Persistence Infection of TGEV Promotes Enterococcus faecalis Infection on IPEC-J2 Cells
Abstract
:1. Introduction
2. Results
2.1. TGEV Induced EMT in IPEC-J2 Cells
2.2. TGEV Infection Enhanced the Adhesion of E. faecalis to IPEC-J2 Cells
2.3. EMT Promoted the Expression of the E. faecalis Receptor and the Migration of E. faecalis
3. Discussion
3.1. EMT Occurred after IPEC-J2 Cells Were Infected with TGEV
3.2. EMT Promoted the Process of E. faecalis Adhering and Invading Cells
3.3. E. faecalis Alone Could Cause EMT
3.4. Attentions to the Potential Hazards of E. faecalis on Swine Were Entailed
4. Materials and Methods
4.1. Cells Preparation
4.2. Experiment Design
4.3. Fluorescent qPCR
4.4. Western Blot
4.5. Ghoul Ring Peptide Staining
4.6. Scratch Test, Transwell Migration, and Transwell Invasion
4.7. Evaluation of the Adhesion and Invasion of E. faecalis
4.7.1. Tenfold Dilution Method
4.7.2. Indirect Immunofluorescence
4.7.3. Scanning Electron Microscopy
4.8. Data Statistics and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Gene | Primer Sequence (5′-3′) |
---|---|
TGEV N | F-CGCTTGGTAGTCGTGGTGCT |
R-TTGGATTGTTGCCTGCCTCT | |
β-actin | F-AGATCAAGATCATCGCGCCT |
R-ATGCAACTAACAGTCCGCCT | |
N-cadherin | F-AGGCAGAAGAGAGACTGGGT |
R-GCTGTACCGCAGAGAAAGGT | |
E-cadherin | F-CGTATCGGATTTGGAGGGAC |
R-CGAGGAACAAGAGCAGGGTG | |
β-catenin | F-GCTCTTGTGCGTACTGTCCT |
R-GTCCGTAGTGAAGGCGAACA | |
Twist | F-CCGGAGACCTAGATGTCATTGT |
R-CCGTCTGGGAATCACTGTC | |
Snail1 | F-TTTTCTCGTCAGGAAGCCCG |
R-AGAGAGTCCCAGATGAGCGT | |
Smad2 | F-GCTGGACGACTACAGCCATT |
R-AGAGGTTTGGAGAACCTGCG | |
Vimentin | F-GAAGGAGGAAATGGCTCGTC |
R-CTCAGGTTCAGGGAGGAAAAG | |
Reaction system (20 μL): SYBR Green 10 μL; ddH2O 8 μL; upstream primer 0.5 μL; downstream primer 0.5 μL; template 1 μL | |
Amplification program (30 cycles from denaturation to extension): pre-denaturation 95 °C 5 min; denaturation 95 °C 30 s; Annealing 59 °C 30 s; extension 72 °C 1 min; determination 72 °C 10 min. |
Appendix C
References
- Duque, G.A.; Ospina, H.A.A. Understanding TGEV-ETEC Coinfection through the Lens of Proteomics: A Tale of Porcine Diarrhea. Proteom. Clin. Appl. 2018, 12, 1700143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, L.; Dai, L.; Yu, Q.H.; Yang, Q. Persistent Transmissible Gastroenteritis Virus Infection Enhances Enterotoxigenic Escherichia coli K88 Adhesion by Promoting Epithelial-Mesenchymal Transition in Intestinal Epithelial Cells. J. Virol. 2017, 91, e01256-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, L.N.; Chen, J.; Hao, P.F.; Jiang, Y.H.; Xu, W.; Li, L.T.; Chen, S.; Gao, Z.H.; Jin, N.Y.; Ren, L.Z.; et al. Differential Transcriptomics Analysis of IPEC-J2 Cells Single or Coinfected with Porcine Epidemic Diarrhea Virus and Transmissible Gastroenteritis Virus. Front. Immunol. 2022, 13, 844657. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, D.A.; Bozoudi, D.; Tsaltas, D. Enterococci Isolated from Cypriot Green Table Olives as a New Source of Technological and Probiotic Properties. Fermentation 2018, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Kadri, Z.; Spitaels, F.; Cnockaert, M.; Praet, J.; El Farricha, O.; Swings, J.; Vandamme, P. Enterococcus bulliens sp nov., a novel lactic acid bacterium isolated from camel milk. Antonie Van Leeuwenhoek 2015, 108, 1257–1265. [Google Scholar] [CrossRef]
- Pires, R.; Pereira, M.; Rodrigues, P.; Carvalho, S.; Ferreira, T.; Mato, R. Epidemiology of multiresistant Enterococcus faecalis and Enterococcus faecium collected during 2004 to 2006 in a Lisbon hospital. Int. J. Antimicrob. Agents 2007, 29, S167. [Google Scholar] [CrossRef]
- Kline, K.A.; Falker, S.; Dahlberg, S.; Normark, S.; Henriques-Normark, B. Bacterial Adhesins in Host-Microbe Interactions. Cell Host Microbe 2009, 5, 580–592. [Google Scholar] [CrossRef] [Green Version]
- Pizarro-Cerda, J.; Cossart, P. Bacterial adhesion and entry into host cells. Cell 2006, 124, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Rathinam, V.A.K.; Fitzgerald, K.A. Innate immune sensing of DNA viruses. Virology 2011, 411, 153–162. [Google Scholar] [CrossRef]
- Hay, E.D. An overview of epithelio-mesenchymal transformation. Acta Anat. 1995, 154, 8–20. [Google Scholar] [CrossRef]
- Tsuji, T.; Ibaragi, S.; Hu, G.F. Epithelial-Mesenchymal Transition and Cell Cooperativity in Metastasis. Cancer Res. 2009, 69, 7135–7139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galichon, P.; Hertig, A. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: Are we ready for the bedside? Fibrogenesis Tissue Repair 2011, 4, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, M.A. The ins and Outs of the Epithelial to Mesenchymal Transition in Health and Disease. In Annual Review of Cell and Developmental Biology; Schekman, R., Goldstein, L., Lehmann, R., Eds.; Annual Reviews: Palo Alto, CA, USA, 2011; Volume 27, pp. 347–376. [Google Scholar]
- Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2002, 2, 442–454. [Google Scholar] [CrossRef]
- Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-Mesenchymal Transitions in Development and Disease. Cell 2009, 139, 871–890. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, R.; Cheng, L.; Wang, M.; Jiang, Y.; Yu, D.; Zhou, T.; Wang, S. Epithelial-mesenchymal transition of intrahepatic biliary epithelial cells. Acta Acad. Med. Mil. Tertiae 2010, 32, 214–219. [Google Scholar]
- Honko, A.N.; Mizel, S.B. Effects of flagellin on innate and adaptive immunity. Immunol. Res. 2005, 33, 83–101. [Google Scholar] [CrossRef]
- Betis, F.; Brest, P.; Hofman, V.; Guignot, J.; Kansau, I.; Rossi, B.; Servin, A.; Hofman, P. Afa/Dr diffusely adhering Escherichia coli infection in T84 cell monolayers induces increased neutrophil transepithelial migration, which in turn promotes cytokine-dependent upregulation of decay-accelerating factor (CD55), the receptor for Afa/Dr adhesins. Infect. Immun. 2003, 71, 1774–1783. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.F.; Mitchell, A.; Li, G.L.; Ding, S.; Fitzmaurice, A.M.; Ryan, K.; Crowe, S.; Goldberg, J.B. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J. Biol. Chem. 2003, 278, 32552–32560. [Google Scholar] [CrossRef] [Green Version]
- Moustakas, A.; Heldin, C.-H. Induction of epithelial-mesenchymal transition by transforming growth factor beta. Semin. Cancer Biol. 2012, 22, 446–454. [Google Scholar] [CrossRef]
- Scheel, C.; Eaton, E.N.; Li, S.H.J.; Chaffer, C.L.; Reinhardt, F.; Kah, K.J.; Bell, G.; Guo, W.; Rubin, J.; Richardson, A.L.; et al. Paracrine and Autocrine Signals Induce and Maintain Mesenchymal and Stem Cell States in the Breast. Cell 2011, 145, 926–940. [Google Scholar] [CrossRef] [Green Version]
- Zavadil, J.; Cermak, L.; Soto-Nieves, N.; Bottinger, E.P. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 2004, 23, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Long, M. Recent progresses on the cellular motility, cell migration and cytoskeleton. Acta Biophys. Sin. 2007, 23, 281–289. [Google Scholar]
- Singh, K.V.; La Rosa, S.L.; Somarajan, S.R.; Roh, J.H.; Murray, B.E. The Fibronectin-Binding Protein EfbA Contributes to Pathogenesis and Protects against Infective Endocarditis Caused by Enterococcus faecalis. Infect. Immun. 2015, 83, 4487–4494. [Google Scholar] [CrossRef] [Green Version]
- Farquhar, M.G.; Palade, G.E. Junctional complexes in various epithelia. J. Cell Biol. 1963, 17, 375–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunert, S.; Jechlinger, M.; Beug, H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell Biol. 2003, 4, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Fuxe, J.; Karlsson, M.C.I. TGF-beta-induced epithelial-mesenchymal transition: A link between cancer and inflammation. Semin. Cancer Biol. 2012, 22, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Cossart, P.; Roy, C.R. Manipulation of host membrane machinery by bacterial pathogens. Curr. Opin. Cell Biol. 2010, 22, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Kwon, H.-J.; Lee, B.-J.; Jang, Y.J. Staphylococcal enterotoxins A and B enhance rhinovirus replication in A549 cells. Am. J. Rhinol. 2007, 21, 670–674. [Google Scholar] [CrossRef]
- Torelli, R.; Serror, P.; Bugli, F.; Sterbini, F.P.; Florio, A.R.; Stringaro, A.; Colone, M.; De Carolis, E.; Martini, C.; Giard, J.-C.; et al. The PavA-like Fibronectin-Binding Protein of Enterococcus faecalis, EfbA, Is Important for Virulence in a Mouse Model of Ascending Urinary Tract Infection. J. Infect. Dis. 2012, 206, 952–960. [Google Scholar] [CrossRef] [Green Version]
- Morgene, M.F.; Botelho-Nevers, E.; Grattard, F.; Pillet, S.; Berthelot, P.; Pozzetto, B.; Verhoeven, P.O. Staphylococcus aureus colonization and non-influenza respiratory viruses: Interactions and synergism mechanisms. Virulence 2018, 9, 1354–1363. [Google Scholar] [CrossRef] [Green Version]
- Bonazzi, M.; Cossart, P. Impenetrable barriers or entry portals? The role of cell-cell adhesion during infection. J. Cell Biol. 2011, 195, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Bhattacharya, S.; Kalyan, G.; Hazra, S. Cadherin profiling for therapeutic interventions in Epithelial Mesenchymal Transition (EMT) and tumorigenesis. Exp. Cell Res. 2018, 368, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Cane, G.; Ginouves, A.; Marchetti, S.; Busca, R.; Pouyssegur, J.; Berra, E.; Hofman, P.; Vouret-Craviari, V. HIF-1 alpha mediates the induction of IL-8 and VEGF expression on infection with Afa/Dr diffusely adhering E. coli and promotes EMT-like behaviour. Cell. Microbiol. 2010, 12, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Kim, N.; Park, J.H.; Nam, R.H.; Choi, Y.J.; Park, S.M.; Choi, Y.J.; Yoon, H.; Shin, C.M.; Lee, D.H. Helicobacter pylori Might Induce TGF-beta 1-Mediated EMT by Means of cagE. Helicobacter 2015, 20, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Leone, L.; Mazzetta, F.; Martinelli, D.; Valente, S.; Alimandi, M.; Raffa, S.; Santino, I. Klebsiella pneumoniae Is Able to Trigger Epithelial-Mesenchymal Transition Process in Cultured Airway Epithelial Cells. PLoS ONE 2016, 11, e0146365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannu, L.; Paba, A.; Daga, E.; Comunian, R.; Zanetti, S.; Dupre, I.; Sechi, L.A. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int. J. Food Microbiol. 2003, 88, 291–304. [Google Scholar] [CrossRef]
- Abriouel, H.; Ben Omar, N.; Molinos, A.C.; Lopez, R.L.; Grande, M.J.; Martinez-Viedma, P.; Ortega, E.; Canamero, M.M.; Galvez, A. Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. Int. J. Food Microbiol. 2008, 123, 38–49. [Google Scholar] [CrossRef]
- Mundy, L.M.; Sahm, D.F.; Gilmore, M. Relationships between enterococcal virulence and antimicrobial resistance. Clin. Microbiol. Rev. 2000, 13, 513–522. [Google Scholar] [CrossRef]
- Brilliantova, A.N.; Kliasova, G.A.; Mironova, A.V.; Tishkov, V.I.; Novichkova, G.A.; Bobrynina, V.O.; Sidorenko, S.V. Spread of vancomycin-resistant Enterococcus faecium in two haematological centres in Russia. Int. J. Antimicrob. Agents 2010, 35, 177–181. [Google Scholar] [CrossRef]
- Gao, X.; Fan, C.L.; Zhang, Z.H.; Li, S.X.; Xu, C.C.; Zhao, Y.J.; Han, L.M.; Zhang, D.X.; Liu, M.C. Enterococcal isolates from bovine subclinical and clinical mastitis: Antimicrobial resistance and integron-gene cassette distribution. Microb. Pathog. 2019, 129, 82–87. [Google Scholar] [CrossRef]
- Pomba, C.; Couto, N.; Moodley, A. Treatment of a lower urinary tract infection in a cat caused by a multi-drug methicillin-resistant Staphylococcus pseudintermedius and Enterococcus faecalis. J. Feline Med. Surg. 2010, 12, 802–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Lamouille, S.; Derynck, R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009, 19, 156–172. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Zhang, C.; Dong, J.; Wang, Y.; Hu, H.; Chen, L. Persistence Infection of TGEV Promotes Enterococcus faecalis Infection on IPEC-J2 Cells. Int. J. Mol. Sci. 2023, 24, 450. https://doi.org/10.3390/ijms24010450
Guo Z, Zhang C, Dong J, Wang Y, Hu H, Chen L. Persistence Infection of TGEV Promotes Enterococcus faecalis Infection on IPEC-J2 Cells. International Journal of Molecular Sciences. 2023; 24(1):450. https://doi.org/10.3390/ijms24010450
Chicago/Turabian StyleGuo, Zhenzhen, Chenxin Zhang, Jiajun Dong, Yabin Wang, Hui Hu, and Liying Chen. 2023. "Persistence Infection of TGEV Promotes Enterococcus faecalis Infection on IPEC-J2 Cells" International Journal of Molecular Sciences 24, no. 1: 450. https://doi.org/10.3390/ijms24010450
APA StyleGuo, Z., Zhang, C., Dong, J., Wang, Y., Hu, H., & Chen, L. (2023). Persistence Infection of TGEV Promotes Enterococcus faecalis Infection on IPEC-J2 Cells. International Journal of Molecular Sciences, 24(1), 450. https://doi.org/10.3390/ijms24010450