Phage Therapy for Crops: Concepts, Experimental and Bioinformatics Approaches to Direct Its Application
Abstract
:1. Introduction
2. Bacteriophages Used for Biocontrol of Crop Diseases
3. Bacteriophage Classification
4. Bacteriophage Infection Mechanisms
5. Strategies for Bacteriophage Isolation from Plants
5.1. Obtaining Bacteriophages from Environment Samples
5.2. Experimental Detection of Bacteriophages
5.3. Detection of Bacteriophages from the Genome for Bacterial Biocontrol
6. Bacterial Diseases Controlled by Bacteriophages
6.1. Bacteriophages in the Biocontrol of Pseudomonas spp.
Bacterial Pathogen | Host Plant | Disease | Bacteriophages | Phage Therapy (PFU/mL) | Lysis (CFU/mL) | Genome (GenBank Number) | Reference |
---|---|---|---|---|---|---|---|
Pseudomonas syringae pv. phaseolicola | Bean (Phaseolusvulgaris) | Halo blight | Phage F2 | 4 × 108 | ~108 | ND | [80] |
Pseudomonas phage phi8 | 1 × 1010 | ~2 × 108 | AF226851 | [81] | |||
Pseudomonas phage phi6 Pseudomonas phage phi12 Pseudomonas phage phi13 Pseudomonas phage phi2954 | 107 1 × 109 | 105 0.5 × 108 | M17461 | [78,82,83] | |||
AF408636.1 | |||||||
AF261666.1 | |||||||
FJ608823.2 | |||||||
Pseudomonas phage phiNN | 7.5 × 108 | ~1.5 × 109 | KJ957164.1 | [23] | |||
Pseudomonas phage phiYY | 1 × 108 | 1 × 109 | KX074201.1 | [84,85] | |||
Pseudomonas syringae pv. syringae | Wheat (Triticum aestivum) | Bacterial canker | Pseudomonas phage phi6 | 1 × 108 | 3.9 × 108 | M17461 | [86] |
Bacteriophage Phobos | 2.5 × 106 | 1 × 108 | MN478374.1 | [24,87] | |||
φSK2a φSK2b φSK2c φMGX1 | 1 × 1012 | 1 × 108 | ND | [80] | |||
Pseudomonas phage MR1-MR8 MR12-M18 | 104–107 | 1.5– 5 × 108 | MT104465.1 MT104466.1 MT104467.1 MT104468.1 MT104469.1 MT104470.1 MT104471 MT104472 MT104473.1 MT104474 MT104475 MT104476 MT104477 | [88] | |||
Xanthomonas axonopodis pv. phaseoli. | Bean (Phaseolus vulgaris) Rice (Oryza sativa) Citrus (various species) Cassava root (Manihot cassava) Tomato (Solanum lycopersicum) Sugar cane (Sacchrum offcicinarum) Passion fruit (Passiflora spp.) Brassica (Brassica spp.) | Bacterial blight | CP2, ΦXac2005-1 ccΦ7 mccΦ13 ΦX. | 5 × 109 | 1 × 108 | ND | [89] |
ΦXaacA1 | ~106 | 1 × 108 | |||||
Acm2004- ΦXacm2004-16 ΦX44 | 2.4 × 108 | 1 × 108 | |||||
XacN1 | 1 × 1010 | 1 × 108 | ND | [90] | |||
Xcc9SH3 | 8 × 1010 | 1 × 108 | ND | [59] | |||
Xanthomonas phage Xaj2 Xanthomonas phage Xaj24 | 1 × 109 | 1 × 108 | KU197014.1 KU197013.1 | [91] | |||
Xanthomonas albileneans | Sugar cane (Sacchrum offcicinarum) | Leaf scald | Xanthomonas phage phi Xc10 | 2.5 × 106 | 1 × 108 | MF375456.1 | [87,92] |
Phage Sano Phage Salvo Xylella phage Prado Xylella phage Paz | 5–7 × 1010 4 × 1012 | 1 × 108 | KF626665 KF626668.1 KF626667.1 KF626666.1 | [93] | |||
Phage Cf2 | 2 × 109 | 1 × 108 | ND | [94] | |||
Xanthomonas campestris pv. vesicatoria | Green chili (Capsicum annuum) | Bacterial spot | Phage 1 Phage2 Phage3 | 4 × 108 3 × 108 7 × 108 | 3 × 108 | ND | [25,95] |
ΦXaF18 | 6 × 1010 | 1 × 107 | ND | [96] | |||
Xanthomonas phage KΦ1 pXS | 1 × 108 1 × 107 | 1 × 108 1 × 108 | KY210139.1 ND | [52,97,98] | |||
AgriPhage | 1 × 108 | 1 × 108 | ND | [12,13,97] | |||
Phage 1 Phage 2 Phage 3 | 4 × 108 3 × 108 7 × 108 | 3 × 108 | ND | [95] | |||
Xanthomonas campestri pv. campestri | Cabbage (Brassica oleracea) | Cabbage rot | pXS | 1 × 108 | 1 × 108 | ND | [25,99] |
DB1 | 1 × 108 | 1 × 108 | ND | [99] | |||
Xanthomonas campestri pv. pruni | Peach (Prunus persica) | Bacterial spot | Xp3-A Xp3-I | 4 × 109 | 2 × 108 | ND | [100] |
Xanthomonas oryzae pv. oryzae | Rice (Oryza sativa) | Leaf blight | φXOF4 | 1 × 108 | 1 × 1010 | ND | [101] |
Xanthomonas phage Xoo-sp2 Xoo-sp3 Xoo-sp4 Xoo-sp5 Xoo-sp6 Xoo-sp7 Xoo-sp8 Xoo-sp9 | 1 × 1010 | ~8 × 108 | KX241618.1 ND ND ND ND ND ND ND | [25,102] | |||
Xanthomonas axonopodis pv. allii | Onion (Allium cepa L.) | Φ16 Φ17A Φ31 | 1 × 108 1 × 107 1 × 106 | 1 × 108 | ND ND ND | [103] | |
Pectobacterium carotovorum | Corn (Zea mays) | Soft rot | ΦEcc2, ΦEcc3, ΦEcc9, ΦEcc14 | 1 × 107 | 1 × 108 | ND ND ND ND | [104] |
Pectobacterium phage ZF40 ZF40-421 | 1 × 1012 1 × 109 1 × 108 | 1 × 108 | JQ177065.1 ND | [87,105] | |||
ZF40-RT80 | 1 ×108 | 1 × 108 | ND | [106] | |||
POP72 | 5 × 106 | 1 × 109 | ND | [107] | |||
ϕPD10.3 | KM209229.1 | [108] | |||||
ϕPD23.1 | 1 × 105 | 1 × 107 | KM209274.1 | ||||
PP1 | 1 × 102 | 1 × 104 | JQ837901.1 | [107,109] | |||
Pectobacterium odoriferum | Sweet potato (Ipomoea batatas (L.) Lam) | Bacterial root rot | Phi PccP-1 | 1 × 108 | 1 × 108 | MW001769 | [110] |
Ralstonia solanacearum | Tomato (Solanum lycopersicum) Tobacco (Nicotiana tabacum) Geranium (genus) Potato (Solanum tuberosum) Banana (Musa paradisiaca) | Brown rot | ΦRSP | 2.37 × 109 | 2.1 × 108 | ND | [111] |
Qϕ-161 | 1 × 108 | 1 × 108 | ND | [112] | |||
RsoP1EGY | 1 × 108 | 2 × 108 | NC_047946.1 | [113] | |||
Ralstonia phage ϕRSL1 | 5.0 | 3 × 108 | NC_010811.2 | [114] | |||
PE204 | 0.05 | 2 × 108 | ND | [115] | |||
Ralstonia phage ϕRSM3 | 6 × 10 | 1 × 108 | NC_011399.1 | [26] | |||
ϕRSΒ1 | 6 × 10 | 1 × 108 | ND | [116] | |||
φSP1 | 1 × 106 | 1 × 106 | ND | [117] | |||
Ralstonia phage RsoM1USA | 1 × 108 | 1 × 108 | M6752970 | [118] | |||
Ralstonia phage RpY1 | ND | ND | MN996301.1 | [119] | |||
Burkholderia thailandensis B. caryophylli, B. gladioli B. glumae | Allium cepa Oryza sativa Nicotiana tabacum | Onion skin Rotten rice grain blight Tobacco wilt | KS1, KS2, KS5, and KS6 | 1x107 | ND | ND | [120] |
B. plantarii | Oryza sativa | Bacterial damping-off disease | FLC5 | ND | ND | LC528882 | [121] |
Dickeya spp. Dickeya solani | Solanum tuberosum | Blackleg pathogen Soft rot | ϕD5 | 1 × 1014 | NC019925 | [108] | |
Phage myo Phage siph | 1 × 107 | 3 × 109 | ND | [122] | |||
PP35 | 1 × 106 | 1 × 106 | MG266157.1 | [123] | |||
vB_DsoM_LIMEstone1 vB_DsoM_LIMEston 2 | 1 × 109 | ND | HE600015 | [124] | |||
Clavibacter michiganensis | Tomato (Solanum lycopersicum) Pepper (Capsicum annuum) Potato (Solanum tuberosum) Maize (Zea mays) | Bacterial canker Goss’s wilt | Clavibacter phage CMP1 Clavibacter phage CN77 | 4 × 107 | 4 × 108 | GQ241246.1 GU097882.1 | [125,126] |
CN8 | 5.3 × 106 | 5.0 × 107 | ND | [127] | |||
Agrobacterium tumefaciens | Tobacco (Nicotiana tabacum) Fruit tree (various species) Ornamental plants (various species) Forest trees (various species) | Crown gall disease | Agrobacterium phage Atu_ph07 | 1 × 105 | 1 × 108 | MF403008.1 | [48,128] |
Agrobacterium phage Atu_ph04 Agrobacterium phage Atu_ph08 Agrobacterium phage Atu_ph02 Agrobacterium phage Atu_ph03 | 1 × 108 | 1 × 108 | MF403007.1 MF403009.1 NC_047845.1 NC_047846.1 | [128] | |||
Milano | 2.5 × 106 | 1 × 108 | MK637516.1 | [129] |
6.2. Bacteriophages in the Biocontrol of Xanthomonas spp.
6.3. Bacteriophages in the Biocontrol of Pectobacterium spp. (Formerly Erwinia)
6.4. Bacteriophages in the Biocontrol of Ralstonia spp.
6.5. Bacteriophages in the Biocontrol of Burkholderia spp.
6.6. Bacteriophages in the Biocontrol of Dickeya spp.
6.7. Bacteriophages in the Biocontrol of Clavibacter michiganensis
6.8. Bacteriophages in the Biocontrol of Agrobacterium tumefaciens
7. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cobián Güemes, A.G.; Youle, M.; Cantú, V.A.; Felts, B.; Nulton, J.; Rohwer, F. Viruses as Winners in the Game of Life. Annu. Rev. Virol. 2016, 3, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Karam, J.D. Bacteriophages: The Viruses for All Seasons of Molecular Biology. Virol. J. 2005, 2, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallman, W.L.; Hemstreet, C. Isolation of an Inhibitory Substance from Plants. J. Agric. Res. 1924, 23, 599–602. [Google Scholar]
- Moore, E.S. D’Herelle’s Bacteriophage in Relation to Plant Parasites. S. Afr. J. Sci. 1926, 23, 306. [Google Scholar] [CrossRef]
- Dublanchet, A.; Bourne, S. The Epic of Phage Therapy. Can. J. Infect. Dis. Med. Microbiol. 2007, 18, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Lobanovska, M.; Pilla, G. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale J. Biol. Med. 2017, 90, 135–145. [Google Scholar]
- Aminov, R.I. A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef] [Green Version]
- Luong, T.; Salabarria, A.-C.; Roach, D.R. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clin. Ther. 2020, 42, 1659–1680. [Google Scholar] [CrossRef]
- Sithole-Niang, I.; Muchayi, S.; Mashonganyika, A. Rapid Isolation of Bacteriophages: Steps Towards Phage Therapy. Act Sci. Pharm Sci. 2019, 3, 32–323. [Google Scholar] [CrossRef]
- Hatfull, G.F.; Hendrix, R.W. Bacteriophages and Their Genomes. Curr. Opin. Virol. 2011, 1, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Amgarten, D.; Braga, L.P.P.; da Silva, A.M.; Setubal, J.C. MARVEL, a Tool for Prediction of Bacteriophage Sequences in Metagenomic Bins. Front. Genet. 2018, 9, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, A.; Jones, J.B.; Momol, M.T.; Olson, S.M.; Jackson, L.E.; Balogh, B.; Guven, K.; Iriarte, F.B. Integration of Biological Control Agents and Systemic Acquired Resistance Inducers Against Bacterial Spot on Tomato. Plant Dis. 2005, 89, 712–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subirats, J.; Sànchez-Melsió, A.; Borrego, C.M.; Balcázar, J.L.; Simonet, P. Metagenomic Analysis Reveals That Bacteriophages Are Reservoirs of Antibiotic Resistance Genes. Int. J. Antimicrob. Agents 2016, 48, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, H.-W. Phage Classification and Characterization. Methods Mol. Biol. 2009, 501, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Rakhuba, D.V.; Kolomiets, E.I.; Dey, E.S.; Novik, G.I. Bacteriophage Receptors, Mechanisms of Phage Adsorption and Penetration into Host Cell. Pol. J. Microbiol. 2010, 59, 145–155. [Google Scholar] [CrossRef]
- Bacteriophages: Their Structural Organisation and Function|IntechOpen. Available online: https://www.intechopen.com/chapters/66740 (accessed on 19 October 2022).
- Sanz-Gaitero, M.; Seoane-Blanco, M.; van Raaij, M.J.; Harper, D.R.; Abedon, S.T.; Burrowes, B.H.; McConville, M.L. Structure and Function of Bacteriophages. In Bacteriophages: Biology, Technology, Therapy; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–73. [Google Scholar] [CrossRef]
- Cieplak, T.; Soffer, N.; Sulakvelidze, A.; Nielsen, D.S. A Bacteriophage Cocktail Targeting Escherichia Coli Reduces E. coli in Simulated Gut Conditions, While Preserving a Non-Targeted Representative Commensal Normal Microbiota. Gut Microbes 2018, 9, 391–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oksanen, H.M.; ICTV Report Consortium. ICTV Virus Taxonomy Profile: Corticoviridae. J. Gen. Virol. 2017, 98, 888–889. [Google Scholar] [CrossRef]
- Wirth, J.; Young, M. The Intriguing World of Archaeal Viruses. PLoS Pathog. 2020, 16, e1008574. [Google Scholar] [CrossRef]
- Pietilä, M.K.; Demina, T.A.; Atanasova, N.S.; Oksanen, H.M.; Bamford, D.H. Archaeal Viruses and Bacteriophages: Comparisons and Contrasts. Trends Microbiol. 2014, 22, 334–344. [Google Scholar] [CrossRef]
- Mäntynen, S.; Sundberg, L.-R.; Poranen, M.M. Recognition of Six Additional Cystoviruses: Pseudomonas Virus Phi6 Is No Longer the Sole Species of the Family Cystoviridae. Arch. Virol. 2018, 163, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Amarillas, L.; Estrada-Acosta, M.; León-Chan, R.G.; López-Orona, C.; Lightbourn, L. Complete Genome Sequence of Phobos: A Novel Bacteriophage with Unusual Genomic Features That Infects Pseudomonas Syringae. Arch. Virol. 2020, 165, 1485–1488. [Google Scholar] [CrossRef] [PubMed]
- Nakayinga, R.; Makumi, A.; Tumuhaise, V.; Tinzaara, W. Xanthomonas Bacteriophages: A Review of Their Biology and Biocontrol Applications in Agriculture. BMC Microbiol. 2021, 21, 291. [Google Scholar] [CrossRef] [PubMed]
- Addy, H.S.; Askora, A.; Kawasaki, T.; Fujie, M.; Yamada, T. Utilization of Filamentous Phage ΦRSM3 to Control Bacterial Wilt Caused by Ralstonia Solanacearum. Plant Dis. 2012, 96, 1204–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmonds, P.; Adams, M.J.; Benkő, M.; Breitbart, M.; Brister, J.R.; Carstens, E.B.; Davison, A.J.; Delwart, E.; Gorbalenya, A.E.; Harrach, B.; et al. Consensus Statement: Virus Taxonomy in the Age of Metagenomics. Nat. Rev. Microbiol. 2017, 15, 161–168. [Google Scholar] [CrossRef]
- Dion, M.B.; Oechslin, F.; Moineau, S. Phage Diversity, Genomics and Phylogeny. Nat. Rev. Microbiol. 2020, 18, 125–138. [Google Scholar] [CrossRef]
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef]
- Baker, D.N.; Langmead, B. Dashing: Fast and Accurate Genomic Distances with HyperLogLog. Genome Biol. 2019, 20, 265. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Shang, J.; Peng, C.; Sun, Y. Phage Family Classification under Caudoviricetes: A Review of Current Tools Using the Latest ICTV Classification Framework. arXiv 2022, arXiv:2209.01942. [Google Scholar] [CrossRef]
- Roux, S.; Krupovic, M.; Daly, R.A.; Borges, A.L.; Nayfach, S.; Schulz, F.; Sharrar, A.; Matheus Carnevali, P.B.; Cheng, J.-F.; Ivanova, N.N.; et al. Cryptic Inoviruses Revealed as Pervasive in Bacteria and Archaea across Earth’s Biomes. Nat. Microbiol. 2019, 4, 1895–1906. [Google Scholar] [CrossRef] [Green Version]
- Adriaenssens, E.M.; Sullivan, M.B.; Knezevic, P.; van Zyl, L.J.; Sarkar, B.L.; Dutilh, B.E.; Alfenas-Zerbini, P.; Łobocka, M.; Tong, Y.; Brister, J.R.; et al. Taxonomy of Prokaryotic Viruses: 2018-2019 Update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 2020, 165, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Krupovic, M.; Dutilh, B.E.; Adriaenssens, E.M.; Wittmann, J.; Vogensen, F.K.; Sullivan, M.B.; Rumnieks, J.; Prangishvili, D.; Lavigne, R.; Kropinski, A.M.; et al. Taxonomy of Prokaryotic Viruses: Update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 2016, 161, 1095–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaiser, A.; Dufresne, A.; Ballaud, F.; Roux, S.; Zivanovic, Y.; Colombet, J.; Sime-Ngando, T.; Francez, A.-J. Diversity and Comparative Genomics of Microviridae in Sphagnum-Dominated Peatlands. Front. Microbiol. 2015, 6, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, S.R.; Janowski, A.B.; Zhao, G.; Barouch, D.; Wang, D. Hyperexpansion of RNA Bacteriophage Diversity. PLOS Biol. 2016, 14, e1002409. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Alfenas-Zerbini, P.; Dempsey, D.M.; Dutilh, B.E.; García, M.L.; Curtis Hendrickson, R.; et al. Recent Changes to Virus Taxonomy Ratified by the International Committee on Taxonomy of Viruses (2022). Arch. Virol. 2022, 167, 2429–2440. [Google Scholar] [CrossRef] [PubMed]
- Dowding, J.E. Characterization of a Bacteriophage Virulent for Streptomyces Coelicolor A3(2). J. Gen. Microbiol. 1973, 76, 163–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Civerolo, E.L. Morphological Evidence for Phages in Xylella Fastidiosa. Virol. J. 2008, 5, 75. [Google Scholar] [CrossRef] [Green Version]
- Ellis, S.D.; Boehm, M.J.; Coplin, D. Bacterial Diseases of Plants. Agric. Nat. Resour. 2008, 4, 401–404. [Google Scholar]
- Bertaccini, A.; Duduk, B. Phytoplasma and Phytoplasma Diseases: A Review of Recent Research. Phytopathol. Mediterr. 2009, 48, 355–378. [Google Scholar] [CrossRef]
- Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host Receptors for Bacteriophage Adsorption. FEMS Microbiol. Lett. 2016, 363, fnw002. [Google Scholar] [CrossRef] [Green Version]
- Hyman, P. Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals 2019, 12, E35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Twest, R.; Kropinski, A.M. Bacteriophage Enrichment from Water and Soil. Methods Mol. Biol. 2009, 501, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Stone, E.; Lhomet, A.; Neve, H.; Grant, I.R.; Campbell, K.; McAuliffe, O. Isolation and Characterization of Listeria Monocytogenes Phage VB_LmoH_P61, a Phage With Biocontrol Potential on Different Food Matrices. Front. Sustain. Food Syst. 2020, 4, 521645. [Google Scholar] [CrossRef]
- Sundin, G.W.; Castiblanco, L.F.; Yuan, X.; Zeng, Q.; Yang, C.-H. Bacterial Disease Management: Challenges, Experience, Innovation and Future Prospects: Challenges in Bacterial Molecular Plant Pathology. Mol. Plant Pathol. 2016, 17, 1506–1518. [Google Scholar] [CrossRef] [PubMed]
- Šimoliūnas, E.; Šimoliūnienė, M.; Kaliniene, L.; Zajančkauskaitė, A.; Skapas, M.; Meškys, R.; Kaupinis, A.; Valius, M.; Truncaitė, L. Pantoea Bacteriophage VB_PagS_Vid5: A Low-Temperature Siphovirus That Harbors a Cluster of Genes Involved in the Biosynthesis of Archaeosine. Viruses 2018, 10, 583. [Google Scholar] [CrossRef] [Green Version]
- Attai, H.; Boon, M.; Phillips, K.; Noben, J.-P.; Lavigne, R.; Brown, P.J.B. Larger Than Life: Isolation and Genomic Characterization of a Jumbo Phage That Infects the Bacterial Plant Pathogen, Agrobacterium Tumefaciens. Front. Microbiol. 2018, 9, 1861. [Google Scholar] [CrossRef] [Green Version]
- Holtappels, D.; Kerremans, A.; Busschots, Y.; Van Vaerenbergh, J.; Maes, M.; Lavigne, R.; Wagemans, J. Preparing for the KIL: Receptor Analysis of Pseudomonas Syringae Pv. Porri Phages and Their Impact on Bacterial Virulence. Int. J. Mol. Sci. 2020, 21, 2930. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wei, Z.; Yang, K.; Wang, J.; Jousset, A.; Xu, Y.; Shen, Q.; Friman, V.-P. Phage Combination Therapies for Bacterial Wilt Disease in Tomato. Nat. Biotechnol. 2019, 37, 1513–1520. [Google Scholar] [CrossRef]
- Guang-Han, O.; Leang-Chung, C.; Vellasamy, K.M.; Mariappan, V.; Li-Yen, C.; Vadivelu, J. Experimental Phage Therapy for Burkholderia Pseudomallei Infection. PLoS ONE 2016, 11, e0158213. [Google Scholar] [CrossRef]
- Gašić, K.; Ivanović, M.M.; Ignjatov, M.; Calić, A.; Obradović, A. Isolation and Characterization of Xanthomonas Euvesicatoria Bacteriophages. J. Plant Pathol. 2011, 93, 415–423. [Google Scholar]
- Jones, J.B.; Vallad, G.E.; Iriarte, F.B.; Obradović, A.; Wernsing, M.H.; Jackson, L.E.; Balogh, B.; Hong, J.C.; Momol, M.T. Considerations for Using Bacteriophages for Plant Disease Control. Bacteriophage 2012, 2, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonilla, N.; Rojas, M.I.; Netto Flores Cruz, G.; Hung, S.-H.; Rohwer, F.; Barr, J.J. Phage on Tap-a Quick and Efficient Protocol for the Preparation of Bacteriophage Laboratory Stocks. PeerJ 2016, 4, e2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czajkowski, R.; Ozymko, Z.; Lojkowska, E. Application of Zinc Chloride Precipitation Method for Rapid Isolation and Concentration of Infectious Pectobacterium spp. and Dickeya spp. Lytic Bacteriophages from Surface Water and Plant and Soil Extracts. Folia Microbiol. 2016, 61, 29–33. [Google Scholar] [CrossRef] [PubMed]
- John, S.G.; Mendez, C.B.; Deng, L.; Poulos, B.; Kauffman, A.K.M.; Kern, S.; Brum, J.; Polz, M.F.; Boyle, E.A.; Sullivan, M.B. A Simple and Efficient Method for Concentration of Ocean Viruses by Chemical Flocculation. Environ. Microbiol. Rep. 2011, 3, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, R.N.; DeCesaro, D.R.; Durkee, D.L.; Barbaro, S.E. Isolation of a bacteriophage from sewage sludge and characterization of its bacterial host cell. River Acad. J. 2007, 3, 1–8. [Google Scholar]
- Echeverría-Vega, A.; Morales-Vicencio, P.; Saez-Saavedra, C.; Gordillo-Fuenzalida, F.; Araya, R. A Rapid and Simple Protocol for the Isolation of Bacteriophages from Coastal Organisms. MethodsX 2019, 6, 2614–2619. [Google Scholar] [CrossRef]
- Renu, M.B.; Singh, U.B.; Sahu, U.; Nagrale, D.T.; Sahu, P.K. Characterization of Lytic Bacteriophage XCC9SH3. J. Plant Pathol. 2017, 99, 233–238. [Google Scholar] [CrossRef]
- Brister, J.R.; Ako-Adjei, D.; Bao, Y.; Blinkova, O. NCBI Viral Genomes Resource. Nucleic Acids Res. 2015, 43, D571–D577. [Google Scholar] [CrossRef] [Green Version]
- Abedon, S.T.; Yin, J. Bacteriophage Plaques: Theory and Analysis. Methods Mol. Biol. 2009, 501, 161–174. [Google Scholar] [CrossRef]
- Konopacki, M.; Grygorcewicz, B.; Dołęgowska, B.; Kordas, M.; Rakoczy, R. PhageScore: A Simple Method for Comparative Evaluation of Bacteriophages Lytic Activity. Biochem. Eng. J. 2020, 161, 107652. [Google Scholar] [CrossRef]
- Aucken, H.M.; Westwell, K. Reaction Difference Rule for Phage Typing of Staphylococcus Aureus at 100 Times the Routine Test Dilution. J. Clin. Microbiol. 2002, 40, 292–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, D.A.; Hatfull, G.F. PhagesDB: The Actinobacteriophage Database. Bioinformatics 2017, 33, 784–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitwieser, F.P.; Lu, J.; Salzberg, S.L. A Review of Methods and Databases for Metagenomic Classification and Assembly. Brief Bioinform. 2019, 20, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- McNair, K.; Bailey, B.A.; Edwards, R.A. PHACTS, a Computational Approach to Classifying the Lifestyle of Phages. Bioinformatics 2012, 28, 614–618. [Google Scholar] [CrossRef]
- Leite, D.M.C.; Brochet, X.; Resch, G.; Que, Y.-A.; Neves, A.; Peña-Reyes, C. Computational Prediction of Inter-Species Relationships through Omics Data Analysis and Machine Learning. BMC Bioinform. 2018, 19, 420. [Google Scholar] [CrossRef]
- Klumpp, J.; Fouts, D.E.; Sozhamannan, S. Next Generation Sequencing Technologies and the Changing Landscape of Phage Genomics. Bacteriophage 2012, 2, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Roux, S.; Enault, F.; Hurwitz, B.L.; Sullivan, M.B. VirSorter: Mining Viral Signal from Microbial Genomic Data. PeerJ 2015, 3, e985. [Google Scholar] [CrossRef]
- Ren, J.; Ahlgren, N.A.; Lu, Y.Y.; Fuhrman, J.A.; Sun, F. VirFinder: A Novel k-Mer Based Tool for Identifying Viral Sequences from Assembled Metagenomic Data. Microbiome 2017, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Kieft, K.; Zhou, Z.; Anantharaman, K. VIBRANT: Automated Recovery, Annotation and Curation of Microbial Viruses, and Evaluation of Viral Community Function from Genomic Sequences. Microbiome 2020, 8, 90. [Google Scholar] [CrossRef]
- Alegun, O.; Pandeya, A.; Cui, J.; Ojo, I.; Wei, Y. Donnan Potential across the Outer Membrane of Gram-Negative Bacteria and Its Effect on the Permeability of Antibiotics. Antibiotics 2021, 10, 701. [Google Scholar] [CrossRef]
- Oliveira, J.; Reygaert, W.C. Gram Negative Bacteria; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- diCenzo, G.C.; Finan, T.M. The Divided Bacterial Genome: Structure, Function, and Evolution. Microbiol. Mol. Biol. Rev. 2017, 81, e00019-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanipes, M.I.; Guerry, P. Chapter 44—Role of Microbial Glycosylation in Host Cell Invasion. In Microbial Glycobiology; Holst, O., Brennan, P.J., von Itzstein, M., Moran, A.P., Eds.; Academic Press: San Diego, CA, USA, 2010; pp. 871–883. ISBN 978-0-12-374546-0. [Google Scholar]
- Helmann, T.C.; Deutschbauer, A.M.; Lindow, S.E. Distinctiveness of Genes Contributing to Growth of Pseudomonas Syringae in Diverse Host Plant Species. PLoS ONE 2020, 15, e0239998. [Google Scholar] [CrossRef] [PubMed]
- Singh, D. Bacterial Wilt of Solanaceous Crops: Diagnosis, Diversity and Management. Indian Phytopathol. 2017, 70, 151–163. [Google Scholar] [CrossRef]
- Vidaver, A.K.; Koski, R.K.; Van Etten, J.L. Bacteriophage Phi6: A Lipid-Containing Virus of Pseudomonas Phaseolicola. J. Virol. 1973, 11, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Aguilar, E.E.; Reyes-Tena, A.; Hernández-Montiel, L.G.; Rincón-Enríquez, G. Bacteriófagos En El Control Biológico de Pseudomonas Syringae Pv. Phaseolicola Agente Causal Del Tizón de Halo Del Frijol. Ecosistemas Recur. Agropecu. 2018, 5, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Addy, H.S.; Wahyuni, W.S. Nucleic Acid and Protein Profile of Bacteriophages That Infect Pseudomonas Syringae Pv. Glycinea, Bacterial Blight on Soybean. Agric. Agric. Sci. Procedia 2016, 9, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Hoogstraten, D.; Qiao, X.; Sun, Y.; Hu, A.; Onodera, S.; Mindich, L. Characterization of Phi8, a Bacteriophage Containing Three Double-Stranded RNA Genomic Segments and Distantly Related to Phi6. Virology 2000, 272, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Qiao, J.; Onodera, S.; Mindich, L. Characterization of Phi 13, a Bacteriophage Related to Phi 6 and Containing Three DsRNA Genomic Segments. Virology 2000, 275, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Sun, Y.; Qiao, J.; Di Sanzo, F.; Mindich, L. Characterization of Phi2954, a Newly Isolated Bacteriophage Containing Three DsRNA Genomic Segments. BMC Microbiol. 2010, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Lu, S.; Shen, W.; Zhao, X.; Shen, M.; Tan, Y.; Li, G.; Li, M.; Wang, J.; Hu, F.; et al. Characterization of the First Double-Stranded RNA Bacteriophage Infecting Pseudomonas Aeruginosa. Sci. Rep. 2016, 6, 38795. [Google Scholar] [CrossRef] [Green Version]
- Green, M.R.; Sambrook, J.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2012; ISBN 978-1-936113-41-5. [Google Scholar]
- Pinheiro, L.A.M.; Pereira, C.; Frazão, C.; Balcão, V.M.; Almeida, A. Efficiency of Phage Φ6 for Biocontrol of Pseudomonas Syringae Pv. Syringae: An in Vitro Preliminary Study. Microorganisms 2019, 7, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, M.H. Bacteriophages; Interscience Publishers: New York, NY, USA, 1959. [Google Scholar]
- Rabiey, M.; Roy, S.R.; Holtappels, D.; Franceschetti, L.; Quilty, B.J.; Creeth, R.; Sundin, G.W.; Wagemans, J.; Lavigne, R.; Jackson, R.W. Phage Biocontrol to Combat Pseudomonas Syringae Pathogens Causing Disease in Cherry. Microb. Biotechnol. 2020, 13, 1428–1445. [Google Scholar] [CrossRef] [PubMed]
- Balogh, B.; Canteros, B.I.; Stall, R.E.; Jones, J.B. Control of Citrus Canker and Citrus Bacterial Spot with Bacteriophages. Plant Dis. 2008, 92, 1048–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshikawa, G.; Askora, A.; Blanc-Mathieu, R.; Kawasaki, T.; Li, Y.; Nakano, M.; Ogata, H.; Yamada, T. Xanthomonas Citri Jumbo Phage XacN1 Exhibits a Wide Host Range and High Complement of TRNA Genes. Sci. Rep. 2018, 8, 4486. [Google Scholar] [CrossRef]
- Dömötör, D.; Frank, T.; Rákhely, G.; Doffkay, Z.; Schneider, G.; Kovács, T. Comparative Analysis of Two Bacteriophages of Xanthomonas Arboricola Pv. Juglandis. Infect. Genet. Evol. 2016, 43, 371–377. [Google Scholar] [CrossRef]
- Russo, M.; Le, T.; Moreland, R.; Gonzalez, C.F.; Liu, M.; Ramsey, J. Complete Genome Sequence of Xanthomonas Phage Pagan. Microbiol. Resour. Announc. 2019, 8, e01031-19. [Google Scholar] [CrossRef] [Green Version]
- Ahern, S.J.; Das, M.; Bhowmick, T.S.; Young, R.; Gonzalez, C.F. Characterization of Novel Virulent Broad-Host-Range Phages of Xylella Fastidiosa and Xanthomonas. J. Bacteriol. 2014, 196, 459–471. [Google Scholar] [CrossRef]
- Yeh, T.-Y. XerD-Dependent Integration of a Novel Filamentous Phage Cf2 into the Xanthomonas Citri Genome. Virology 2020, 548, 160–167. [Google Scholar] [CrossRef]
- Sadunishvili, T.; Kvesitadze, E.; Kvesitadze, G. Xanthomonas Vesicatoria Specific Virus and Its Potential to Prevent Tomato Bacterial Spot Disease. In Nanotechnology to Aid Chemical and Biological Defense; Camesano, T.A., Ed.; Springer: Dordrecht, The Netherlands, 2015; pp. 35–47. [Google Scholar]
- Ríos-Sandoval, M.; Quiñones-Aguilar, E.E.; Solís-Sánchez, G.A.; Enríquez-Vara, J.N.; Rincón-Enríquez, G. Complete Genome Sequence of Xanthomonas Vesicatoria Bacteriophage ΦXaF18, a Contribution to the Biocontrol of Bacterial Spot of Pepper in Mexico. Microbiol. Resour. Announc. 2020, 9, e00213-20. [Google Scholar] [CrossRef] [Green Version]
- Stefani, E.; Obradović, A.; Gašić, K.; Altin, I.; Nagy, I.K.; Kovács, T. Bacteriophage-Mediated Control of Phytopathogenic Xanthomonads: A Promising Green Solution for the Future. Microorganisms 2021, 9, 1056. [Google Scholar] [CrossRef]
- Nagai, H.; Miyake, N.; Kato, S.; Maekawa, D.; Inoue, Y.; Takikawa, Y. Improved Control of Black Rot of Broccoli Caused by Xanthomonas Campestris Pv. Campestris Using a Bacteriophage and a Nonpathogenic Xanthomonas Sp. Strain. J. Gen. Plant Pathol. 2017, 83, 373–381. [Google Scholar] [CrossRef]
- Orynbayev, A.T.; Dzhalilov, F.S.U.; Ignatov, A.N. Improved Efficacy of Formulated Bacteriophage in Control of Black Rot Caused by Xanthomonas Campestris Pv. Campestris on Cabbage Seedlings. Arch. Phytopathol. Plant Prot. 2020, 53, 379–394. [Google Scholar] [CrossRef]
- Civerolo, E.L. Relationships of Xanthomonas Pruni Bacteriophages to Bacterial Spot Disease in Prunus. Phytopathology 1970, 63, 1279–1284. [Google Scholar] [CrossRef]
- Ranjani, P.; Gowthami, Y.; Gnanamanickam, S.S.; Palani, P. Bacteriophages: A New Weapon for the Control of Bacterial Blight Disease in Rice Caused by Xanthomonas Oryzae. Microbiol. Biotechnol. Lett. 2018, 46, 346–359. [Google Scholar] [CrossRef]
- Dong, Z.; Xing, S.; Liu, J.; Tang, X.; Ruan, L.; Sun, M.; Tong, Y.; Peng, D. Isolation and Characterization of a Novel Phage Xoo-Sp2 That Infects Xanthomonas Oryzae Pv. Oryzae. J. Gen. Virol. 2018, 99, 1453–1462. [Google Scholar] [CrossRef]
- Nga, N.T.T.; Tran, T.N.; Holtappels, D.; Kim Ngan, N.L.; Hao, N.P.; Vallino, M.; Tien, D.T.K.; Khanh-Pham, N.H.; Lavigne, R.; Kamei, K.; et al. Phage Biocontrol of Bacterial Leaf Blight Disease on Welsh Onion Caused by Xanthomonas Axonopodis Pv. Allii. Antibiotics 2021, 10, 517. [Google Scholar] [CrossRef]
- Ravensdale, M.; Blom, T.J.; Gracia-Garza, J.A.; Svircev, A.M.; Smith, R.J. Bacteriophages and the Control of Erwinia Carotovora Subsp. Carotovora. Can. J. Plant Pathol. 2007, 29, 121–130. [Google Scholar] [CrossRef]
- Korol’, N.A.; Romaniuk, L.V.; Ostapchuk, A.N.; Ivanitsa, T.V.; Kushkina, A.I.; Tovkach, F.I. Peculiarities of morphogenetical development of erwiniophage ZF40 virulent mutants. Mikrobiolohichnyi Zhurnal 2011, 73, 58–64. [Google Scholar]
- Romaniuk, L.V.; Tovkach, F.I.; Ivanitsa, T.V.; Kushkina, A.I.; Ostapchuk, A.N.; Gorb, T.E. Abortive infection in Erwinia carotovora, as a source of nanoparticles of phage nature. Mikrobiolohichnyi Zhurnal 2010, 72, 51–57. [Google Scholar]
- Kim, H.; Kim, M.; Bai, J.; Lim, J.-A.; Heu, S.; Ryu, S. Colanic Acid Is a Novel Phage Receptor of Pectobacterium Carotovorum Subsp. Carotovorum Phage POP72. Front. Microbiol. 2019, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Czajkowski, R.; Ozymko, Z.; de Jager, V.; Siwinska, J.; Smolarska, A.; Ossowicki, A.; Narajczyk, M.; Lojkowska, E. Genomic, Proteomic and Morphological Characterization of Two Novel Broad Host Lytic Bacteriophages ΦPD10.3 and ΦPD23.1 Infecting Pectinolytic Pectobacterium spp. and Dickeya spp. PLoS ONE 2015, 10, e0119812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Shin, H.; Ji, S.; Malhotra, S.; Kumar, M.; Ryu, S.; Heu, S. Complete Genome Sequence of Phytopathogenic Pectobacterium Carotovorum Subsp. Carotovorum Bacteriophage PP1. J. Virol. 2012, 86, 8899–8900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Vu, N.-T.; Oh, E.-J.; Rahimi-Midani, A.; Thi, T.-N.; Song, Y.-R.; Hwang, I.-S.; Choi, T.-J.; Oh, C.-S. Biocontrol of Soft Rot Caused by Pectobacterium Odoriferum with Bacteriophage PhiPccP-1 in Kimchi Cabbage. Microorganisms 2021, 9, 779. [Google Scholar] [CrossRef]
- Hernández-Romano, J.; Mastache-Estrada, L.A.; Molina-Sánchez, D.A.; Serrano-Plancarte, R.; Peña-Barrera, C.; Chávez-Bejar, M.I.; Romero-Martínez, N.; Lecona-Valera, A.N.; Hernández-Romano, J.; Mastache-Estrada, L.A.; et al. Estabilidad y capacidad inhibitoria del bacteriofago ΦRSP, agente potencialpara el biocontrol de Ralstonia solanacearum. Rev. Fitotec. Mex. 2019, 42, 13–19. [Google Scholar]
- Jonit, N.Q. Characterisation of Bacteriophages for Controlling Bacterial Blight Disease in Rice. Master’s Thesis, Universiti Putra Malaysia, Serdang, Malaysia, 2017. [Google Scholar]
- Ahmad, A.A.; Elhalag, K.M.; Addy, H.S.; Nasr-Eldin, M.A.; Hussien, A.S.; Huang, Q. Sequencing, Genome Analysis and Host Range of a Novel Ralstonia Phage, RsoP1EGY, Isolated in Egypt. Arch. Virol. 2018, 163, 2271–2274. [Google Scholar] [CrossRef]
- Effantin, G.; Hamasaki, R.; Kawasaki, T.; Bacia, M.; Moriscot, C.; Weissenhorn, W.; Yamada, T.; Schoehn, G. Cryo-Electron Microscopy Three-Dimensional Structure of the Jumbo Phage ΦRSL1 Infecting the Phytopathogen Ralstonia Solanacearum. Structure 2013, 21, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.Y.; Wu, J.; Lee, H.J.; Jo, E.J.; Murugaiyan, S.; Chung, E.; Lee, S.-W. Biocontrol Potential of a Lytic Bacteriophage PE204 against Bacterial Wilt of Tomato. J. Microbiol. Biotechnol. 2012, 22, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Shimizu, M.; Satsuma, H.; Fujiwara, A.; Fujie, M.; Usami, S.; Yamada, T. Genomic Characterization of Ralstonia Solanacearum Phage ΦRSB1, a T7-Like Wide-Host-Range Phage. J. Bacteriol. 2009, 191, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Umrao, P.D.; Kumar, V.; Kaistha, S.D. Biocontrol Potential of Bacteriophage Φsp1 against Bacterial Wilt-Causing Ralstonia Solanacearum in Solanaceae Crops. Egypt. J. Biol. Pest Control 2021, 31, 61. [Google Scholar] [CrossRef]
- Addy, H.S.; Ahmad, A.A.; Huang, Q. Molecular and Biological Characterization of Ralstonia Phage RsoM1USA, a New Species of P2virus, Isolated in the United States. Front. Microbiol. 2019, 10, 267. [Google Scholar] [CrossRef]
- Lee, S.Y.; Thapa Magar, R.; Kim, H.J.; Choi, K.; Lee, S.-W. Complete Genome Sequence of a Novel Bacteriophage RpY1 Infecting Ralstonia Solanacearum Strains. Curr. Microbiol. 2021, 78, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Lauman, P.; Dennis, J.J. Advances in Phage Therapy: Targeting the Burkholderia Cepacia Complex. Viruses 2021, 13, 1331. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, R.; Miyashita, S.; Ando, S.; Ito, K.; Fukuhara, T.; Kormelink, R.; Takahashi, H. Complete Genomic Sequence of a Novel Phytopathogenic Burkholderia Phage Isolated from Fallen Leaf Compost. Arch. Virol. 2021, 166, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Soleimani-Delfan, A.; Etemadifar, Z.; Emtiazi, G.; Bouzari, M. Isolation of Dickeya Dadantii Strains from Potato Disease and Biocontrol by Their Bacteriophages. Braz. J. Microbiol. 2015, 46, 791–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabanova, A.P.; Shneider, M.M.; Korzhenkov, A.A.; Bugaeva, E.N.; Miroshnikov, K.K.; Zdorovenko, E.L.; Kulikov, E.E.; Toschakov, S.V.; Ignatov, A.N.; Knirel, Y.A.; et al. Host Specificity of the Dickeya Bacteriophage PP35 Is Directed by a Tail Spike Interaction with Bacterial O-Antigen, Enabling the Infection of Alternative Non-Pathogenic Bacterial Host. Front. Microbiol. 2018, 9, 3288. [Google Scholar] [CrossRef] [Green Version]
- Adriaenssens, E.M.; Vaerenbergh, J.V.; Vandenheuvel, D.; Dunon, V.; Ceyssens, P.-J.; Proft, M.D.; Kropinski, A.M.; Noben, J.-P.; Maes, M.; Lavigne, R. T4-Related Bacteriophage LIMEstone Isolates for the Control of Soft Rot on Potato Caused by ‘Dickeya Solani. ’ PLoS ONE 2012, 7, e33227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittmann, J.; Eichenlaub, R.; Dreiseikelmann, B. The Endolysins of Bacteriophages CMP1 and CN77 Are Specific for the Lysis of Clavibacter Michiganensis Strains. Microbiology 2010, 156, 2366–2373. [Google Scholar] [CrossRef]
- Wittmann, J.; Gartemann, K.-H.; Eichenlaub, R.; Dreiseikelmann, B. Genomic and Molecular Analysis of Phage CMP1 from Clavibacter Michiganensis Subspecies Michiganensis. Bacteriophage 2011, 1, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Kimmelshue, C.; Goggi, A.S.; Cademartiri, R. The Use of Biological Seed Coatings Based on Bacteriophages and Polymers against Clavibacter Michiganensis Subsp. Nebraskensis in Maize Seeds. Sci. Rep. 2019, 9, 17950. [Google Scholar] [CrossRef] [Green Version]
- Attai, H.; Brown, P.J.B. Isolation and Characterization T4- and T7-Like Phages That Infect the Bacterial Plant Pathogen Agrobacterium Tumefaciens. Viruses 2019, 11, 528. [Google Scholar] [CrossRef] [Green Version]
- Nittolo, T.; Ravindran, A.; Gonzalez, C.F.; Ramsey, J. Complete Genome Sequence of Agrobacterium Tumefaciens Myophage Milano. Microbiol. Resour. Announc. 2019, 8, e00587-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voronina, M.V.; Bugaeva, E.N.; Vasiliev, D.M.; Kabanova, A.P.; Barannik, A.P.; Shneider, M.M.; Kulikov, E.E.; Korzhenkov, A.A.; Toschakov, S.V.; Ignatov, A.N.; et al. Characterization of Pectobacterium Carotovorum Subsp. Carotovorum Bacteriophage PP16 Prospective for Biocontrol of Potato Soft Rot. Microbiology 2019, 88, 451–460. [Google Scholar] [CrossRef]
- Shneider, M.M.; Lukianova, A.A.; Evseev, P.V.; Shpirt, A.M.; Kabilov, M.R.; Tokmakova, A.D.; Miroshnikov, K.K.; Obraztsova, E.A.; Baturina, O.A.; Shashkov, A.S.; et al. Autographivirinae Bacteriophage Arno 160 Infects Pectobacterium Carotovorum via Depolymerization of the Bacterial O-Polysaccharide. Int. J. Mol. Sci. 2020, 21, 3170. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.S.; Carstens, A.B.; Djurhuus, A.M.; Kot, W.; Neve, H.; Hansen, L.H. Pectobacterium Phage Jarilo Displays Broad Host Range and Represents a Novel Genus of Bacteriophages Within the Family Autographiviridae. Phage 2020, 1, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, A.; Fujisawa, M.; Hamasaki, R.; Kawasaki, T.; Fujie, M.; Yamada, T. Biocontrol of Ralstonia Solanacearum by Treatment with Lytic Bacteriophages. Appl. Environ. Microbiol. 2011, 77, 4155–4162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, A.A.; Addy, H.S.; Huang, Q. Biological and Molecular Characterization of a Jumbo Bacteriophage Infecting Plant Pathogenic Ralstonia Solanacearum Species Complex Strains. Front. Microbiol. 2021, 12, 2762. [Google Scholar] [CrossRef]
- Seed, K.D.; Dennis, J.J. Isolation and Characterization of Bacteriophages of the Burkholderia Cepacia Complex. FEMS Microbiol. Lett. 2005, 251, 273–280. [Google Scholar] [CrossRef]
- Jungkhun, N.; Farias, A.R.G.; Barphagha, I.; Patarapuwadol, S.; Ham, J.H. Isolation and Characterization of Bacteriophages Infecting Burkholderia Glumae, the Major Causal Agent of Bacterial Panicle Blight in Rice. Plant Dis. 2021, 105, 2551–2559. [Google Scholar] [CrossRef]
- Toth, I.K.; van der Wolf, J.M.; Saddler, G.; Lojkowska, E.; Hélias, V.; Pirhonen, M.; Tsror, L.; Elphinstone, J.G. Dickeya Species: An Emerging Problem for Potato Production in Europe. Plant Pathol. 2011, 60, 385–399. [Google Scholar] [CrossRef]
- Coutinho, F.H.; Zaragoza-Solas, A.; López-Pérez, M.; Barylski, J.; Zielezinski, A.; Dutilh, B.E.; Edwards, R.; Rodriguez-Valera, F. RaFAH: Host Prediction for Viruses of Bacteria and Archaea Based on Protein Content. Patterns 2021, 2, 100274. [Google Scholar] [CrossRef]
- Clokie, M.; Kropinski, A. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions; Humana Press: Totowa, NJ, USA, 2009; ISBN 978-1-58829-682-5. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalpando-Aguilar, J.L.; Matos-Pech, G.; López-Rosas, I.; Castelán-Sánchez, H.G.; Alatorre-Cobos, F. Phage Therapy for Crops: Concepts, Experimental and Bioinformatics Approaches to Direct Its Application. Int. J. Mol. Sci. 2023, 24, 325. https://doi.org/10.3390/ijms24010325
Villalpando-Aguilar JL, Matos-Pech G, López-Rosas I, Castelán-Sánchez HG, Alatorre-Cobos F. Phage Therapy for Crops: Concepts, Experimental and Bioinformatics Approaches to Direct Its Application. International Journal of Molecular Sciences. 2023; 24(1):325. https://doi.org/10.3390/ijms24010325
Chicago/Turabian StyleVillalpando-Aguilar, José Luis, Gilberto Matos-Pech, Itzel López-Rosas, Hugo Gildardo Castelán-Sánchez, and Fulgencio Alatorre-Cobos. 2023. "Phage Therapy for Crops: Concepts, Experimental and Bioinformatics Approaches to Direct Its Application" International Journal of Molecular Sciences 24, no. 1: 325. https://doi.org/10.3390/ijms24010325
APA StyleVillalpando-Aguilar, J. L., Matos-Pech, G., López-Rosas, I., Castelán-Sánchez, H. G., & Alatorre-Cobos, F. (2023). Phage Therapy for Crops: Concepts, Experimental and Bioinformatics Approaches to Direct Its Application. International Journal of Molecular Sciences, 24(1), 325. https://doi.org/10.3390/ijms24010325