Diet and Proteinuria: State of Art
Abstract
:1. Introduction
2. Low Protein Diet (LPD) and CKD Progression
3. LPD and Proteinuria
4. Safety of Protein Restriction
5. Vegetarian Diet, CKD and Proteinuria
6. LPD and Keto Analogues
7. Diabetes Mellitus
8. New Approaches
9. Dysbiosis and the Immune System
10. Dietary Style, Macro- and Micro-Nutrients
10.1. Alkali, and Vitamin K
10.2. Phosphorus
10.3. Sodium Intake
10.4. Potassium Intake
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Search Criteria
References
- Remuzzi, G.; Bertani, T. Pathophysiology of progressive nephropathies. N. Engl. J. Med. 1998, 339, 1448–1456. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, B.; Sblendorio, V. Oxidative stress detection: What for? Eur. Rev. Med. Pharmacol. Sci. 2007, 11, 27–54. [Google Scholar] [PubMed]
- Ghodake, S.; Suryakar, A.; Ankush, R.D.; Katkam, R.V.; Shaikh, K.; Katta, A.V. Role of free radicals and antioxidant status in childhod nephrotic syndrome. Indian J. Nephrol. 2011, 21, 37–40. [Google Scholar] [CrossRef]
- Eddy, A.A. Protein restriction reduces transforming growth factor-beta and interstitial fibrosis in nephrotic syndrome. Am. J. Physiol. 1994, 266, F884–F893. [Google Scholar] [CrossRef] [PubMed]
- Kontessis, P.; Jones, S.; Dodds, R.; Trevisan, R.; Nosadini, R.; Fioretto, P.; Borsato, M.; Sacerdoti, D.; Viberti, G. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 1990, 38, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cupisti, A.; Avesani, C.M.; D’Alessandro, C.; Garibotto, G. Nutritional management of kidney diseases: An unmet need in patient care. J. Nephrol. 2020, 33, 895–897. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. 1), S1–S107. [Google Scholar] [CrossRef]
- Cupisti, A.; Giannese, D.; Moriconi, D.; D'Alessandro, C.; Torreggiani, M.; Piccoli, G.B. Nephroprotection by SGLT2i in CKD Patients: May It Be Modulated by Low-Protein Plant-Based Diets? Front. Med. 2020, 7. [Google Scholar] [CrossRef]
- De Nicola, L.; Gabbai, F.B.; Garofalo, C.; Conte, G.; Minutolo, R. Nephroprotection by SGLT2 Inhibition: Back to the Future? J. Clin. Med. 2020, 9, 2243. [Google Scholar] [CrossRef]
- Koppe, L.; Fouque, D. The Role for Protein Restriction in Addition to Renin-Angiotensin-Aldosterone System Inhibitors in the Management of CKD. Am. J. Kidney Dis. 2019, 73, 248–257. [Google Scholar] [CrossRef]
- Kitada, M.; Ogura, Y.; Suzuki, T.; Sen, S.; Lee, S.M.; Kanasaki, K.; Kume, S.; Koya, D. A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia 2016, 59, 1307–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroni, B.J.; Staffeld, C.; Young, V.R.; Manatunga, A.; Tom, K. Mechanism permitting nephrotic patients to achieve nitrose equilibrium with a protein-restricted diet. J. Clin. Investig. 1997, 99, 2479–2487. [Google Scholar] [CrossRef]
- Giordano, M.; De Feo, P.; Lucidi, P.; Depascale, E.; Giordano, G.; Cirillo, D.; Dardo, G.; Signorelli, S.S.; Castellino, P. Effects of dietary protein restriction on fibrinogen and albumin metabolism in nephrotic patients. Kidney Int. 2001, 60, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffeis, C.; Pinelli, L. Teaching children with diabetes about adequate dietary choices. Br. J. Nutr. 2008, 99, S33–S39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Key, T.J.; Fraser, G.E.; Thorogood, M.; Appleby, P.N.; Beral, V.; Reeves, G.; Burr, M.L.; Chang-Claude, J.; Frentzel-Beyme, R.; Kuzma, J.W.; et al. Mortality in vegetarians and nonvegetarians: Detailed findings from a collaborative analysis of 5 prospective studies. Am. J. Clin. Nutr. 1999, 70, 516s–524s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, B.M.; Meyer, T.W.; Hostetter, T.H. Dietary protein intake and the progressive nature of kidney disease: The role of hemodinamically mediated glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Eng. J. Med. 1982, 307, 652–659. [Google Scholar]
- El-Nahas, A.M.; Paraskevakou, H.; Zoob, S.; Rees, A.J.; Evans, D.J. Effect of dietary protein restriction on the development of renal failure after subtotal nephrectomy in rats. Clin. Sci. 1983, 65, 399–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, H.; Zhou, P.; Xu, Z.; Liu, L.; Zong, A.; Qiu, B.; Liu, W.; Jia, M.; Du, F.; Xu, T. Effect of low-protein diet on kidney function and nutrition in nephropathy: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2020, 39, 2675–2685. [Google Scholar] [CrossRef]
- Chauveau, P.; Combe, C.; Rigalleau, V.; Vendrely, B.; Aparicio, M. Restricted protein dieti s associated with decrease in proteinuria: Consequences on the progression of renal failure. J. Ren. Nutr. 2007, 17, 250–257. [Google Scholar] [CrossRef]
- Li, H.; Long, Q.; Shao, C.; Fan, H.; Yuan, L.; Huang, B.; Gu, Y.; Lin, S.; Hao, C.; Chen, J. Effect of short-term low-protein diet supplemented with keto acids on hyperphosphatemia in maintenance hemodialysis patients. Blood Purif. 2011, 31, 33–40. [Google Scholar] [CrossRef]
- Mou, S.; Li, J.; Yu, Z.; Ni, Z. Keto acid-supplemented low-protein diet for treatment of adult patients with hepatitis B virus infection and chronic glomerulonephritis. J. Int. Med. Res. 2013, 41, 129–137. [Google Scholar] [CrossRef]
- Rhee, C.M.; Ahmadi, S.-F.; Kovesdy, C.P.; Kalantar-Zadeh, K. Low protein diet for conservative management of chronic kidney disease: A systematic review and metanalysis of controller trials. J. Cachexia Sarcopenia Muscle 2018, 9, 235–245. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F. Moderator’s view: Low-protein diet in chronic kidney disease: Effectiveness, efficacy and precision nutritional treatment in nephrology. Nephrol. Dial. Transplant. 2018, 33, 287–391. [Google Scholar] [CrossRef] [Green Version]
- Di Micco, L.; Di Lullo, L.; Bellasi, A.; Di Iorio, B.R. Very low protein diet for patients with chronic kidney disease: Recent insights. J. Clin. Med. 2019, 8, 718. [Google Scholar] [CrossRef] [Green Version]
- Bellizzi, V.; Calella, P.; Hernàndez, J.N.; Figueroa González, V.; Moran Lira, S.; Torraca, S. Safety and effectiveness of low-protein diet supplemented with ketoacids in diabetic patients wih chronic kidney disease. BMC Nephrol. 2018, 19, 110. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Kopple, J.D.; Wang, X.; Beck, G.J.; Collins, A.J.; Kusek, J.W.; Greene, T.; Levey, A.S.; Sarnak, M.J. Effect of a very low-protein diet on outcomes: Long-term follow-up of the modification of diet in renal disease (MDRD) study. Am. J. Kidney Dis. 2009, 53, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellizzi, V.; De Nicola, L.; Di Iorio, B. Restriction of dietary protein and long-term outcomes in patients with CKD. Am. J. Kidney Dis. 2009, 54, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, V.; Chiodini, P.; Cupisti, A.; Viola, B.F.; Pezzotta, M.; De Nicola, L.; Minutolo, R.; Barsotti, G.; Piccoli, G.B.; Di Iorio, B. Very low-protein plus ketoacids in chronic kidney disease and risk of death during end-stage renal disease: A historical cohort controlled study. Nephrol. Dial. Transplant. 2015, 30, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lew, Q.J.; Jafar, T.H.; Koh, H.W.; Jin, A.; Yew Chow, K.; Yuan, J.M.; Koh, W.P. Red meat intake and risk of ESRD. J. Am. Soc. Nephrol. 2016, 28, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Barsotti, G.; Morelli, E.; Cupisti, A.; Meola, M.; Dani, L.; Giovannetti, S. A low-nitrogen low-phosphorous vegan diet for patients with chronic renal failure. Nephron 1996, 74, 390–394. [Google Scholar] [CrossRef]
- Liu, H.W.; Tsai, W.H.; Liu, J.S.; Kuo, K.L. Association of vegetarian diet with chronic kidney disease. Nutrients 2019, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Liu, J.; Su, J.; Tian, F. The effects of soy protein on chronic kidney disease: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2014, 68, 987–993. [Google Scholar] [CrossRef] [PubMed]
- D’amico, G.; Gentile, M.G. Effect of dietry manipulation on the lipid abnormalities and urinary protein loss in nephrotic patients. Miner. Electolyte Metab. 1992, 18, 203–206. [Google Scholar]
- Soroka, N.; Silvenberg, D.S.; Greemland, M.; Birk, Y.; Blum, M.; Peer, G.; Laina, A. Comparison of a vegetable-based (soya) and a animal-based low-protein diet in predialysis chronic renal failure patients. Nephron 1998, 79, 173–180. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Calabria, A.C.; Kirsztajn, G.M. Short-term effects of soy protein diet in patients with proteinuric glomerulopathies. J. Bras. Nefrol. 2011, 33, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.W.; Blake, J.E.; Turner, J.; Smith, B.M. Effect of soy protein on renal function and proteinuria in patients with type 2 diabetes. Am. J. Clin. Nutr. 1998, 68, 1347–1353. [Google Scholar] [CrossRef] [Green Version]
- Texeira, S.R.; Tappenden, K.A.; Carson, L.; Jones, R.; Prabhudesai, M.; Marshall, W.P.; Erdman, J.W., Jr. Isolated soy protein consumption reduces urinary albumin excretion and improves the serum lipid profile in men with type 2 diabetes mellitus and nephropathy. J. Nutr. 2004, 134, 1874–1880. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Wu, J.; Dong, Z.; Hu, H.; Mei, C. A low-protein diet supplemented with ketoacids plays a more protective role against oxidative stress of rat kidney tissue with 5/6 nephrectomy than a low-protein diet alone. Br. J. Nutr. 2010, 103, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Kasiske, B.L.; Lakatua, J.D.; Ma, J.Z.; Louis, T.A. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am. J. Kidney Dis. 1998, 31, 954–961. [Google Scholar] [CrossRef]
- Brenner, B.M. Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int. 1983, 23, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Li, X.F.; Xu, J.; Liu, L.J.; Wang, F.; He, S.L.; Su, Y.; Dong, C.P. Efficacy of low-protein diet in diabetic nephropathy: A meta analysis of randomized controlled trials. Lipids Health Dis. 2019, 18, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.-G.; Jiang, Z.-S.; Gong, P.-Y.; Zhang, D.-M.; Zou, Z.-W.; Zhang, Q.; Ma, H.-M.; Guo, Z.-G.; Zhao, J.-Y.; Dong, J.-J.; et al. Efficacy of low-protein diet for diabetic nephropathy: A systematic review of randomized controlled trials. Lipids Health Dis. 2018, 17, 141. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Weiss, E.P.; Villareal, D.T.; Klein, S.; Holloszy, J.O. Longterm effects of calorie and protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 2008, 7, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedrini, M.T.; Levey, A.S.; Lau, J.; Chalmers, T.C.; Wang, P.H. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal disease: Meta-analysis. Ann. Intern. Med. 1996, 124, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.P.; Tauber-Lassen, E.; Jensen, B.R.; Parving, H.H. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002, 62, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mello, V.D.F.; Zelmanovitz, T.; Perassolo, M.S.; Azevedo, M.J.; Gross, J.L. Withdrawal of red meat from the usual diet reduces albuminuria and improves serum fatty acid profile in tyoe 2 diabetes patients with macroalbuminuria. Am. J. Clin. Nutr. 2006, 83, 1032–1038. [Google Scholar] [CrossRef] [Green Version]
- Perassolo, M.S.; Almeida, J.C.; Prá, R.L.; Mello, V.D.; Maia, A.L.; Moulin, C.C.; Camargo, J.L.; Zelmanovitz, T.; Azevedo, M.J.; Gross, J.L. Fatty acid composition of serum lipid fractions in type 2 diabetic patients with microalbuminuria. Diabetes Care 2002, 26, 613–618. [Google Scholar] [CrossRef] [Green Version]
- Hostetter, T.H. Prevention of the development and progression of renal disease. J. Am. Soc. Nephrol. 2003, 14 (Suppl. 2), S144–S147. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Standards of medical care in diabetes (Position Statement). Diabetes Care 2005, 28, S4–S36. [Google Scholar] [CrossRef] [Green Version]
- National Kidney Foundation—K/DOQI. Clinical practice guidelines for chronic kidney disease: Evaluation, classification and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266. [Google Scholar]
- Rossert, J.; Fouqueray, B. Screening and management of patients with early chronic kidney disease. Acta Diabetol. 2004, 41, S6–S12. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, Z.; Liu, J.; Liu, J.; Li, X.; Chen, L.; Weng, J.; Yu, Z. Curcumin Attenuates urinary excretion of Albumin in type II Diabetic Patinets with enhancing nuclear factor erythroid-derived 2-like2 (Nrf2) system and repressing inflammatory signaling efficacies. Exp. Clin. Endocrinol. Diabetes 2015, 123, 360–367. [Google Scholar] [PubMed] [Green Version]
- He, H.; Wang, G.Y.; Gao, Y.; Ling, W.H.; Yu, Z.W.; Jin, T.R. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J. Diabetes 2012, 3, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Li, J.; Cao, H. Antioxidant and antiinflammatory activities of curcumin on diabetes mellitus and its complications. Curr. Pharm. Des. 2013, 19, 2101–2113. [Google Scholar]
- Yoshifuji, A.; Wakino, S.; Irie, J.; Tajima, T.; Hasegawa, K.; Kanda, T.; Tokuyama, H.; Hayashi, K.; Itoh, H. Gut Lactobacillus protect against the progression of renal damage by modulating the gut environment in rats. Nephrol. Dial. Transplant. 2016, 31, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Cupisti, A.; D’Alessandro, C.; Gesualdo, L.; Cosola, C.; Gallieni, M.; Egidi, M.F.; Fusaro, M. Non-traditional aspects of renal diets: Focus on fiber, Alkali and Vitamin K1 Intake. Nutrients 2017, 9, 444. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.L.; Sahni, S.; Cheung, B.M.; Corella, D.; Estruch, R.; Ros, E.; Fitó, M.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Vitamin K intake is inversely associated with mortality risk. J. Nutr. 2014, 144, 743–750. [Google Scholar]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. Treatment of metabolic acidosis in patients with stage 3 chronic kidney diasease with fruits and vegetables or oral bicarbonate reduces angiotensin and preserve glomerular filtration rate. Kidney Int. 2014, 86, 1031–1038. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Oh, S.W.; Heo, N.J.; Chin, H.J.; Na, K.J.; Kim, S.; Chae, D.W. Serum phoshorus as a predictor of low-grade albuminuria in a general population without evidence of chronic kidney disease. Nephrol. Dial. Transplant. 2012, 27, 2799–2806. [Google Scholar] [CrossRef]
- Shuto, E.; Taketani, Y.; Tanaka, R.; Harada, N.; Isshiki, M.; Sato, M.; Nashiki, K.; Amo, K.; Yamamoto, H.; Higashi, Y.; et al. Dietary phosphorus acutely impairs endothelian function. J. Am. Soc. Nephrol. 2009, 20, 1504–1512. [Google Scholar] [CrossRef] [Green Version]
- Di Iorio, B.; Bellizzi, V.; Bellasi, A.; Torraca, S.; D’Arrigo, G.; Tripepi, G.; Zoccali, C. Phosphate attenuates the anti-proteinuric effect of very low-protein diet in CKD patients. Nephrol. Dial. Transplant. 2013, 28, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Ruggenenti, P.; Perna Leonardis, D.; Tripepi, R.; Tripepi, G.; Mallamaci, F.; Remuzzi, G.; REIN Study Group. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J. Am. Soc. Nephrol. 2011, 22, 1923–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slagman, M.C.J.; Waanders, F.; Hemmelder, M.H.; Woittiez, A.J.; Janssen, W.M.T.; Lambers Heerspink, H.J.; Navis, G.; Laverman, G.D.; HOlland NEphrology STudy Group. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: Randomised controlled trial. BMJ 2011, 343, d4366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafar, T.H.; Stark, P.C.; Schmid, C.; Landa, M.; Maschio, G.; Marcantoni, C.; De Jong, P.E.; De Zeeuw, D.; Shahinfar, S.; Ruggenenti, P.; et al. Proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney Int. 2001, 60, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Ellison, D.H.; Terker, A.S. Why Your Mother Was Right: How Potassium Intake Reduces Blood Pressure. Trans. Am. Clin. Clim. Assoc. 2015, 126, 46–55. [Google Scholar]
- Smyth, A.; Dunkler, D.; Gao, P.; Teo, K.K.; Yusuf, S.; O'Donnell, M.J.; Mann, J.F.E.; Clase, C.M.; ONTARGET and TRANSCEND Investigators. The relationship between estimated sodium and potassium excretion and subsequent renal outcomes. Kidney Int. 2014, 86, 1205–1212. [Google Scholar] [CrossRef]
- Wei, K.-Y.; Gritter, M.; Vogt, L.; De Borst, M.H.; Rotmans, J.; Hoorn, E.J. Dietary potassium and the kidney: Lifesaving physiology. Clin. Kidney J. 2020, 13, 952–968. [Google Scholar] [CrossRef]
- Terker, A.S.; Saritas, T.; McDonough, A.A. The Highs and Lows of Potassium Intake in CKD—Does One Size Fit All? J. Am. Soc. Nephrol. 2022, 33, 1638–1640. [Google Scholar] [CrossRef]
- Brown, K.; DeCoffe, D.; Molcan, E.; Gibson, D.L. Diet-induced dysbiosis of the intestinal microbiota and the effects of immunity and disease. Nutrients 2012, 4, 1095–1119. [Google Scholar] [CrossRef] [Green Version]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [Green Version]
- Mazmanian, S.K.; Liu, C.H.; Tzianabos, A.O.; Kasper, D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005, 122, 107–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, I.I.; Atarashi, K.; Manel, N.; Brodie, E.L.; Shima, T.; Karaoz, U.; Wei, D.; Goldfarb, K.C.; Santee, C.A.; Lynch, S.V.; et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139, 485–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokusaeva, K.; Fitzgerald, G.F.; Van Sinderen, D. Carbohydrate metabolism in bifidobacteria. Genes Nutr. 2011, 6, 285–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Serre, C.; Ellis, C.L.; Lee, J.; Hartman, A.L.; Rutledge, J.C.; Raybould, H.E. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. 2010, 299, G440–G448. [Google Scholar] [CrossRef]
- Zimmer, J.; Lange, B.; Frick, J.S.; Sauer, H.; Zimmermann, K.; Schwiertz, A.; Rusch, K.; Klosterhalfen, S.; Enck, P. A vegan or vegetarian diet substantially alters the human colic faecal microbiota. Eur. J. Clin. Nutr. 2012, 66, 53–60. [Google Scholar] [CrossRef]
- Larsen, N.; Vogensen, F.K.; Van Den Berg, F.W.J.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010, 5, e9085. [Google Scholar] [CrossRef]
- Ranganathan, N.; Ranganathan, P.; Friedman, E.A.; Joseph, A.; Delano, B.; Goldfarb, D.S.; Tam, P.; Rao, A.V.; Anteyi, E.; Musso, C.G. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv. Ther. 2010, 27, 634–647. [Google Scholar] [CrossRef]
- Schulman, G.; Berl, T.; Beck, G.J.; Remuzzi, G.; Ritz, E.; Arita, K.; Kato, A.; Shimizu, M. Randomized placebo-controlled EPPIC trials of AST-120 in CKD. J. Am. Soc. Nephrol. 2015, 26, 1732–1746. [Google Scholar] [CrossRef] [Green Version]
- Naber, T.; Purohit, S. Chronic Kidney Disease: Role of Diet for a Reduction in the Severity of the Disease. Nutrients 2021, 13, 3277. [Google Scholar] [CrossRef]
- Adair, K.E.; Bowden, R.G. Ameliorating Chronic Kidney Disease Using a Whole Food Plant-Based Diet. Nutrients 2020, 12, 1007. [Google Scholar] [CrossRef] [Green Version]
- Raphael, K.L. The Dietary Approaches to Stop Hypertension (DASH) diet in chronic kidney disease: Should we embrace it? Kidney Int. 2019, 95, 1296–1298. [Google Scholar] [CrossRef] [PubMed]
- Tomi, R.; Yamamoto, R.; Shinzawa, M.; Kimura, Y.; Fujii, Y.; Aoki, K.; Ozaki, S.; Yoshimura, R.; Taneike, M.; Nakanishi, K.; et al. Frequency of Breakfast, Lunch, and Dinner and Incidence of Proteinuria: A Retrospective Cohort Study. Nutrients 2020, 12, 3549. [Google Scholar] [CrossRef] [PubMed]
- Kutsuma, A.; Nakajima, K.; Suwa, K. Potential Association between Breakfast Skipping and Concomitant Late-Night-Dinner Eating with Metabolic Syndrome and Proteinuria in the Japanese Population. Scientifica 2014, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, H.; Kayaba, M.; Tanaka, Y.; Yajima, K.; Iwayama, K.; Ando, A.; Park, I.; Kiyono, K.; Omi, N.; Satoh, M.; et al. Effect of skipping breakfast for 6 days on energy metabolism and diurnal rhythm of blood glucose in young healthy Japanese males. Am. J. Clin. Nutr. 2019, 110, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Mah, E.; Bruno, R.S. Postprandial hyperglycemia on vascular endothelial function: Mechanisms and consequences. Nutr. Res. 2012, 32, 727–740. [Google Scholar] [CrossRef]
- Tokumaru, T.; Toyama, T.; Hara, A.; Kitagawa, K.; Yamamura, Y.; Nakagawa, S.; Oshima, M.; Miyagawa, T.; Sato, K.; Ogura, H.; et al. Association between Unhealthy Dietary Habits and Proteinuria Onset in a Japanese General Population: A Retrospective Cohort Study. Nutrients 2020, 12, 2511. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Violi, F.; D'Amico, R.; Vinceti, M. The effect of potassium supplementation on blood pressure in hypertensive subjects: A systematic review and meta-analysis. Int. J. Cardiol. 2017, 230, 127–135. [Google Scholar] [CrossRef]
- Santhanam, P.; Shapiro, J.I.; Khitan, Z. Association between dietary potassium, body mass index, and proteinuria in normotensive and hypertensive individuals: Results from the Modification of Diet in Renal Disease study baseline data. J. Clin. Hypertens. 2017, 19, 558–559. [Google Scholar] [CrossRef]
- Craig, W.J.; MAngels, A.R. Position of the American dietetic Association: Vegetarian diets. J. Am. Diet. Assoc. 2009, 109, 1266–1282. [Google Scholar]
Study | Patients | Renal Function | Protein Intake (g/kg/d) | Clinical Information | Results |
---|---|---|---|---|---|
Yue, H. et al., 2019 [18] Metanalysis | 3566 | NA | 0.28–0.8 g/kg/d | NA | When LPD > 1-year reduction of protein intake by 0.1 g/kg/d was associated with a—0.673 g/24 h reduction in proteinuria. |
Chauveau, P. et. al., 2007 [19] | 220 | CKD IV-V | 0.3 (vegetarian) + 1 g per gram of protein > 3 g/d + supplement | NA | Proteinuria reduction 50%. Max efficacy after 3 months. Greater reduction of proteinuria = lower decline in GFR. |
Li, H. et. al., 2019 [20] Metanalysis | 690 | NA | 0.6–1.0 g/kg/d | Diabetes | Proteinuria decreased in the LPD group vs. control group (SMD respectively: 0.62, CI 0.06–1.19 and 0.69, CI 0.22–1.16) |
Mou, S. et. al., 2013 [21] | 17 | CKD I-II and proteinuria > 1 g/d | 0.6–0.8 g/kg/d of ideal body weight with supplement (0.1 g/kg/d) or without | HBV+ | Proteinuria was significantly lower in the group with keto analogues than in the group without supplementation (2.0 ± 1.8 vs. 4.4 ± 2.7 g/24 h). |
Nutrients | Mechanism of Action | Results |
---|---|---|
Curcumin (Clinical and animal model) [52,53,54] | Nrf2-activator; prevents β-cell death; attenuates insulin resistance; reduces inflammation | Attenuated urinary excretion of albumin in type two diabetic patients |
Lactobacillus (Animal model) [55] | Modulates gut environment; restores expression of intestinal barrier proteins; reduces systemic inflammation | Decreased proteinuria in rats with CKD |
Alkali and Vitamin K (Clinical Study) [56,57,58] | Decreases intestinal pH and favourably modulates microbiota | Reduce dietary acid load; reduced mortality in people with chronic kidney disease; improved acid-bases homeostasis; improved control of hyperkalaemia |
Phosphorus (Clinical Study) [59,60,61,62] | Decreases endothelial flow-mediated dilation; attenuates the anti-proteinuric effect of VLPD and ACE-inhibition | Independently and positively related to low-grade albuminuria; increased urinary albumin-to-creatinine ratios |
Sodium intake reduction (Clinical Study) [63,64] | Reduces glomerular preload; inhibition of RAS | Reduction of proteinuria; cumulative antiproteinuric effect when associated with ACE inhibitor and angiotensin receptor blockade |
Potassium (Clinical and animal model) [65,66,67,68] | Modulates sodium reabsorption through the sodium chloride cotransporter (inhibits sodium recovery). Reduce the expression of inflammatory cytokines. Increases Kallikrein | Reduced urinary protein excretion, improves blood pressure, glomerular filtration, and improves metabolic acidosis in patients with CKD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ria, P.; De Pascalis, A.; Zito, A.; Barbarini, S.; Napoli, M.; Gigante, A.; Sorice, G.P. Diet and Proteinuria: State of Art. Int. J. Mol. Sci. 2023, 24, 44. https://doi.org/10.3390/ijms24010044
Ria P, De Pascalis A, Zito A, Barbarini S, Napoli M, Gigante A, Sorice GP. Diet and Proteinuria: State of Art. International Journal of Molecular Sciences. 2023; 24(1):44. https://doi.org/10.3390/ijms24010044
Chicago/Turabian StyleRia, Paolo, Antonio De Pascalis, Anna Zito, Silvia Barbarini, Marcello Napoli, Antonietta Gigante, and Gian Pio Sorice. 2023. "Diet and Proteinuria: State of Art" International Journal of Molecular Sciences 24, no. 1: 44. https://doi.org/10.3390/ijms24010044
APA StyleRia, P., De Pascalis, A., Zito, A., Barbarini, S., Napoli, M., Gigante, A., & Sorice, G. P. (2023). Diet and Proteinuria: State of Art. International Journal of Molecular Sciences, 24(1), 44. https://doi.org/10.3390/ijms24010044