhome-Espinosa, A.B.; Orte, A.; Miguel, D.; Delgado-López, J.M.; Duran, J.D.G.; Cuerva, J.M.; Lopez-Lopez, M.T.; De Cienfuegos, L.Á. Iron Nanoparticles-Based Supramolecular Hydrogels to Originate Anisotropic Hybrid Materials with Enhanced Mechanical Strength. Mater. Chem. Front. 2018, 2, 686–699. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, G.; Zhang, X.; Li, B.; Chen, Y.; Lu, T.J.T.; Lu, T.J.T.; Xu, F. Magnetic Hydrogels and Their Potential Biomedical Applications. Adv. Funct. Mater. 2013, 23, 660–672. [Google Scholar] [CrossRef]
- Jalili, N.A.; Muscarello, M.; Gaharwar, A.K. Nanoengineered Thermoresponsive Magnetic Hydrogels for Biomedical Applications. Bioeng. Transl. Med. 2016, 1, 297–305. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Chen, C.; Cheng, Y. Magnetic-Responsive Hydrogels: From Strategic Design to Biomedical Applications. J. Control. Release 2021, 335, 541–556. [Google Scholar] [CrossRef]
- Yang, Z.; Gu, H.; Du, J.; Gao, J.; Zhang, B.; Zhang, X.; Xu, B. Self-Assembled Hybrid Nanofibers Confer a Magnetorheological Supramolecular Hydrogel. Tetrahedron 2007, 63, 7349–7357. [Google Scholar] [CrossRef]
- Das, P.; Yuran, S.; Yan, J.; Lee, P.S.; Reches, M. Sticky Tubes and Magnetic Hydrogels Co-Assembled by a Short Peptide and Melanin-like Nanoparticles. Chem. Commun. 2015, 51, 5432–5435. [Google Scholar] [CrossRef]
- Carvalho, A.; Gallo, J.; Pereira, D.; Valentão, P.; Andrade, P.; Hilliou, L.; Ferreira, P.; Bañobre-López, M.; Martins, J. Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. Nanomaterials 2019, 9, 541. [Google Scholar] [CrossRef] [Green Version]
- Nowak, B.P.; Niehues, M.; Ravoo, B.J. Magneto-Responsive Hydrogels by Self-Assembly of Low Molecular Weight Peptides and Crosslinking with Iron Oxide Nanoparticles. Soft Matter 2021, 17, 2857–2864. [Google Scholar] [CrossRef]
- Mañas-Torres, M.C.; Gila-Vilchez, C.; Vazquez-Perez, F.J.; Kuzhir, P.; Momier, D.; Scimeca, J.-C.; Borderie, A.; Goracci, M.; Burel-Vandenbos, F.; Blanco-Elices, C.; et al. Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation. ACS Appl. Mater. Interfaces 2021, 13, 49692–49704. [Google Scholar] [CrossRef]
- Veloso, S.R.S.; Martins, J.A.; Hilliou, L.; Amorim, C.O.; Amaral, V.S.; Almeida, B.G.; Jervis, P.J.; Moreira, R.; Pereira, D.M.; Coutinho, P.J.G.; et al. Dehydropeptide-Based Plasmonic Magnetogels: A Supramolecular Composite Nanosystem for Multimodal Cancer Therapy. J. Mater. Chem. B 2020, 8, 45–64. [Google Scholar] [CrossRef] [PubMed]
- Veloso, S.R.S.; Silva, J.F.G.; Hilliou, L.; Moura, C.; Coutinho, P.J.G.; Martins, J.A.; Testa-Anta, M.; Salgueiriño, V.; Correa-Duarte, M.A.; Ferreira, P.M.T.; et al. Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release. Nanomaterials 2021, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Veloso, S.R.S.; Magalhães, C.A.B.; Rodrigues, A.R.O.; Vilaça, H.; Queiroz, M.J.R.P.; Martins, J.A.; Coutinho, P.J.G.; Ferreira, P.M.T.; Castanheira, E.M.S. Novel Dehydropeptide-Based Magnetogels Containing Manganese Ferrite Nanoparticles as Antitumor Drug Nanocarriers. Phys. Chem. Chem. Phys. 2019, 21, 10377–10390. [Google Scholar] [CrossRef] [PubMed]
- Becerra, N.Y.; Restrepo, L.M.; Galeano, Y.; Tobón, A.C.; Turizo, L.F.; Mesa, M. Improving Fibrin Hydrogels’ Mechanical Properties, through Addition of Silica or Chitosan-Silica Materials, for Potential Application as Wound Dressings. Int. J. Biomater. 2021, 2021, 9933331. [Google Scholar] [CrossRef]
- Cheng, Y.; Cheng, G.; Xie, C.; Yin, C.; Dong, X.; Li, Z.; Zhou, X.; Wang, Q.; Deng, H.; Li, Z. Biomimetic Silk Fibroin Hydrogels Strengthened by Silica Nanoparticles Distributed Nanofibers Facilitate Bone Repair. Adv. Healthc. Mater. 2021, 10, 2001646. [Google Scholar] [CrossRef]
- Cao, Y.; Bolisetty, S.; Wolfisberg, G.; Adamcik, J.; Mezzenga, R. Amyloid Fibril-Directed Synthesis of Silica Core–Shell Nanofilaments, Gels, and Aerogels. Proc. Natl. Acad. Sci. USA 2019, 116, 4012–4017. [Google Scholar] [CrossRef] [Green Version]
- Ayyub, O.B.; Kofinas, P. Enzyme Induced Stiffening of Nanoparticle-Hydrogel Composites with Structural Color. ACS Nano 2015, 9, 8004–8011. [Google Scholar] [CrossRef]
- Bellotto, O.; Cringoli, M.C.; Perathoner, S.; Fornasiero, P.; Marchesan, S. Peptide Gelators to Template Inorganic Nanoparticle Formation. Gels 2021, 7, 14. [Google Scholar] [CrossRef]
- von Baeckmann, C.; Rubio, G.M.D.M.; Kählig, H.; Kurzbach, D.; Reithofer, M.R.; Kleitz, F. Evaporation-Induced Self-Assembly of Small Peptide-Conjugated Silica Nanoparticles. Angew. Chem. Int. Ed. 2021, 60, 22700–22705. [Google Scholar] [CrossRef]
- Baumann, B.; Wittig, R.; Lindén, M. Mesoporous Silica Nanoparticles in Injectable Hydrogels: Factors Influencing Cellular Uptake and Viability. Nanoscale 2017, 9, 12379–12390. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Rana, V.S. A Review on Polysaccharide Based Nanocomposite Hydrogel Systems Fabrication Using Diverse Reinforcing Materials. J. Polym. Compos. 2020, 8, 6–17. [Google Scholar] [CrossRef]
- Guggenheim, S.; Ave, S.O. Definition of Clay and Clay Mineral: Joint Report of the AIPEA Nomenclature and CMS Nomenclature Committees. Clays Clay Miner. 1995, 43, 255–256. [Google Scholar] [CrossRef]
- Anadão, P. Polymer/Clay Nanocomposites: Concepts, Researches, Applications and Trends for The Future. In Nanocomposites—New Trends and Developments; Ebrahimi, F., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Alexandre, M.; Dubois, P. Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Haraguchi, K. Soft Nanohybrid Materials Consisting of Polymer-Clay Networks. In Organic-Inorganic Hybrid Nanomaterials; Kalia, S., Haldorai, Y., Eds.; Springer: Cham, Switzerland, 2014; pp. 187–248. ISBN 978-3-319-13593-9. [Google Scholar]
- Zhao, L.Z.; Zhou, H.; Wang, J.; Tong, S.; Yu, H. Recent Advances in Clay Mineral-Containing Nanocomposite Hydrogels. Soft Matter 2015, 11, 9229–9246. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Khan, T.A. Clay-Hydrogel Nanocomposites for Adsorptive Amputation of Environmental Contaminants from Aqueous Phase: A Review. J. Environ. Chem. Eng. 2021, 9, 105575. [Google Scholar] [CrossRef]
- Okesola, B.O.; Mendoza-martinez, A.K.; Cidonio, G.; Derkus, B.; Boccorh, D.K.; Osuna, D.; Pen, D.; Elsharkawy, S.; Wu, Y.; Dawson, J.I.; et al. De Novo Design of Functional Coassembling Organic—Inorganic Hydrogels for Hierarchical Mineralization and Neovascularization. ACS Nano 2021, 15, 11202–11217. [Google Scholar] [CrossRef]
- Lian, X.; Shi, D.; Ma, J.; Cai, X.; Gu, Z. Peptide Dendrimer-Crosslinked Inorganic-Organic Hybrid Supramolecular Hydrogel for Ef Fi Cient Anti-Biofouling. Chin. Chem. Lett. 2018, 29, 501–504. [Google Scholar] [CrossRef]
- Okesola, B.O.; Ni, S.; Derkus, B.; Galeano, C.C.; Hasan, A.; Wu, Y.; Ramis, J.; Buttery, L.; Dawson, J.I.; Este, M.D.; et al. Growth-Factor Free Multicomponent Nanocomposite Hydrogels that Stimulate Bone Formation. Adv. Funct. Mater. 2020, 30, 1906205. [Google Scholar] [CrossRef]
- Sorouri, F.; Azimzadeh, P.; Parastoo, A.; Ramazani, A.; Kiani, S.; Akbari, T.; Sharifzadeh, M.; Shakoori, M.; Foroumadi, A.; Firoozpour, L.; et al. Enrichment of Carbopol Gel by Natural Peptide and Clay for Improving the Burn Wound Repair Process. Polym. Bull. 2022. [Google Scholar] [CrossRef]
- Devi, R.S.; Girigoswami, A. Applications of Gold and Silver Nanoparticles in Theranostics. Appl. Biochem. Biotechnol. 2022, 194, 4187–4219. [Google Scholar] [CrossRef] [PubMed]
- Alaqad, K.; Saleh, T.A. Gold and Silver Nanoparticles: Synthesis Methods, Characterization Routes and Applications towards Drugs. J. Environ. Anal. Toxicol. 2016, 6, 1000384. [Google Scholar] [CrossRef]
- Tan, H.; Teow, S. Application of Metal Nanoparticle—Hydrogel Composites in Tissue Regeneration. Bioengineering 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Gonz, C.M.; Sarabia-vallejos, M.A.; Rodriguez-hernandez, J. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. Materials 2017, 10, 232. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.; Khandelwal, G.; Roy, S. Unraveling the Design Rules in Ultrashort Amyloid-Based Peptide Assemblies toward Shape-Controlled Synthesis of Gold Nanoparticles. Langmuir 2019, 35, 5878–5889. [Google Scholar] [CrossRef]
- Shome, A.; Dutta, S.; Maiti, S.; Das, P.K. In Situ Synthesized Ag Nanoparticle in Self-Assemblies of Amino Acid Based Amphiphilic Hydrogelators: Development of Antibacterial Soft Nanocomposites. Soft Matter 2011, 7, 3011–3022. [Google Scholar] [CrossRef]
- Wang, W.; Han, R.; Tang, K.; Zhao, S.; Ding, C.; Luo, X. Biocompatible Peptide Hydrogels with Excellent Antibacterial and Catalytic Properties for Electrochemical Sensing Application. Anal. Chim. Acta 2021, 1154, 338295. [Google Scholar] [CrossRef]
- Abbas, M.; Susapto, H.H.; Hauser, C.A.E. Synthesis and Organization of Gold-Peptide Nanoparticles for Catalytic Activities. ACS Omega 2022, 7, 2082–2090. [Google Scholar] [CrossRef] [PubMed]
- Locarno, S.; Bucci, R.; Impresari, E.; Gelmi, M.L.; Pellegrino, S.; Clerici, F. Ultrashort Peptides and Gold Nanoparticles: In Fl Uence of Constrained Amino Acids on Colloidal Stability. Front. Chem. 2021, 9, 736519. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Shome, A.; Kar, T.; Das, P.K. Counterion-Induced Modulation in the Antimicrobial Activity and Biocompatibility of Amphiphilic Hydrogelators: Influence of in-Situ-Synthesized Ag-Nanoparticle on the Bactericidal Property. Langmuir 2011, 27, 5000–5008. [Google Scholar] [CrossRef]
- Simon, T.; Wu, C.; Liang, J.; Cheng, C.; Ko, F. Facile Synthesis of a Biocompatible Silver Nanoparticle Derived Tripeptide Supramolecular Hydrogel for Antibacterial Wound Dressings. New J. Chem. 2016, 40, 2036–2043. [Google Scholar] [CrossRef]
- Reithofer, M.R.; Lakshmanan, A.; Ping, A.T.K.; Chin, J.M.; Hauser, C.A.E. In Situ Synthesis of Size-Controlled, Stable Silver Nanoparticles within Ultrashort Peptide Hydrogels and Their Anti-Bacterial Properties. Biomaterials 2014, 35, 7535–7542. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.K.; Brahmachari, S.; Kumar, P. In Situ Synthesised Silver Nanoparticle-Infused l -Lysine- Based Injectable Hydrogel: Development of a Biocompatible, Antibacterial, Soft Nanocomposite. Chempluschem 2014, 79, 1733–1746. [Google Scholar]
- Ren, C.; Zhang, L.; Huang, S.; Zhang, X.; Zhou, X.; Zhao, X. Self-Assembled Peptide Fibers Encapsulated with in Situ Synthesized AgNPs Exhibiting Catalytic and Antibacterial Properties. J. Mater. Sci. 2022, 57, 2897–2908. [Google Scholar] [CrossRef]
- Almohammed, S.; Alruwaili, M.; Reynaud, E.G.; Redmond, G.; Rice, J.H.; Rodriguez, B.J. 3D-Printed Peptide-Hydrogel Nanoparticle Composites for Surface- Enhanced Raman Spectroscopy Sensing. Appl. Nano Mater. 2019, 2, 5029–5034. [Google Scholar] [CrossRef]
- Paul, S.; Basu, K.; Das, S.; Banerjee, A. Peptide-Based Hydrogels as a Scaffold for In Situ Synthesis of Metal Nanoparticles: Catalytic Activity of the Nanohybrid System. ChemNanoMat 2018, 4, 882–887. [Google Scholar] [CrossRef]
- Maity, M.; Sajisha, V.S.; Maitra, U. Hydrogelation of Bile Acid-Peptide Conjugates and in Situ Synthesis of Silver and Gold Nanoparticles in the Hydrogel Matrix. RSC Adv. 2015, 5, 90712–90719. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, A.; Bashir, S.; Kasi, R.; Subramaniam, R.T. The Significance of Graphene Based Composite Hydrogels as Smart Materials: A Review on the Fabrication, Properties, and Its Applications. FlatChem 2022, 33, 100352. [Google Scholar] [CrossRef]
- Das, D.; Kar, T.; Das, P.K. Gel-Nanocomposites: Materials with Promising Applications. Soft Matter 2012, 2012, 2348–2365. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.; Koratkar, N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano 2009, 3, 3884–3890. [Google Scholar] [CrossRef]
- Lalwani, G.; Henslee, A.M.; Farshid, B.; Lin, L.; Kasper, F.K.; Qin, Y.; Mikos, A.G.; Sitharaman, B. Two-Dimensional Nanostructure-Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering. Biomacromolecules 2013, 14, 900–909. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y. Hydrogel-Based Composites: Unlimited Platforms for Biosensors and Diagnostics. View 2021, 2, 20200165. [Google Scholar] [CrossRef]
- Wychowaniec, J.K.; Iliut, M.; Zhou, M.; Mo, J.; Elsawy, M.A.; Pinheiro, W.A.; Hoyland, J.A.; Miller, A.F.; Vijayaraghavan, A.; Saiani, A. Designing Peptide/Graphene Hybrid Hydrogels through Fine-Tuning of Molecular Interactions. Biomacromolecules 2018, 19, 2731–2741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chronopoulou, L.; Di, A.; Papi, M.; Parolini, O.; Falconi, M.; Teti, G.; Muttini, A.; Lattanzi, W.; Palmieri, V.; Ciasca, G.; et al. Biosynthesis and Physico-Chemical Characterization of High Performing Peptide Hydrogels@graphene Oxide Composites. Colloids Surf. B Biointerfaces 2021, 207, 111989. [Google Scholar] [CrossRef]
- Adhikari, B.; Banerjee, A. Short Peptide Based Hydrogels: Incorporation of Graphene into the Hydrogel. Soft Matter 2011, 7, 9259–9266. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Z.; Weng, J. Self-Assembly of Natural Tripeptide Glutathione Triggered by Graphene Oxide. Soft Matter 2012, 8, 9855–9863. [Google Scholar] [CrossRef]
- Wu, J.; Chen, A.; Qin, M.; Huang, R.; Zhang, G.; Xue, B.; Wei, J.; Li, Y.; Cao, Y.; Wang, W. Hierarchical Construction of a Mechanically Stable Peptide–Graphene Oxide Hybrid Hydrogel for Drug Delivery and Pulsatile Triggered Release in Vivo. Nanoscale 2015, 7, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Schneible, J.D.; Shi, K.; Young, A.T.; Ramesh, S.; He, N.; Dowdey, C.E.; Dubnansky, J.M.; Lilova, R.L.; Gao, W.; Santiso, E.; et al. Modified Graphene Oxide (GO) Particles in Peptide Hydrogels: A Hybrid System Enabling Scheduled of Chemotherapeutics. J. Mater. Chem. B 2020, 8, 3852. [Google Scholar] [CrossRef]
- Guilbaud-Chéreau, C.; Dinesh, B.; Schurhammer, R.; Collin, D.; Bianco, A.; Ménard-Moyon, C. Protected Amino Acid−Based Hydrogels Incorporating Carbon Nanomaterials for Near-Infrared Irradiation-Triggered Drug Release. Appl. Mater. Interfaces 2019, 11, 13147–13157. [Google Scholar] [CrossRef] [PubMed]
- Ligorio, C.; Vijayaraghavan, A.; Hoyland, J.A.; Saiani, A. Acidic and Basic Self-Assembling Peptide and Peptide-Graphene Oxide Hydrogels: Characterisation and Effect on Encapsulated Nucleus Pulposus Cells. Acta Biomater. 2022, 143, 145–158. [Google Scholar] [CrossRef]
- Ligorio, C.; Zhou, M.; Wychowaniec, J.K.; Zhu, X.; Bartlam, C.; Miller, A.F.; Vijayaraghavan, A.; Hoyland, J.A.; Saiani, A. Graphene Oxide Containing Self-Assembling Peptide Hybrid Hydrogels as a Potential 3D Injectable Cell Delivery Platform for Intervertebral Disc Repair Applications. Acta Biomater. 2019, 92, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Ligorio, C.; Brien, M.O.; Hodson, N.W.; Mironov, A.; Iliut, M.; Miller, A.F.; Vijayaraghavan, A.; Hoyland, J.A.; Saiani, A. TGF- Β3-Loaded Graphene Oxide - Self-Assembling Peptide Hybrid Hydrogels as Functional 3D Scaffolds for the Regeneration of the Nucleus Pulposus. Acta Biomater. 2021, 127, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, J.; Wang, Y.; Qi, W.; Su, R. Self-Assembly of Ferrocene-Phenylalanine@Graphene Oxide Hybrid Hydrogels for Dopamine Detection. Chempluschem 2020, 85, 2341–2348. [Google Scholar] [CrossRef]
- He, X.; Zhang, F.; Liu, J.; Fang, G.; Wang, S. Homogenous Graphene Oxide-Peptide Nanofiber Hybrid Hydrogel as Biomimetic Polysaccharide Hydrolase. Nanoscale 2017, 9, 18066–18074. [Google Scholar] [CrossRef]
- Yin, Y.; Dong, Z.; Luo, Q.; Liu, J. Biomimetic Catalysts Designed on Macromolecular Scaffolds. Prog. Polym. Sci. 2012, 37, 1476–1509. [Google Scholar] [CrossRef]
- Iglesias, D.; Melle-franco, M.; Kurbasic, M.; Melchionna, M.; Abrami, M.; Grassi, M.; Prato, M.; Marchesan, S. Oxidized Nanocarbons-Tripeptide Supramolecular Hydrogels: Shape Matters! ACS Nano 2018, 12, 5530–5538. [Google Scholar] [CrossRef]
- Biswas, S.; Rasale, D.B.; Das, A.K. Blue Light Emitting Self-Healable Graphene Quantum Dots Embedded Hydrogels. RSC Adv. 2016, 6, 54793–54800. [Google Scholar] [CrossRef]
- Irshad, M.A.; Nawaz, R.; ur Rehman, M.Z.; Adrees, M.; Rizwan, M.; Ali, S.; Ahmad, S.; Tasleem, S. Synthesis, Characterization and Advanced Sustainable Applications of Titanium Dioxide Nanoparticles: A Review. Ecotoxicol. Environ. Saf. 2021, 212, 111978. [Google Scholar] [CrossRef]
- Roy, S.; Basu, K.; Gayen, K.; Panigrahi, S.; Mondal, S.; Basak, D.; Banerjee, A. TiO2 Nanoparticles Incorporated Peptide Appended Perylene Bisimide-Based Nanohybrid System: Enhancement of Photo-Switching Behavior. J. Phys. Chem. C 2017, 121, 5428–5435. [Google Scholar] [CrossRef]
- Guidetti, G.; Giuri, D.; Zanna, N.; Calvaresi, M.; Montalti, M.; Tomasini, C. Biocompatible and Light-Penetrating Hydrogels for Water Decontamination. ACS Omega 2018, 3, 8122–8128. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.; Wang, Y.; Qi, W.; Su, R.; He, Z. Peptide-Templated Synthesis of TiO2 Nanofibers with Tunable Photocatalytic Activity. Chem. A Eur. J. 2018, 24, 18123–18129. [Google Scholar] [CrossRef] [PubMed]
- Dabhane, H.; Ghotekar, S.; Tambade, P.; Pansambal, S.; Murthy, H.C.A.; Oza, R.; Medhane, V. A Review on Environmentally Benevolent Synthesis of CdS Nanoparticle and Their Applications. Environ. Chem. Ecotoxicol. 2021, 3, 209–219. [Google Scholar] [CrossRef]
- Li, F.; Yang, J.; Gao, J.; Liu, Y.; Gong, Y. Enhanced Photocatalytic Hydrogen Production of CdS Embedded in Cationic Hydrogel. Int. J. Hydrog. Energy 2020, 45, 1969–1980. [Google Scholar] [CrossRef]
- Dargahi, M.; Ghasemzadeh, H.; Torkaman, A. CdS Quantum Dot Nanocomposite Hydrogels Based on κ-Carrageenan and Poly (Acrylic Acid), Photocatalytic Activity and Dye Adsorption Behavior. Polym. Bull. 2019, 76, 5039–5058. [Google Scholar] [CrossRef]
- Palui, G.; Nanda, J.; Ray, S.; Banerjee, A. Fabrication of Luminescent CdS Nanoparticles on Short-Peptide-Based Hydrogel Nanofibers: Tuning of Optoelectronic Properties. Chemistry 2009, 15, 6902–6909. [Google Scholar] [CrossRef]
- Maity, I.; Manna, M.K.; Rasale, D.B.; Das, A.K. Peptide-Nanofiber-Supported Palladium Nanoparticles as an Efficient Catalyst for the Removal of N-Terminus Protecting Groups. ChemPlusChem 2014, 79, 413–420. [Google Scholar] [CrossRef]
- Ghorbani-Choghamarani, A.; Taherinia, Z. Synthesis of Peptide Nanofibers Decorated with Palladium Nanoparticles and Its Application as an Reaction of Aryl Halides with Thiourea or 2-Mercaptobenzothiazole. RSC Adv. 2016, 6, 59410–59421. [Google Scholar] [CrossRef]
- Khalily, M.A.; Ustahuseyin, O.; Garifullin, R.; Genc, R. A Supramolecular Peptide Nanofiber Templated Pd Nanocatalyst for Efficient Suzuki Coupling Reactions under Aqueous Conditions. ChemComm 2012, 48, 11358–11360. [Google Scholar] [CrossRef] [Green Version]
- Kori, D.K.K.; Jadhav, R.G.; Dhruv, L.; Das, A.K. A Platinum Nanoparticle Doped Self-Assembled Peptide Bolaamphiphile Hydrogel as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Nanoscale Adv. 2021, 3, 6678–6688. [Google Scholar] [CrossRef]
- Maity, I.; Rasale, D.B.; Das, A.K. Sonication Induced Peptide-Appended Bolaamphiphile Hydrogels for in Situ Generation and Catalytic Activity of Pt Nanoparticles. Soft Matter 2012, 8, 5301–5308. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Yang, J.; Yan, H.; Li, X.; Wang, C.; Wang, D. Platinum-Ion-Mediated Self-Assembly of Hairpin Peptides and Synthesis of Platinum Nanostructures. Langmuir 2019, 35, 5617–5625. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, Y.; Wang, J.; Xu, H.; Lu, J.R. Copper(II)-Mediated Self-Assembly of Hairpin Peptides and Templated Synthesis of CuS Nanowires. Chem. Asian J. 2015, 10, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qiu, L.; Wang, C.; Gao, Z.; Zhou, S.; Cui, P.; Jiang, P.; Hu, H.; Ni, X.; Du, X.; et al. Nanodot-Doped Peptide Hydrogels for Antibacterial Phototherapy and Wound Healing. Biomater. Sci. 2022, 10, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound Repair and Regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.K.; Siprashvili, Z.; Khavari, P.A. Advances in Skin Grafting and Treatment of Cutaneous Wounds. Science 2014, 346, 941–945. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Yang, Y.; Yan, R.; Zhao, Y.; Wang, Y.; Chen, A.; Shao, S.; Jiang, P.; Li, Y.-Q. Bacterial Species-Identifiable Magnetic Nanosystems for Early Sepsis Diagnosis and Extracorporeal Photodynamic Blood Disinfection. Nanoscale 2018, 10, 132–141. [Google Scholar] [CrossRef]
- Falagas, M.E.; Tansarli, G.S.; Karageorgopoulos, D.E.; Vardakas, K.Z. Deaths Attributable to Carbapenem-Resistant Enterobacteriaceae Infections. Emerg. Infect. Dis. 2014, 20, 1170–1175. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on Antibiotic Resistance: Alarm Bells Are Ringing. Cureus 2017, 9, e1403. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Ping, Y.; Zhang, H.; Zhou, B.; Liu, F.; Yu, Y.; Xie, T.; Li, W.; Zhong, D.; Zhang, Y.; et al. Laser-Activatable CuS Nanodots to Treat Multidrug-Resistant Bacteria and Release Copper Ion to Accelerate Healing of Infected Chronic Nonhealing Wounds. Appl. Mater. Interfaces 2019, 11, 3809–3822. [Google Scholar] [CrossRef]
Composite | Applications | Advantages | Disadvantages |
---|---|---|---|
Liposomes/Niosomes | Drug/Gene delivery Cell culture | Delivery of unstable drugs Overcomes hydrogel and liposome limitations Improved therapeutic efficacy | Can be detrimental to gel’s mechanical properties |
Magnetic nanoparticles | Drug delivery Cell culture Hyperthermia MRI | Synergy with magnetic hyperthermia Magnetoresponse MRI contrast | Requires screening functionalization to achieve co-assembly |
Silica/Clay nanoparticles | Tissue engineering Wound healing | Improved biological and mechanical properties | Limited number of reported peptide-based gelators |
Gold/Silver nanoparticles | Biosensing Drug delivery Catalysis | Low-cost sensors Synthesis in situ Facile synthesis and tunability Synergy with photothermia/photodynamic therapy | Heterogeneous dispersion Uncontrolled release Challenging reproducibility of in situ synthesis |
Carbonaceous nanoparticles | Drug/Cell delivery Tissue engineering Catalysis Sensing | Improved network stability Reinforced mechanical properties Synergy with photothermia/photodynamic therapy Enhanced catalytic activity | Lacking studies of long-term cytotoxicity |
Nanoparticles | Hydrogel | Applications | Highlight | Reference |
---|---|---|---|---|
Fe3O4–DA-L-Phe-L-Phe-OH | 2-Naph-L-Phe-L-Phe-OH | - | Magnetoresponse with small nanoparticle concentration | [77] |
PDA–Fe3O4 | H-Phe-L-Phe-OH | - | Co-assembly of different nanostructures into magnetic gels | [78] |
Fe–PEG | Fmoc-L-Phe-L-Phe-OH | - | Supramolecular anisotropic magnetic gels | [73] |
Fe3O4–PAA | Npx-L-Tyr-Z-ΔPhe-OH Npx-L-Asp-Z-ΔPhe-OH | MRI Magnetic hyperthermia | Dual T1/T2 MRI contrast | [79] |
Fe3O4 | 2-Naph-L-Gly-L-Phe-L-Tyr-L-Asp-OH | Drug delivery | Magnetoresponse On-demand release | [80] |
Fe–PEG | Fmoc-L-Phe-L-Phe-OH Fmoc-L-Arg-L-Gly-L-Asp-OH | 3D scaffolds | Injectable Biocompatible Cell delivery | [81] |
MnFe2O4–Au | Npx-L-Met-Z-ΔPhe-OH | Drug delivery | Photothermia-enhanced drug release | [82] |
MnFe2O4–Citrate MnFe2O4–Lipid coating | Cbz-L-Met-Z-ΔPhe-OH | Drug delivery Hyperthermia | Low frequency AMF Enhanced drug release | [83] |
Nanoparticles | Hydrogel | Applications | Reference |
---|---|---|---|
AuNPs AgNPs | H2N-ADDA-Phe-Phe-OH | Catalysis | [118] |
AuNPs | Ar-Phe-X1 | - | [107] |
AuNPs | Fmoc-Phe-Glu-Lys-Phe-OH | Drug delivery Electrochemical sensing | [109] |
AuNPs | Ac-Ile-Val-Phe-Lys-NH2 | Catalysis | [110] |
AuNPs AgNPs | Bile acid-dipeptide | - | [119] |
AgNPs | Cl− +(H3C)3-Trp-CONH-C16H33 Cl− +(H3C)3-Tyr-CONH-C16H33 C15H31-CO-Val-Trp-COO− Na+ C15H31-CO-Ile-Trp-COO− Na+ | Antibacterial activity | [108] |
AuNPs AgNPs | Fmoc-Phe-Phe-OH | SERS sensing | [117] |
AgNPs | X2− +(H3C)3-Trp-CONH-C16H33 | Antibacterial activity | [112] |
AgNPs | Nap-Phe-Phe-Cys-OH | Antibacterial activity | [113] |
AgNPs | Ac-Lys-Ile-Val-Ala-Gly-Lys-NH2 | Antibacterial activity | [114] |
AgNPs | Nap-Lys (Nap)-ethyleneoxy-NH2 | Antibacterial activity | [115] |
AgNPs | Fmoc-Phe-Phe-Cys-Trp-Arg-OH | Catalysis Antibacterial activity | [116] |
Carbon Material | Hydrogel | Applications | Reference |
---|---|---|---|
GO | Fmoc-Tyr-Asp-OH Fmoc-Phe-Asp-OH | - | [127] |
GO | Fmoc-Phe-Phe-Phe-OH | - | [126] |
GO Reduced GO GO/PDADMAC Reduced GO/PDADMAC Reduced GO/PVP | H2N-Val-Glu-Val-Lys-Val-Glu-Val-Lys-OH H2N-Phe-Glu-Phe-Lys-Phe-Glu-Phe-Lys-OH | - | [125] |
Carbon nanotubes GO sheets Carbon nanohorns | H2N-Leu-Phe-Phe-OH | - | [138] |
GO | Py-Gly-Ala-Gly-Ala-Gly-Tyr-OH | Drug delivery | [129] |
Oxidized carbon nanotubes GO | Fmoc-Phe-OH/Fmoc-Tyr(Bzl)-OH Fmoc/Tyr-OH/Fmoc-Tyr(Bzl)-OH | Drug delivery | [131] |
GO/TREN nanoparticles | Max8 peptide | Drug delivery | [130] |
GO Reduced GO | Glutathione | Drug delivery | [128] |
GO | H2N-Phe-Glu-Phe-Lys-Phe-Glu-Phe-Lys-OH | Cell delivery | [133] |
Graphene quantum dots | Amoc-Phe-OH Amoc-Tyr-OH | Drug delivery Tissue engineering | [139] |
GO | H2N-Phe-Glu-Phe-Lys-Phe-Glu-Phe-Lys-OH | Tissue engineering | [132,134] |
GO | Fmoc-Ile-Glu-Ile-Glu-Ile-Glu-Ile-CONH2 Fmoc-Ile-Ile-Ile-Ile-Glu-Glu-Glu-CONH2 Fmoc-Ala-Glu-Ala-Glu-Ala-Glu-Ala-CONH2 Fmoc-Ala-Ala-Ala-Ala-Glu-Glu-Glu-CONH2 | Catalysis | [136] |
GO/Fc-Phe-OH | Fc-Phe-OH | Sensing | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, V.; Veloso, S.R.S.; Correa-Duarte, M.A.; Ferreira, P.M.T.; Castanheira, E.M.S. Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. Int. J. Mol. Sci. 2023, 24, 186. https://doi.org/10.3390/ijms24010186
Gomes V, Veloso SRS, Correa-Duarte MA, Ferreira PMT, Castanheira EMS. Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. International Journal of Molecular Sciences. 2023; 24(1):186. https://doi.org/10.3390/ijms24010186
Chicago/Turabian StyleGomes, Valéria, Sérgio R. S. Veloso, Miguel A. Correa-Duarte, Paula M. T. Ferreira, and Elisabete M. S. Castanheira. 2023. "Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications" International Journal of Molecular Sciences 24, no. 1: 186. https://doi.org/10.3390/ijms24010186
APA StyleGomes, V., Veloso, S. R. S., Correa-Duarte, M. A., Ferreira, P. M. T., & Castanheira, E. M. S. (2023). Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. International Journal of Molecular Sciences, 24(1), 186. https://doi.org/10.3390/ijms24010186