Sperm Chromatin Condensation Defect Accelerates the Kinetics of Early Embryonic Development but Does Not Modify ICSI Outcome
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. Impact of the Sperm Chromatin Condensation State on the Embryo Morphology and Early Morphokinetic Parameters
3. Discussion
4. Materials and Methods
4.1. Conventional Semen Analysis
4.2. Sperm Chromatin Condensation State
4.3. Sperm DNA Fragmentation
4.4. Ovarian Stimulation and Oocyte Collection
4.5. ICSI Procedure and Embryo Culture
4.6. Outcome
4.7. Data Collection and Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AB | Aniline blue |
AFC | Antral follicle count |
AMH | Anti-Müllerian hormone |
ASCC | Abnormal sperm chromatin condensation |
BMI | Body mass index |
CECOS | Centre d’Etude et de Conservation des Œufs et du Sperme |
D | Day |
DNA | Desoxyribonucleic acid |
E2 | Estradiol |
ECC1 | Duration of the first cell cycle |
ECC2 | Duration of the second cell cycle |
FSH | Follicle-stimulating hormone |
GnRHa | Gonadotropin-releasing hormone agonist |
hCG | Human chorionic gonadotrophin |
HIV | Human immunodeficiency virus |
ICSI | Intracytoplasmic sperm injection |
IMSI | Intracytoplasmic morphologically selected sperm injection |
IVF | In vitro fertilization |
LH | Luteinizing hormone |
n | Population size |
NSCC | Normal sperm chromatin condensation |
PBS | Phosphate-buffered saline |
S2 | Time period to complete synchronous divisions |
SD | Standard deviation |
t2 | Time to two blastomeres |
t3 | Time to three blastomeres |
t4 | Time to four blastomeres |
tPB2 | Time of the second polar body expulsion |
tPNa | Time of pronuclei appearance |
tPNf | Time of pronuclei fading or disappearance |
TUNEL | Terminal deoxynucleotidyl transferase dUTP nick-end labeling |
WHO | World Health Organization |
References
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Nallella, K.P.; Sharma, R.K.; Aziz, N.; Agarwal, A. Significance of Sperm Characteristics in the Evaluation of Male Infertility. Fertil. Steril. 2006, 85, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Perdrix, A.; Travers, A.; Chelli, M.H.; Escalier, D.; Do Rego, J.L.; Milazzo, J.P.; Mousset-Simeon, N.; Mace, B.; Rives, N. Assessment of Acrosome and Nuclear Abnormalities in Human Spermatozoa with Large Vacuoles. Hum. Reprod. 2011, 26, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bichara, C.; Berby, B.; Rives, A.; Jumeau, F.; Letailleur, M.; Setif, V.; Sibert, L.; Rondanino, C.; Rives, N. Sperm Chromatin Condensation Defects, but Neither DNA Fragmentation nor Aneuploidy, Are an Independent Predictor of Clinical Pregnancy after Intracytoplasmic Sperm Injection. J. Assist. Reprod. Genet. 2019, 36, 1387–1399. [Google Scholar] [CrossRef] [PubMed]
- Bernardini, L.M.; Calogero, A.E.; Bottazzi, C.; Lanteri, S.; Venturini, P.L.; Burrello, N.; De Palma, A.; Conte, N.; Ragni, N. Low total normal motile count values are associated with increased sperm disomy and diploidy rates in infertile patients. Int. J. Androl. 2005, 28, 328–336. [Google Scholar] [CrossRef]
- Plastira, K.; Angelopoulou, R.; Mantas, D.; Msaouel, P.; Lyrakou, S.; Plastiras, A.; Bolaris, S.; Baka, S.; Paparisteidis, N. The effects of age on the incidence of aneuploidy rates in spermatozoa of oligoasthenozoospermic patients and its relationship with ICSI outcome. Int. J. Androl. 2007, 30, 65–72. [Google Scholar] [CrossRef]
- Simon, L.; Murphy, K.; Shamsi, M.B.; Liu, L.; Emery, B.; Aston, K.I.; Hotaling, J.; Carrell, D.T. Paternal influence of sperm DNA integrity on early embryonic development. Hum. Reprod. 2014, 29, 2402–2412. [Google Scholar] [CrossRef] [Green Version]
- Asmarinah, S.A.; Umar, L.A.; Lestari, S.W.; Mansyur, E.; Hestiantoro, A.; Paradowszka-Dogan, A. Sperm chromatin maturity and integrity correlated to zygote development in ICSI program. Syst. Biol. Reprod. Med. 2016, 62, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.H.; Kuo-Kuang Lee, R.; Li, S.H.; Lu, C.H.; Sun, F.J.; Hwu, Y.M. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil. Steril. 2008, 90, 352–359. [Google Scholar] [CrossRef]
- Irez, T.; Sahmay, S.; Ocal, P.; Goymen, A.; Senol, H.; Erol, N.; Kaleli, S.; Guralp, O. Investigation of the association between the outcomes of sperm chromatin condensation and decondensation tests, and assisted reproduction techniques. Andrologia 2015, 47, 438–447. [Google Scholar] [CrossRef]
- Sacha, C.R.; Dimitriadis, I.; Christou, G.; James, K.; Brock, M.L.; Rice, S.T.; Bhowmick, P.; Bormann, C.L.; Souter, I. The impact of male factor infertility on early and late morphokinetic parameters: A retrospective analysis of 4126 time-lapse monitored embryos. Hum. Reprod. 2020, 35, 24–31. [Google Scholar] [CrossRef]
- Neyer, A.; Zintz, M.; Stecher, A.; Bach, M.; Wirleitner, B.; Zech, N.H.; Vanderzwalmen, P. The impact of paternal factors on cleavage stage and blastocyst development analyzed by time-lapse imaging-a retrospective observational study. J. Assist. Reprod. Genet. 2015, 32, 1607–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knez, K.; Tomazevic, T.; Vrtacnik-Bokal, E.; Virant-Klun, I. Developmental dynamics of IMSI-derived embryos: A time-lapse prospective study. Reprod. Biomed. Online 2013, 27, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wdowiak, A.; Bakalczuk, S.; Bakalczuk, G. The effect of sperm DNA fragmentation on the dynamics of the embryonic development in intracytoplasmatic sperm injection. Reprod. Biol. 2015, 15, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Mangoli, E.; Khalili, M.A.; Talebi, A.R.; Ghasemi-Esmailabad, S.; Hosseini, A. Is there any correlation between sperm parameters and chromatin quality with embryo morphokinetics in patients with male infertility? Andrologia 2018, 50, e12997. [Google Scholar] [CrossRef] [PubMed]
- Barrie, A.; Homburg, R.; McDowell, G.; Brown, J.; Kingsland, C.; Troup, S. Examining the efficacy of six published time-lapse imaging embryo selection algorithms to predict implantation to demonstrate the need for the development of specific, in-house morphokinetic selection algorithms. Fertil. Steril. 2017, 107, 613–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, R.D.; Remohí, J.; Meseguer, M. Time-lapse imaging: The state of the art†. Biol. Reprod. 2019, 101, 1146–1154. [Google Scholar] [CrossRef]
- Apter, S.; Ebner, T.; Freour, T.; Guns, Y.; Kovacic, B.; Le Clef, N.; Marques, M.; Meseguer, M.; Montjean, D.; Sfontouris, I.; et al. Good practice recommendations for the use of time-lapse technology. Hum. Reprod. Open 2020, 2020, hoaa008. [Google Scholar] [CrossRef]
- Fréour, T.; Le Fleuter, N.; Lammers, J.; Splingart, C.; Reignier, A.; Barrière, P. External validation of a time-lapse prediction model. Fertil. Steril. 2015, 103, 917–922. [Google Scholar] [CrossRef]
- Miller, D.; Brinkworth, M.; Iles, D. Paternal DNA packaging in spermatozoa: More than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 2010, 139, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Aitken, R.J.; De Iuliis, G.N.; McLachlan, R.I. Biological and clinical significance of DNA damage in the male germ line. Int. J. Androl. 2009, 32, 46–56. [Google Scholar] [CrossRef]
- Chamayou, S.; Patrizio, P.; Storaci, G.; Tomaselli, V.; Alecci, C.; Ragolia, C.; Crescenzo, C.; Guglielmino, A. The use of morphokinetic parameters to select all embryos with full capacity to implant. J. Assist. Reprod. Genet. 2013, 30, 703–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkegaard, K.; Kesmodel, U.S.; Hindkjær, J.J.; Ingerslev, H.J. Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: A prospective cohort study. Hum. Reprod. 2013, 28, 2643–2651. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, J.; Motato, Y.; Escribá, M.J.; Ojeda, M.; Muñoz, E.; Meseguer, M. The human first cell cycle: Impact on implantation. Reprod. Biomed. Online 2014, 28, 475–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Han, W.; Wang, J.; Zhang, X.; Liu, W.; Xiong, S.; Han, S.; Liu, J.; Gao, Y.; Huang, G. Embryo culture using a time-lapse monitoring system improves live birth rates compared with a conventional culture system: A prospective cohort study. Hum. Fertil. 2018, 21, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Azzarello, A.; Hoest, T.; Mikkelsen, A.L. The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse culture. Hum. Reprod. 2012, 27, 2649–2657. [Google Scholar] [CrossRef] [Green Version]
- Scarselli, F.; Casciani, V.; Cursio, E.; Muzzì, S.; Colasante, A.; Gatti, S.; Greco, M.C.; Greco, P.; Minasi, M.G.; Greco, E. Influence of human sperm origin, testicular or ejaculated, on embryo morphokinetic development. Andrologia 2018, 50, e13061. [Google Scholar] [CrossRef]
- Georgadaki, K.; Khoury, N.; Spandidos, D.A.; Zoumpourlis, V. The molecular basis of fertilization. Int. J. Mol. Med. 2016, 38, 979–986. [Google Scholar] [CrossRef] [Green Version]
- Lord, T.; Aitken, R.J. Fertilization stimulates 8-hydroxy-2′-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo. Dev. Biol. 2015, 406, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, I.; Syrrou, M.; Pardalidis, N.; Karakitsios, K.; Mantzavinos, T.; Giotitsas, N.; Loutradis, D.; Dimitriadis, F.; Saito, M.; Miyagawa, I.; et al. Genetic and epigenetic risks of intracytoplasmic sperm injection method. Asian J. Androl. 2006, 8, 643–673. [Google Scholar] [CrossRef]
- Schmid, T.E.; Eskenazi, B.; Baumgartner, A.; Marchetti, F.; Young, S.; Weldon, R.; Anderson, D.; Wyrobek, A.J. The effects of male age on sperm DNA damage in healthy non-smokers. Hum. Reprod. 2007, 22, 180–187. [Google Scholar] [CrossRef]
- Aitken, R.J. Role of sperm DNA damage in creating de-novo mutations in human offspring: The post-meiotic oocyte collusion hypothesis. Reprod. Biomed. Online 2022, 45, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Mizobe, Y.; Oya, N.; Iwakiri, R.; Yoshida, N.; Sato, Y.; Miyoshi, K.; Tokunaga, M.; Ezono, Y. Effects of early cleavage patterns of human embryos on subsequent in vitro development and implantation. Fertil. Steril. 2016, 106, 348–353.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizobe, Y.; Tokunaga, M.; Oya, N.; Iwakiri, R.; Yoshida, N.; Sato, Y.; Onoue, N.; Ezono, Y. Synchrony of the first division as an index of the blastocyst formation rate during embryonic development. Reprod. Med. Biol. 2017, 17, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coticchio, G.; Mignini Renzini, M.; Novara, P.V.; Lain, M.; De Ponti, E.; Turchi, D.; Fadini, R.; Dal Canto, M. Focused time-lapse analysis reveals novel aspects of human fertilization and suggests new parameters of embryo viability. Hum. Reprod. 2018, 33, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Bruno, C.; Basile, U.; Vergani, E.; Napodano, C.; Oliva, A.; Gulli, F.; Meucci, E.; Silvestrini, A.; Orlando, P.; Silvestri, S.; et al. Inflammation and Oxidative Stress in Seminal Plasma: Search for Biomarkers in Diagnostic Approach to Male Infertility. J. Pers. Med. 2022, 12, 857. [Google Scholar] [CrossRef] [PubMed]
- Bodri, D.; Sugimoto, T.; Serna, J.Y.; Kondo, M.; Kato, R.; Kawachiya, S.; Matsumoto, T. Influence of different oocyte insemination techniques on early and late morphokinetic parameters: Retrospective analysis of 500 time-lapse monitored blastocysts. Fertil. Steril. 2015, 104, 1175–1181.e1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardarson, T.; Bungum, M.; Conaghan, J.; Meintjes, M.; Chantilis, S.J.; Molnar, L.; Gunnarsson, K.; Wikland, M. Noninferiority, randomized, controlled trial comparing embryo development using media developed for sequential or undisturbed culture in a time-lapse setup. Fertil. Steril. 2015, 104, 1452–1459.e1–4. [Google Scholar] [CrossRef] [Green Version]
- Schiewe, M.C.; Whitney, J.B.; Nugent, N.; Zozula, S.; Anderson, R.E. Human Blastocyst Development: A Randomized Comparison of Sibling Zygotes Cultured in Vitrolife G-TLTM to Life Global® Single-Step Media. J. Pregnancy Reprod. 2018, 2. [Google Scholar] [CrossRef]
- Kirkegaard, K.; Hindkjaer, J.J.; Ingerslev, H.J. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil. Steril. 2013, 99, 738–744.e4. [Google Scholar] [CrossRef]
- Esbert, M.; Pacheco, A.; Soares, S.R.; Amorós, D.; Florensa, M.; Ballesteros, A.; Meseguer, M. High sperm DNA fragmentation delays human embryo kinetics when oocytes from young and healthy donors are microinjected. Andrology 2018, 6, 697–706. [Google Scholar] [CrossRef]
- Auger, J.; Eustache, F.; Andersen, A.G.; Irvine, D.S.; Jorgensen, N.; Skakkebaek, N.E.; Suominen, J.; Toppari, J.; Vierula, M.; Jouannet, P. Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities. Hum. Reprod. 2001, 16, 2710–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franken, D.R.; Franken, C.J.; de La Guerre, H.; de Villiers, A. Normal sperm morphology and chromatin packaging: Comparison between aniline blue and chromomycin A3 staining. Andrologia 1999, 31, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Balaban, B.; Brison, D.; Calderon, G.; Catt, J.; Conaghan, J.; Cowan, L.; Ebner, T.; Gardner, D.; Hardarson, T.; Lundin, K.; et al. The Istanbul Consensus Workshop on Embryo Assessment: Proceedings of an Expert Meeting. Hum. Reprod. 2011, 26, 1270–1283. [Google Scholar] [CrossRef] [Green Version]
- Ciray, H.N.; ACampbell IEAgerholm Aguilar, J.; Chamayou, S.; Esbert, M.; Sayed, S. The Time-Lapse User Group. Proposed Guidelines on the Nomenclature and Annotation of Dynamic Human Embryo Monitoring by a Time-Lapse User Group. Hum. Reprod. 2014, 29, 2650–2660. [Google Scholar] [CrossRef] [PubMed]
Live Birth | |||||||
---|---|---|---|---|---|---|---|
Characteristics | Couples n = 157 Mean ± SD or % | Yes n = 57 Mean ± SD or % | No n = 100 Mean ± SD or % | p | NSCC n = 136 Mean ± SD or % | ASCC n = 21 Mean ± SD or % | p |
Women | |||||||
Delay of infertility (years) | 4.2 ± 2.4 | 5.1 ± 3.2 | 0.06 | 4.6 ± 2.9 | 5.9 ± 3.4 | 0.1 | |
Age (years) | 33.7 ± 4.9 | 33 ± 4.6 | 34.1 ± 5 | 0.2 | 33.4 ± 4.6 | 35.1 ± 6 | 0.2 |
BMI (kg/m2) | 24.1 ± 4.3 | 23.2 ± 4.2 | 24.7 ± 4.3 | 0.04 | 24.3 ± 4.3 | 23.1 ± 4.8 | 0.2 |
Basal serum FSH (UI/L) | 6.6 ± 1.7 | 6.4 ± 1.6 | 6.7 ± 1.7 | 0.2 | 6.6 ± 1.7 | 7 ± 1.8 | 0.2 |
Basal serum LH (UI/L) | 5.2 ± 2.4 | 5.1 ± 2.1 | 5.3 ± 2.6 | 0.6 | 5.3 ± 2.5 | 4.8 ± 2.1 | 0.4 |
AMH (ng/mL) | 4.7 ± 4.1 | 5.6 ± 5.1 | 4.1 ± 3.3 | 0.02 | 4.9 ± 4.4 | 3.3 ± 1.9 | 0.1 |
Basal serum 17β-E2 (pg/mL) | 42.2 ± 20.3 | 44.4 ± 24.2 | 40.8 ± 17.6 | 0.3 | 42.6 ± 21.1 | 40.4 ± 15.1 | 0.6 |
Men | |||||||
Age (years) | 36.1 ± 5.9 | 35.5 ± 5.6 | 36.5 ± 6.1 | 0.3 | 35.9 ± 5.8 | 37.5 ± 6.5 | 0.2 |
BMI (kg/m2) | 25.2 ± 4.7 | 24.3 ± 3.7 | 25.7 ± 5.2 | 0.1 | 25.3 ± 4.8 | 23.9 ± 3.5 | 0.3 |
Concentration (×106/mL) | 15.2 ± 20.2 | 14.7 ± 22.6 | 15.6 ± 18.7 | 0.8 | 15.6 ± 21.3 | 13 ± 11.1 | 0.7 |
Total sperm number (×106/ejaculate) | 50.2 ± 67.4 | 45 ± 71 | 49.4 ± 64.3 | 0.7 | 51.8 ± 7 | 40.3 ± 38.9 | 0.97 |
Sperm progressive motility (a + b, %) | 26.4 ± 10.3 | 25.3 ±9.6 | 27.1 ±10.6 | 0.3 | 27 ± 9.7 | 22.5 ± 12.9 | 0.05 |
Normal sperm morphology (%) | 26.8 ± 17.5 | 25 ± 18.6 | 28.1 ± 16.8 | 0.4 | 25.9 ± 17.7 | 31.7 ± 15.1 | 0.1 |
Abnormal chromatin condensation (%) | 11.4 ± 7.3 | 11.8 ± 7.5 | 11.1 ± 7.2 | 0.5 | 9.1 ± 4.3 | 26.2 ± 4.7 | <0.0001 |
DNA fragmentation (%) | 7.9 ± 6.9 | 7.3 ± 6.2 | 8.2 ± 7.3 | 0.4 | 8.4 ± 10.4 | 9 ± 8.6 | 0.4 |
Live Birth | |||||||
---|---|---|---|---|---|---|---|
Parameters | Couples n = 157 Mean ± SD or % | Yes n = 57 Mean ± SD or % | No n = 100 Mean ± SD or % | p | NSCC n = 136 Mean ± SD or % | ASCC n = 21 Mean ± SD or % | p |
Rank of ICSI cycle | 1.6 ± 1.1 | 1.4 ± 0.9 | 1.7 ± 1.2 | 0.08 | 1.6 ± 1 | 1.8 ± 1.3 | 0.9 |
Total FSH administered doses (UI) | 2109 ±1094 | 1832 ± 820 | 2284 ± 1208 | 0.01 | 2124 ± 1119 | 2009 ± 851.8 | 0.9 |
17β-E2 of hCG day (pg/mL) | 2031 ± 803 | 1988 ± 788 | 2059 ± 815 | 0.6 | 2050 ± 837.6 | 1858 ± 509 | 0.3 |
Number of collected oocytes | 11 ± 6.1 | 11.7 ± 6.1 | 10.5 ± 6.1 | 0.2 | 11.1 ± 6.3 | 9.6 ± 4.4 | 0.3 |
Number of injected oocytes | 7.8 ± 4.6 | 8.2 ± 4.5 | 7.6 ± 4.6 | 0.4 | 7.9 ± 4.7 | 7 ± 3.6 | 0.5 |
Fertilization rate (%) | 58.5 ±24.6 | 59.6 ± 23.9 | 57.8 ± 25.1 | 0.6 | 58 ± 24 | 57 ± 26 | 0.6 |
Number of embryos | 4.4 ± 3.2 | 4.5 ± 3.1 | 4.3 ± 3.3 | 0.7 | 4.5 ± 3.2 | 3.7 ± 3 | 0.2 |
“Top”-quality embryos (%) | 30.1 (205/681) | 23.1 (64/276) | 34.8 (141/405) | 0.62 | 28.8 (174/603) | 39.7 (31/78) | 0.3 |
Number of transferred embryos per cycle | 1.5 ± 0.6 | 1.6 ± 0.5 | 1.4 ± 0.6 | 0.02 | 1.5 ± 0.6 | 1.5 ± 0.6 | 0.9 |
Number of frozen embryos per cycle | 1.55 ± 2.13 | 1.39 ± 1.89 | 1.65 ± 2.28 | 0.7 | 1.6 ± 2.2 | 1 ± 1.3 | 0.4 |
Number of usable embryos per cycle | 3.05 ± 2.16 | 3.03 ± 1.94 | 3.06 ± 2.3 | 0.6 | 3.12 ± 2.26 | 2.57 ± 1.24 | 0.4 |
Number of discarded embryos per cycle | 1.28 ± 1.81 | 1.49 ± 1.98 | 1.15 ± 1.68 | 0.1 | 1.3 ± 1.73 | 1.14 ± 2.28 | 0.1 |
Biochemical pregnancy rate (%) | 49.6 (74/157) | - | - | - | 46.3 (63/136) | 52.4 (11/21) | 0.5 |
Clinical pregnancy rate (%) | 39.4 (62/157) | - | - | - | 37.5 (51/136) | 52.4 (11/21) | 0.2 |
Clinical pregnancy loss (%) | 10.8 (17/157) | - | - | - | 11.8 (16/136) | 4.7 (1/21) | 0.9 |
Implantation rate (%) | 26.3 (62/235) | - | - | - | 24.1 (49/203) | 40.6 (13/32) | 0.2 |
Live birth (%) | 36.3 (57/157) | - | - | - | 33.8 (47/136) | 47.6 (10/21) | 0.2 |
Parameters (Hours) | Total Cohort (n = 681 Embryos) | Live Birth | p | NSCC (n = 603) | ASCC (n = 78) | p | |
---|---|---|---|---|---|---|---|
Yes (n = 276) | No (n = 405) | ||||||
tPB2 | 3.3 [2.8; 3.9] | 3 [3; 4] | 3 [3; 4] | 0.86 | 3.3 [2.8; 4] | 3.3 [2.9; 3.6] | 0.5 |
tPNa | 7.2 [6.3; 8.2] | 7.2 [6.4; 8.1] | 7.3 [6.3; 17.2] | 0.86 | 7.3 [6.3; 8.3] | 6.8 [6.4; 7.6] | 0.2 |
tPNf | 23.6 [22.2; 25.3] | 23.6 [22.2; 25.7] | 23.6 [22.1; 25.3] | 0.89 | 23.8 [22.4; 25.6] | 22.6 [21.3; 23.7] | 0.03 |
t2 | 26.2 [24.8; 28.1] | 26.6 [24.6; 25] | 26.1 [25; 27.8] | 0.63 | 26.6 [25.2; 28.3] | 25.3 [23.8; 26.5] | 0.02 |
t3 | 36.7 [34.5; 39.2] | 36.78 [34.4; 39] | 36.72 [34.5; 39.3] | 0.80 | 36.9 [34.5; 39.4] | 35.3 [33.7; 36.8] | 0.08 |
t4 | 38.2 [34.5; 39.2] | 38.1 [35.6; 40.1] | 38.2 [35.9; 40.4] | 0.79 | 38.4 [36; 40.5] | 36.2 [25.5; 38.1] | 0.05 |
ECC1 | 22.8 [21.4; 24.3] | 23 [21.2; 24.7] | 22.7 [21.4; 24] | 0.65 | 23.5 [21.5; 24.3] | 22.2 [20.5; 22.8] | 0.02 |
ECC2 | 11.7 [10.7; 12.9] | 11.69 [10.8; 12.8] | 11.8 [10.7; 23.2] | 0.69 | 11.2 [1.7; 12.9] | 11.7 [11.6; 12.4] | 0.6 |
S2 | 1.2 [0.6; 2.5] | 1.08 [0.6; 2.2] | 1.24 [0.63; 2.8] | 0.44 | 2.5 [0.6; 2.7] | 1.8 [0.7; 1.2] | 0.5 |
S-phase length | 16.4 [15; 18] | 16.32 [15; 18.51] | 16.39 [15; 17.9] | 0.82 | 16.8 [15.1; 18] | 16.1 [14.4; 16.8] | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jumeau, F.; Rives, N.; Lechevallier, P.; Boniou, C.; Letailleur, M.; Réal-Lhommet, A.; Feraille, A. Sperm Chromatin Condensation Defect Accelerates the Kinetics of Early Embryonic Development but Does Not Modify ICSI Outcome. Int. J. Mol. Sci. 2023, 24, 393. https://doi.org/10.3390/ijms24010393
Jumeau F, Rives N, Lechevallier P, Boniou C, Letailleur M, Réal-Lhommet A, Feraille A. Sperm Chromatin Condensation Defect Accelerates the Kinetics of Early Embryonic Development but Does Not Modify ICSI Outcome. International Journal of Molecular Sciences. 2023; 24(1):393. https://doi.org/10.3390/ijms24010393
Chicago/Turabian StyleJumeau, Fanny, Nathalie Rives, Pauline Lechevallier, Coline Boniou, Maria Letailleur, Audrey Réal-Lhommet, and Aurélie Feraille. 2023. "Sperm Chromatin Condensation Defect Accelerates the Kinetics of Early Embryonic Development but Does Not Modify ICSI Outcome" International Journal of Molecular Sciences 24, no. 1: 393. https://doi.org/10.3390/ijms24010393
APA StyleJumeau, F., Rives, N., Lechevallier, P., Boniou, C., Letailleur, M., Réal-Lhommet, A., & Feraille, A. (2023). Sperm Chromatin Condensation Defect Accelerates the Kinetics of Early Embryonic Development but Does Not Modify ICSI Outcome. International Journal of Molecular Sciences, 24(1), 393. https://doi.org/10.3390/ijms24010393