Stress-Associated and Growth-Dependent Mutagenesis Are Divergently Regulated by c-di-AMP Levels in Bacillus subtilis
Abstract
:1. Introduction
2. Results
2.1. DisA and CdaA Are the Main Sources of c-di-AMP in Vegetative Cells of Strain B. subtilis YB955
2.2. DisA and CdaA Prevent Spontaneous Mutagenesis in Growing B. subtilis Cells
2.3. CdaA and DisA Exhibit Divergent Responses to H2O2-Induced Mutagenesis
2.4. CdaA and DisA Are Required to Prevent Mitomycin-C induced DNA Damage
2.5. DisA and CdaA Are Required for SAM in B. subtilis
2.6. Disruption of disA and/or cdaA Promotes the Appearance of Triple His+ Met+ Leu+ Prototrophs
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains Plasmids and Growth Conditions
4.2. Construction of Mutant Strains
4.3. Construction of Complementing Strains
4.4. Immunological Quantitation of c-di-AMP
4.5. Analysis of Mutation Frequencies to RifR
4.6. Stationary-Phase Mutagenesis Assays
4.7. Determination of Suppressor Mutations Generated during Stationary Phase
4.8. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonilla, C.Y. Generally Stressed Out Bacteria: Environmental Stress Response Mechanisms in Gram-Positive Bacteria. Integr. Comp. Biol. 2020, 60, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Camilli, A.; Bassler, B.L. Bacterial Small-Molecule Signaling Pathways. Science 2006, 311, 1113–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, C.M.; Bassler, B.L. QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesavento, C.; Hengge, R. Bacterial Nucleotide-Based Second Messengers. Curr. Opin. Microbiol. 2009, 12, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Kalia, D.; Merey, G.; Nakayama, S.; Zheng, Y.; Zhou, J.; Luo, Y.; Guo, M.; Roembke, B.T.; Sintim, H.O. Nucleotide, c-Di-GMP, c-Di-AMP, CGMP, CAMP, (p)PpGpp Signaling in Bacteria and Implications in Pathogenesis. Chem. Soc. Rev. 2013, 42, 305–341. [Google Scholar] [CrossRef]
- Zarrella, T.M.; Bai, G. The Many Roles of the Bacterial Second Messenger Cyclic Di-AMP in Adapting to Stress Cues. J. Bacteriol. 2020, 203, e00348-20. [Google Scholar] [CrossRef]
- Mudgal, S.; Manikandan, K.; Mukherjee, A.; Krishnan, A.; Sinha, K.M. Cyclic Di-AMP: Small Molecule with Big Roles in Bacteria. Microb. Pathog. 2021, 161, 105264. [Google Scholar] [CrossRef]
- Luo, Y.; Helmann, J.D. Analysis of the Role of Bacillus subtilis σM in β-Lactam Resistance Reveals an Essential Role for c-Di-AMP in Peptidoglycan Homeostasis: Multiple Roles of ECF σ Factors in β-Lactam Resistance. Mol. Microbiol. 2012, 83, 623–639. [Google Scholar] [CrossRef] [Green Version]
- Mehne, F.M.P.; Gunka, K.; Eilers, H.; Herzberg, C.; Kaever, V.; Stülke, J. Cyclic Di-AMP Homeostasis in Bacillus subtilis. J. Biol. Chem. 2013, 288, 2004–2017. [Google Scholar] [CrossRef] [Green Version]
- Gundlach, J.; Mehne, F.M.P.; Herzberg, C.; Kampf, J.; Valerius, O.; Kaever, V.; Stülke, J. An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis. J. Bacteriol. 2015, 197, 3265–3274. [Google Scholar] [CrossRef]
- Bejerano-Sagie, M.; Oppenheimer-Shaanan, Y.; Berlatzky, I.; Rouvinski, A.; Meyerovich, M.; Ben-Yehuda, S.A. Checkpoint Protein That Scans the Chromosome for Damage at the Start of Sporulation in Bacillus subtilis. Cell 2006, 125, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Witte, G.; Hartung, S.; Büttner, K.; Hopfner, K.-P. Structural Biochemistry of a Bacterial Checkpoint Protein Reveals Diadenylate Cyclase Activity Regulated by DNA Recombination Intermediates. Mol. Cell 2008, 30, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Oppenheimer-Shaanan, Y.; Wexselblatt, E.; Katzhendler, J.; Yavin, E.; Ben-Yehuda, S. C-di-AMP Reports DNA Integrity during Sporulation in Bacillus subtilis. EMBO Rep. 2011, 12, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Campos, S.S.; Ibarra-Rodriguez, J.R.; Barajas-Ornelas, R.C.; Ramírez-Guadiana, F.H.; Obregón-Herrera, A.; Setlow, P.; Pedraza-Reyes, M. Interaction of Apurinic/Apyrimidinic Endonucleases Nfo and ExoA with the DNA Integrity Scanning Protein DisA in the Processing of Oxidative DNA Damage during Bacillus subtilis Spore Outgrowth. J. Bacteriol. 2014, 196, 568–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenzuela-García, L.I.; Ayala-García, V.M.; Regalado-García, A.G.; Setlow, P.; Pedraza-Reyes, M. Transcriptional Coupling (Mfd) and DNA Damage Scanning (DisA) Coordinate Excision Repair Events for Efficient Bacillus subtilis Spore Outgrowth. MicrobiologyOpen 2018, 7, e00593. [Google Scholar] [CrossRef] [Green Version]
- Gándara, C.; Alonso, J.C. DisA and C-Di-AMP Act at the Intersection between DNA-Damage Response and Stress Homeostasis in Exponentially Growing Bacillus subtilis Cells. DNA Repair 2015, 27, 1–8. [Google Scholar] [CrossRef]
- Mehne, F.M.P.; Schröder-Tittmann, K.; Eijlander, R.T.; Herzberg, C.; Hewitt, L.; Kaever, V.; Lewis, R.J.; Kuipers, O.P.; Tittmann, K.; Stülke, J. Control of the Diadenylate Cyclase CdaS in Bacillus subtilis. J. Biol. Chem. 2014, 289, 21098–21107. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.-M.; Yasbin, R.E. Adaptive, or Stationary-Phase, Mutagenesis, a Component of Bacterial Differentiation in Bacillus subtilis. J. Bacteriol. 2002, 184, 5641–5653. [Google Scholar] [CrossRef] [Green Version]
- Robleto, E.A.; Yasbin, R.; Ross, C.; Pedraza-Reyes, M. Stationary Phase Mutagenesis in B. subtilis: A Paradigm to Study Genetic Diversity Programs in Cells Under Stress. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 327–339. [Google Scholar] [CrossRef]
- Castro-Cerritos, K.V.; Lopez-Torres, A.; Obregón-Herrera, A.; Wrobel, K.; Wrobel, K.; Pedraza-Reyes, M. LC–MS/MS Proteomic Analysis of Starved Bacillus subtilis Cells Overexpressing Ribonucleotide Reductase (NrdEF): Implications in Stress-Associated Mutagenesis. Curr. Genet. 2018, 64, 215–222. [Google Scholar] [CrossRef]
- Pedreira, T.; Elfmann, C.; Stülke, J. The Current State of Subti Wiki, the Database for the Model Organism Bacillus subtilis. Nucl. Acids Res. 2022, 50, D875–D882. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Ehrlich, S.D.; Albertini, A.; Amati, G.; Andersen, K.K.; Arnaud, M.; Asai, K.; Ashikaga, S.; Aymerich, S.; Bessieres, P.; et al. Essential Bacillus subtilis Genes. Proc. Natl. Acad. Sci. USA 2003, 100, 4678–4683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vagner, V.; Dervyn, E.; Ehrlich, S.D. A Vector for Systematic Gene Inactivation in Bacillus subtilis. Microbiology 1998, 144, 3097–3104. [Google Scholar] [CrossRef] [Green Version]
- Stülke, J.; Krüger, L. Cyclic Di-AMP Signaling in Bacteria. Annu. Rev. Microbiol. 2020, 74, 159–179. [Google Scholar] [CrossRef]
- Riley, P.A. Free Radicals in Biology: Oxidative Stress and the Effects of Ionizing Radiation. Int. J. Radiat. Biol. 1994, 65, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Eiamphungporn, W.; Helmann, J.D. The Bacillus subtilis σM Regulon and Its Contribution to Cell Envelope Stress Responses. Mol. Microbiol. 2008, 67, 830–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; He, Z.-G. Radiation-Sensitive Gene A (RadA) Targets DisA, DNA Integrity Scanning Protein A, to Negatively Affect Cyclic Di-AMP Synthesis Activity in Mycobacterium Smegmatis. J. Biol. Chem. 2013, 288, 22426–22436. [Google Scholar] [CrossRef] [Green Version]
- Au, N.; Kuester-Schoeck, E.; Mandava, V.; Bothwell, L.E.; Canny, S.P.; Chachu, K.; Colavito, S.A.; Fuller, S.N.; Groban, E.S.; Hensley, L.A.; et al. Genetic Composition of the Bacillus subtilis SOS System. J. Bacteriol. 2005, 187, 7655–7666. [Google Scholar] [CrossRef] [Green Version]
- Gándara, C.; Torres, R.; Carrasco, B.; Ayora, S.; Alonso, J.C. DisA Restrains the Processing and Cleavage of Reversed Replication Forks by the RuvAB-RecU Resolvasome. IJMS 2021, 22, 11323. [Google Scholar] [CrossRef]
- Ramírez-Guadiana, F.H.; del Carmen Barajas-Ornelas, R.; Ayala-García, V.M.; Yasbin, R.E.; Robleto, E.; Pedraza-Reyes, M. Transcriptional Coupling of DNA Repair in Sporulating Bacillus subtilis Cells. Mol. Microbiol. 2013, 90, 1088–1099. [Google Scholar] [CrossRef]
- Baharoglu, Z.; Bradley, A.S.; Le Masson, M.; Tsaneva, I.; Michel, B. RuvA Mutants That Resolve Holliday Junctions but Do Not Reverse Replication Forks. PLoS Genet. 2008, 4, e1000012. [Google Scholar] [CrossRef] [PubMed]
- Reder, A.; Höper, D.; Gerth, U.; Hecker, M. Contributions of Individual σB -Dependent General Stress Genes to Oxidative Stress Resistance of Bacillus subtilis. J. Bacteriol. 2012, 194, 3601–3610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Cerritos, K.V.; Yasbin, R.E.; Robleto, E.A.; Pedraza-Reyes, M. Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis. J. Bacteriol. 2017, 199, e00715-16. [Google Scholar] [CrossRef] [Green Version]
- Sureka, K.; Choi, P.H.; Precit, M.; Delince, M.; Pensinger, D.A.; Huynh, T.N.; Jurado, A.R.; Goo, Y.A.; Sadilek, M.; Iavarone, A.T.; et al. The Cyclic Dinucleotide c-di-AMP Is an Allosteric Regulator of Metabolic Enzyme Function. Cell 2014, 158, 1389–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krüger, L.; Herzberg, C.; Wicke, D.; Bähre, H.; Heidemann, J.L.; Dickmanns, A.; Schmitt, K.; Ficner, R.; Stülke, J. A Meet-Up of Two Second Messengers: The c-di-AMP Receptor DarB Controls (p)PpGpp Synthesis in Bacillus subtilis. Nat. Commun. 2021, 12, 1210. [Google Scholar] [CrossRef] [PubMed]
- Handke, L.D.; Shivers, R.P.; Sonenshein, A.L. Interaction of Bacillus subtilis CodY with GTP. J. Bacteriol. 2008, 190, 798–806. [Google Scholar] [CrossRef] [Green Version]
- Bittner, A.N.; Kriel, A.; Wang, J.D. Lowering GTP Level Increases Survival of Amino Acid Starvation but Slows Growth Rate for Bacillus subtilis Cells Lacking (p)ppGpp. J. Bacteriol. 2014, 196, 2067–2076. [Google Scholar] [CrossRef] [Green Version]
- Belitsky, B.R.; Sonenshein, A.L. Genetic and biochemical analysis of CodY-binding sites in Bacillus subtilis. J. Bacteriol. 2008, 190, 1224–1236. [Google Scholar] [CrossRef] [Green Version]
- Molle, V.; Nakaura, Y.; Shivers, R.P.; Yamaguchi, H.; Losick, R.; Fujita, Y.; Sonenshein, A.L. Additional Targets of the Bacillus subtilis Global Regulator CodY Identified by Chromatin Immunoprecipitation and Genome-Wide Transcript Analysis. J. Bacteriol. 2003, 185, 1911–1922. [Google Scholar] [CrossRef] [Green Version]
- Leyva-Sánchez, H.C.; Villegas-Negrete, N.; Abundiz-Yañez, K.; Yasbin, R.E.; Robleto, E.A.; Pedraza-Reyes, M. Role of Mfd and GreA in Bacillus subtilis Base Excision Repair-Dependent Stationary-Phase Mutagenesis. J. Bacteriol. 2020, 202, e00807-19. [Google Scholar] [CrossRef]
- Barajas-Ornelas, R.d.C.; Ramírez-Guadiana, F.H.; Juárez-Godínez, R.; Ayala-García, V.M.; Robleto, E.A.; Yasbin, R.E.; Pedraza-Reyes, M. Error-Prone Processing of apurinic/apyrimidinic (AP) sites by PolX underlies a novel mechanism that promotes adaptive mutagenesis in Bacillus subtilis. J. Bacteriol. 2014, 196, 3012–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Marroquín, M.; Martin, H.; Pepper, A.; Girard, M.; Kidman, A.; Vallin, C.; Yasbin, R.; Pedraza-Reyes, M.; Robleto, E. Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways. Genes 2016, 7, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.-M.; Yeamans, G.; Ross, C.A.; Yasbin, R.E. Roles of YqjH and YqjW, Homologs of the Escherichia coli UmuC/DinB or Y Superfamily of DNA Polymerases, in Stationary-Phase Mutagenesis and UV-Induced Mutagenesis of Bacillus subtilis. J. Bacteriol. 2003, 185, 2153–2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambrook, J.F.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Boylan, R.J.; Mendelson, N.H.; Brooks, D.; Young, F.E. Regulation of the Bacterial Cell Wall: Analysis of a Mutant of Bacillus subtilis Defective in Biosynthesis of Teichoic Acid. J. Bacteriol. 1972, 110, 281–290. [Google Scholar] [CrossRef]
Revertants | Number of Revertants That Grew/Number Tested (% of Revertants That Grew) on a Minimal Medium Lacking: | Revertants with His+ Met+ Leu+ Phenotype (% of Total) | ||
---|---|---|---|---|
His | Met | Leu | ||
YB955 | ||||
His+ | 104/104 (100) | 15/104 (14.4) | 0/104 (0) | 0 (0) |
Met+ | 68/78 (87.2) | 78/78 (100) | 0/78 (0) | 0 (0) |
Leu+ | 0/113 (0) | 0/113 (0) | 113/113 (100) | 0 (0) |
ΔcdaA | ||||
His+ | 110/110 (100) | 15/110 (13.6) | 1/110 (0.9) | 1 (0.9) |
Met+ | 75/76 (98.7) | 76/76 (100) | 5/76 (6.6) | 5 (6.6) |
Leu+ | 4/115 (3.5) | 9/115 (7.8) | 115/115 (100) | 3 (2.6) |
ΔdisA | ||||
His+ | 168/168 (100) | 47/168 (27.9) | 2/168 (1.2) | 0 (0) |
Met+ | 71/84 (84.5) | 84/84 (100) | 14/84 (16.7) | 14 (16.7) |
Leu+ | 4/159 (2.5) | 0/159 (0) | 159/159 (100) | 0 (0) |
ΔcdaA/ΔdisA | ||||
His+ | 96/96 (100) | 18/96 (18.7) | 5/96 (5.2) | 1 (1.0) |
Met+ | 63/73 (86.3) | 73/73 (100) | 2/73 (2.7) | 2 (2.7) |
Leu+ | 1/102 (1.0) | 1/102 (1.0) | 102/102 (100) | 1 (1.0) |
Strain | Genotype or Description a | Reference or Source |
---|---|---|
YB955 | hisC952 metB5 leuC427 xin-1 SpβSENS | [18] |
PERM1647 | YB955 disA::ery. EmR | This study |
PERM1665 | YB955 cdaA::cat disA::ery. EryR CmR | PERM1647 → PERM1663 b |
PERM1687 | YB955 cdaA::cat. CmR | This study |
PERM1729 | YB955 disA::ery amyE::Phs-disA. EryR SpR | PERM1647 → PERM1728 |
PERM1730 | YB955 cdaA::cat disA::ery amyE:: Phs-disA. EryR CmR SpR | PERM1665 → PERM1728 |
PERM1853 | YB955 cdaA::cat amyE::Phs-cdaA. CmR SpR | PERM1687 → PERM1845 |
PERM1854 | YB955 cdaA::cat disA::ery amyE::Phs-cdaA. CmR EryR SpR | PERM1665 → PERM1845 |
Plasmids | ||
pMUTIN-4 | Integrative vector for B. subtilis. Disrupts the gene after insertion and creates a fusion of the cloned fragment with the lacZ gene. EryR | [23] |
pMUTIN-4-cat | Integrative vector for B. subtilis. Disrupts the gene after insertion and creates a fusion of the cloned fragment with the lacZ gene. CmR | [41] |
pDR111 | pHyperspank integrative vector, AmpR SpR | David Rudner Laboratory |
PERM732 | pMUTIN-4 plasmid containing an internal fragment of the B. subtilis disA gene. AmpR | This study |
PERM1663 | pMUTIN-4-cat plus an internal fragment of the B. subtilis cdaA gene. CmR | This study |
PERM1845 | pHyperspank-cdaA Integrative vector with cdaA under control of an IPTG inducible Phs promoter, AmpR SpR | This study |
PERM1728 | pHyperspank-cdaA Integrative vector with disA under control of an IPTG inducible Phs promoter, AmpR SpR | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abundiz-Yañez, K.; Leyva-Sánchez, H.C.; Robleto, E.A.; Pedraza-Reyes, M. Stress-Associated and Growth-Dependent Mutagenesis Are Divergently Regulated by c-di-AMP Levels in Bacillus subtilis. Int. J. Mol. Sci. 2023, 24, 455. https://doi.org/10.3390/ijms24010455
Abundiz-Yañez K, Leyva-Sánchez HC, Robleto EA, Pedraza-Reyes M. Stress-Associated and Growth-Dependent Mutagenesis Are Divergently Regulated by c-di-AMP Levels in Bacillus subtilis. International Journal of Molecular Sciences. 2023; 24(1):455. https://doi.org/10.3390/ijms24010455
Chicago/Turabian StyleAbundiz-Yañez, Karen, Hilda C. Leyva-Sánchez, Eduardo A. Robleto, and Mario Pedraza-Reyes. 2023. "Stress-Associated and Growth-Dependent Mutagenesis Are Divergently Regulated by c-di-AMP Levels in Bacillus subtilis" International Journal of Molecular Sciences 24, no. 1: 455. https://doi.org/10.3390/ijms24010455
APA StyleAbundiz-Yañez, K., Leyva-Sánchez, H. C., Robleto, E. A., & Pedraza-Reyes, M. (2023). Stress-Associated and Growth-Dependent Mutagenesis Are Divergently Regulated by c-di-AMP Levels in Bacillus subtilis. International Journal of Molecular Sciences, 24(1), 455. https://doi.org/10.3390/ijms24010455