Dendritic Cell-Triggered Immune Activation Goes along with Provision of (Leukemia-Specific) Integrin Beta 7-Expressing Immune Cells and Improved Antileukemic Processes
Abstract
:1. Introduction
1.1. Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS)
1.2. DC-Based Immunotherapeutic Approaches
1.3. Key Players of Immune Defense and Their Detection
1.4. Integrin Beta 7 (β7)
1.5. Aim of This Study
- DC subpopulations using (Kit-treated vs. untreated) WB from leukemia patients (or healthy individuals);
- (β7-expressing) innate and adaptive immune cells before and after MLC with Kit-pretreated vs. untreated WB from leukemia patients (or healthy individuals);
- The antileukemic activity of cells using the cytotoxicity fluorolysis assay (CTX) after MLC of patients’ T-cells with Kit-pretreated vs. untreated WB as stimulator cells;
- Leukemia-specific cells using DEG and INCYT assays in uncultivated WB from leukemia patients (vs. comparable cells for healthy individuals) and after MLC with Kit-pretreated vs. untreated WB;
- The correlations between antileukemic functionality, leukemia-specific activity and (β7-expressing) immune cells;
- The correlations between patients’ clinical outcomes/prognostic risk assessment and (β7-expressing) immune cells.
2. Results
2.1. Generation of DC (Subtypes) from WB
2.1.1. Significantly Higher Frequencies of DCs and Their Subtypes in Patients’ and Healthy WB Samples after Kit Treatment Compared to Control (without Added Kits)
2.1.2. No Influence of Kit Treatment on Proliferation of Blasts or Monocytes
2.1.3. Profiles of Immune-Reactive (and Especially β7-Expressing) Cells in Uncultured WB from AML vs. Healthy Blood Donors
2.2. T-Cell-Enriched Mixed Lymphocyte Culture with Patients’ or Healthy Donors’ Kit-Pretreated (vs. Untreated) WB
2.2.1. Significant Activation and Provision of T-Cells after MLC of Patients’ WB, but Not in Healthy Samples with Kit-Pretreated (vs. Untreated) WB
2.2.2. Significantly Increased Provision of β7-Expressing Immune-Reactive Cells after MLC with Kit-Pretreated Patients’ or Healthy WB Compared to Control (MLC(CC))
2.2.3. Detection of Antigen-Specific (Degranulating or Intracellularly IFNγ-Producing) β7+ Immune-Reactive Cells in Uncultured WB from AML and Healthy WB Donors or in Immune-Reactive Cells after T-Cell-Enriched MLC
2.2.4. Improved Antileukemic and Blastolytic Functionality of Immune Cells after T-Cell-Enriched MLC with Kit-M-Pretreated (vs. Untreated) WB
2.3. Correlation of (Antigen-Specific) β7 Expression with Patients’ Allocation to Risk Groups, Response to Induction Chemotherapy and Achieved Antileukemic (Ex Vivo) Functionality
3. Discussion
3.1. DC-Based Therapies as Promising Therapy Options
3.2. Improved Activation of the Adaptive and Innate Immune System with Kit-Treated WB
3.2.1. Ex Vivo DC Generation and (Antileukemic) Immune Cell Activation
3.2.2. Higher β7 Expression in Immune Cells after MLC with Kit-I and Kit-M Treatment of Healthy and Patients’ WB Samples
3.2.3. Increased Production of (Antigen-Specific) Degranulating or Intracellular Cytokine-Producing Immune Cells after MLC of Kit-M-Pretreated Healthy and Patients’ WB Samples
3.2.4. Increased Blastolytic Functionality of Immune-Reactive Cells in Kit-Pretreated Samples after MLC
3.3. Potential of β7 Monitoring
3.3.1. β7 Expression in Immune-Reactive Cells as a Clue to Higher Susceptibility to Chemotherapy and Kit Treatment
3.3.2. β7 Expression as a Marker for Improved Blast Cytotoxicity
4. Materials and Methods
4.1. Patients and Healthy Sample Acquisition
4.2. Initial Sample Preparation
4.3. Cultivation of Dendritic Cells (DC) and Leukemia-Derived Dendritic Cells (DCleu)
4.4. Cultivation of Cells in Mixed Lymphocyte Cultures (MLC)
4.5. Degranulation Assay (DEG) and Intracellular Cytokine Assay (INTCYT)
4.6. Cytotoxicity Fluorolysis Assay (CTX)
4.7. Quantification of Cells Using Flow Cytometry
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Herold, G. Innere Medizin 2020; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2020. [Google Scholar]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Lowenberg, B.; Downing, J.R.; Burnett, A. Acute Myeloid Leukemia. New Engl. J. Med. 1999, 341, 1051–1062. [Google Scholar] [CrossRef]
- Röllig, C.; Beelen, D.W.; Braess, J.; Greil, R.; Niederwieser, D.; Passweg, J.; Reinhardt, D.; Schlenk, R.F. Leitlinie Akute Myeloische Leukämie, Onkopedia, Deutsche Gesellschaft für Hämatologie und Onkologie. Available online: https://www.onkopedia.com/de/onkopedia/guidelines/akute-myeloische-leukaemie-aml/@@guideline/html/index.html (accessed on 17 November 2020).
- Garcia-Manero, G.; Chien, K.S.; Montalban-Bravo, G. Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. Am. J. Hematol. 2020, 95, 1399–1420. [Google Scholar] [CrossRef] [PubMed]
- Estey, E.H. Acute myeloid leukemia: 2021 update on risk-stratification and management. Am. J. Hematol. 2020, 95, 1368–1398. [Google Scholar] [CrossRef] [PubMed]
- Behrends, J.; Bischofberger, J.; Deutzmann, R.; Ehmke, H.; Frings, S. Duale Reihe Physiologie; Thieme: Stuttgart, Germany, 2016. [Google Scholar]
- Sabado, R.L.; Balan, S.; Bhardwaj, N. Dendritic cell-based immunotherapy. Cell Res. 2016, 27, 74–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amberger, D.C.; Schmetzer, H.M. Dendritic Cells of Leukemic Origin: Specialized Antigen-Presenting Cells as Potential Treatment Tools for Patients with Myeloid Leukemia. Transfus. Med. Hemother. 2020, 47, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Amberger, D.C.; Doraneh-Gard, F.; Gunsilius, C.; Weinmann, M.; Möbius, S.; Kugler, C.; Rogers, N.; Böck, C.; Ködel, U.; Werner, J.-O.; et al. PGE1-Containing Protocols Generate Mature (Leukemia-Derived) Dendritic Cells Directly from Leukemic Whole Blood. Int. J. Mol. Sci. 2019, 20, 4590. [Google Scholar] [CrossRef] [Green Version]
- Plett, C.; Klauer, L.K.; Amberger, D.C.; Ugur, S.; Rabe, A.; Fischer, Z.; Deen, D.; Hirn-Lopez, A.; Gunsilius, C.; Werner, J.-O.; et al. Immunomodulatory Kits do not induce AML-blasts’ proliferation ex vivo: IPO-38 is an appropriate and reliable marker to detect and quantify proliferating blasts. Clin. Immunol. 2022, 242, 109083. [Google Scholar] [CrossRef]
- Schmetzer, H.M.; Kremser, A.; Loibl, J.; Kroell, T.; Kolb, H.-J. Quantification of ex vivo generated dendritic cells (DC) and leukemia-derived DC contributes to estimate the quality of DC, to detect optimal DC-generating methods or to optimize DC-mediated T-cell-activation-procedures ex vivo or in vivo. Leukemia 2007, 21, 1338–1341. [Google Scholar] [CrossRef] [Green Version]
- Grabrucker, C.; Liepert, A.; Dreyig, J.; Kremser, A.; Kroell, T.; Freudenreich, M.; Schmid, C.; Schweiger, C.; Tischer, J.; Kolb, H.-J.; et al. The Quality and Quantity of Leukemia-derived Dendritic Cells From Patients With Acute Myeloid Leukemia and Myelodysplastic Syndrome Are a Predictive Factor for the Lytic Potential of Dendritic Cells-primed Leukemia-Specific T Cells. J. Immunother. 2010, 33, 523–537. [Google Scholar] [CrossRef]
- Schick, J.; Vogt, V.; Zerwes, M.; Kroell, T.; Kraemer, D.; Köhne, C.-H.; Hausmann, A.; Buhmann, R.; Tischer, J.; Schmetzer, H. Antileukemic T-cell Responses Can Be Predicted by the Composition of Specific Regulatory T-cell Subpopulations. J. Immunother. 2013, 36, 223–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, V.; Schick, J.; Ansprenger, C.; Braeu, M.; Kroell, T.; Kraemer, D.; Köhne, C.-H.; Hausmann, A.; Buhmann, R.; Tischer, J.; et al. Profiles of Activation, Differentiation–Markers, or β-Integrins on T Cells Contribute to Predict T Cells’ Antileukemic Responses After Stimulation With Leukemia-derived Dendritic Cells. J. Immunother. 2014, 37, 331–347. [Google Scholar] [CrossRef] [PubMed]
- Campana, D.; Behm, F.G. Immunophenotyping of leukemia. J. Immunol. Methods 2000, 243, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Ugur, S.; Klauer, L.K.; Blasi, C.; Doraneh-Gard, F.; Plett, C.; Gunsilius, C.; Amberger, D.C.; Weinmann, M.; Schutti, O.; Fischer, Z.; et al. ‘Kit’-mediated blastmodulation to leukemia-derived DC significantly improves antileukemic activities in whole blood independent of AML-patients’ subtypes. Submitted 2022.
- Pérez-Villar, J.J.; Zapata, J.M.; Melero, I.; Postigo, A.; Sánchez-Madrid, F.; López-Botet, M. Expression and function of α 4/β 7 integrin on human natural killer cells. Immunology 1996, 89, 96–104. [Google Scholar] [CrossRef]
- Aktas, E.; Kucuksezer, U.C.; Bilgic, S.; Erten, G.; Deniz, G. Relationship between CD107a expression and cytotoxic activity. Cell. Immunol. 2009, 254, 149–154. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, A.; García-Montero, A.C.; Bueno, C.; Almeida, J.; Varro, R.; Chen, R.; Pandiella, A.; Orfao, A. A new simple whole blood flow cytometry-based method for simultaneous identification of activated cells and quantitative evaluation of cytokines released during activation. Lab. Investig. 2004, 84, 1387–1398. [Google Scholar] [CrossRef] [Green Version]
- Klauer, L.K.; Schutti, O.; Ugur, S.; Doraneh-Gard, F.; Amberger, D.C.; Rogers, N.; Krämer, D.; Rank, A.; Schmid, C.; Eiz-Vesper, B.; et al. Interferon Gamma Secretion of Adaptive and Innate Immune Cells as a Parameter to Describe Leukaemia-Derived Dendritic-Cell-Mediated Immune Responses in Acute Myeloid Leukaemia in vitro. Transfus. Med. Hemother. 2021, 49, 44–61. [Google Scholar] [CrossRef]
- Parkin, J.; Cohen, B. An overview of the immune system. Lancet 2001, 357, 1777–1789. [Google Scholar] [CrossRef]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef]
- Beutler, B. Innate immunity: An overview. Mol. Immunol. 2004, 40, 845–859. [Google Scholar] [CrossRef]
- Schmeel, L.C.; Schmeel, F.; Coch, C.; Schmidt-Wolf, I.G.H. Cytokine-induced killer (CIK) cells in cancer immunotherapy: Report of the international registry on CIK cells (IRCC). J. Cancer Res. Clin. Oncol. 2014, 141, 839–849. [Google Scholar] [CrossRef]
- Franks, S.; Wolfson, B.; Hodge, J. Natural Born Killers: NK Cells in Cancer Therapy. Cancers 2020, 12, 2131. [Google Scholar] [CrossRef]
- Boeck, C.L.; Amberger, D.C.; Doraneh-Gard, F.; Sutanto, W.; Guenther, T.; Schmohl, J.; Schuster, F.; Salih, H.; Babor, F.; Borkhardt, A.; et al. Significance of Frequencies, Compositions, and/or Antileukemic Activity of (DC-stimulated) Invariant NKT, NK and CIK Cells on the Outcome of Patients With AML, ALL and CLL. J. Immunother. 2017, 40, 224–248. [Google Scholar] [CrossRef]
- Bonilla, F.A.; Oettgen, H.C. Adaptive immunity. J. Allergy Clin. Immunol. 2010, 125, S33–S40. [Google Scholar] [CrossRef]
- Betts, M.R.; Brenchley, J.M.; Price, D.A.; De Rosa, S.C.; Douek, D.C.; Roederer, M.; Koup, R.A. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 2003, 281, 65–78. [Google Scholar] [CrossRef]
- Pepeldjiyska, E.; Li, L.; Gao, J.; Seidel, C.L.; Blasi, C.; Özkaya, E.; Schmohl, J.; Kraemer, D.; Schmid, C.; Rank, A.; et al. Leukemia derived dendritic cell (DCleu) mediated immune response goes along with reduced (leukemia-specific) regulatory T-cells. Immunobiology 2022, 227, 152237. [Google Scholar] [CrossRef]
- Letsch, A.; Scheibenbogen, C. Quantification and characterization of specific T-cells by antigen-specific cytokine production using ELISPOT assay or intracellular cytokine staining. Methods 2003, 31, 143–149. [Google Scholar] [CrossRef]
- Kienzle, N.; Olver, S.; Buttigieg, K.; Kelso, A. The fluorolysis assay, a highly sensitive method for measuring the cytolytic activity of T cells at very low numbers. J. Immunol. Methods 2002, 267, 99–108. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harb. Protoc. 2018, 2018. [Google Scholar] [CrossRef]
- Hynes, R.O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef]
- Rivera-Nieves, J.; Ley, K. Role of β7 Integrins in Intestinal Lymphocyte Homing and Retention. Curr. Mol. Med. 2009, 9, 836–850. [Google Scholar] [CrossRef]
- Murakami, J.L.; Xu, B.; Franco, C.B.; Hu, X.; Galli, S.J.; Weissman, I.L.; Chen, C.-C. Evidence that β7 Integrin Regulates Hematopoietic Stem Cell Homing and Engraftment Through Interaction with MAdCAM-1. Stem Cells Dev. 2016, 25, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erle, D.J.; Briskin, M.J.; Butcher, E.C.; Garcia-Pardo, A.; Lazarovits, A.I.; Tidswell, M. Expression and function of the MAdCAM-1 receptor, integrin alpha 4 beta 7, on human leukocytes. J. Immunol. 1994, 153, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.T.; Keir, M.E.; Erickson, R.; Stefanich, E.G.; Fuh, F.K.; Ramirez-Montagut, T.; McBride, J.M.; Danilenko, D.M. Review article: Nonclinical and clinical pharmacology, pharmacokinetics and pharmacodynamics of etrolizumab, an anti-β7 integrin therapy for inflammatory bowel disease. Aliment. Pharmacol. Ther. 2018, 47, 1440–1452. [Google Scholar] [CrossRef] [Green Version]
- Reeves, R.K.; Evans, T.I.; Gillis, J.; Johnson, R.P. Simian Immunodeficiency Virus Infection Induces Expansion of α4β7 + and Cytotoxic CD56 + NK Cells. J. Virol. 2010, 84, 8959–8963. [Google Scholar] [CrossRef] [Green Version]
- Hardenberg, J.-H.B.; Braun, A.; Schön, M.P. A Yin and Yang in Epithelial Immunology: The Roles of the αE(CD103)β7 Integrin in T Cells. J. Investig. Dermatol. 2018, 138, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heitmann, J.S.; Hagelstein, I.; Hinterleitner, C.; Roerden, M.; Jung, G.; Salih, H.R.; Märklin, M.; Kauer, J. Identification of CD318 (CDCP1) as novel prognostic marker in AML. Ann. Hematol. 2020, 99, 477–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graf, M.; Reif, S.; Kröll, T.; Hecht, K.; Nuessler, V.; Schmetzer, H. Expression of MAC-1 (CD11b) in acute myeloid leukemia (AML) is associated with an unfavorable prognosis. Am. J. Hematol. 2006, 81, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Ma, H.-Z.; Zhang, H. Detection and Analysis of T Lymphocyte Subsets and B Lymphocytes in Patients with Acute Leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2019, 27, 327–330. [Google Scholar]
- Yang, W.; Xu, Y. Clinical significance of Treg cell frequency in acute myeloid leukemia. Int. J. Hematol. 2013, 98, 558–562. [Google Scholar] [CrossRef]
- Van Tendeloo, V.F.; Van de Velde, A.; Van Driessche, A.; Cools, N.; Anguille, S.; Ladell, K.; Gostick, E.; Vermeulen, K.; Pieters, K.; Nijs, G.; et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl. Acad. Sci. USA 2010, 107, 13824–13829. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Vergé, V.; Baron, C.; Martinache, C.; Leon, A.; Scholl, S.; Gorin, N.-C.; Salamero, J.; Assari, S.; Bernard, J.; et al. Cutting Edge Communication: In Vitro Generation of Dendritic Cells from Human Blood Monocytes in Experimental Conditions Compatible for In Vivo Cell Therapy. J. Hematother. 2000, 9, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.H.; Deen, D.; Fischer, Z.; Rabe, A.; Ansprenger, C.; Stein, K.; Vogt, V.; Schick, J.; Kroell, T.; Kraemer, D.; et al. Role of Interferon (IFN)α in “Cocktails” for the Generation of (Leukemia-derived) Dendritic Cells (DCleu) From Blasts in Blood From Patients (pts) With Acute Myeloid Leukemia (AML) and the Induction of Antileukemic Reactions. J. Immunother. 2019, 42, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Schwepcke, C.; Klauer, L.K.; Deen, D.; Amberger, D.C.; Fischer, Z.; Doraneh-Gard, F.; Gunsilius, C.; Hirn-Lopez, A.; Kroell, T.; Tischer, J.; et al. Generation of Leukaemia-Derived Dendritic Cells (DCleu) to Improve Anti-Leukaemic Activity in AML: Selection of the Most Efficient Response Modifier Combinations. Int. J. Mol. Sci. 2022, 23, 8333. [Google Scholar] [CrossRef] [PubMed]
- Logan, C.; Koura, D.; Taplitz, R. Updates in infection risk and management in acute leukemia. Hematology 2020, 2020, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Teague, R.M.; Kline, J. Immune evasion in acute myeloid leukemia: Current concepts and future directions. J. Immunother. Cancer 2013, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Schorle, H.; Holtschke, T.; Hünig, T.; Schimpl, A.; Horak, I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 1991, 352, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Sun, H.; Cao, W.; Song, Y.; Jiang, Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp. Hematol. Oncol. 2022, 11, 3. [Google Scholar] [CrossRef]
- Steger, B.; Milosevic, S.; Doessinger, G.; Reuther, S.; Liepert, A.; Braeu, M.; Schick, J.; Vogt, V.; Schuster, F.; Kroell, T.; et al. CD4+ and CD8+T-cell reactions against leukemia-associated- or minor-histocompatibility-antigens in AML-patients after allogeneic SCT. Immunobiol. 2013, 219, 247–260. [Google Scholar] [CrossRef]
- Bordon, Y. Sorting, sorted! Nat. Rev. Immunol. 2016, 16, 657. [Google Scholar] [CrossRef]
- Li, L.; Giannopoulos, K.; Reinhardt, P.; Tabarkiewicz, J.; Schmitt, A.; Greiner, J.; Rolinski, J.M.; Hus, I.; Dmoszynska, A.; Wiesneth, M.; et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int. J. Oncol. 2006, 28, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Van De Loosdrecht, A.A.; Van Wetering, S.; Santegoets, S.J.A.M.; Singh, S.K.; Eeltink, C.M.; den Hartog, Y.; Koppes, M.; Kaspers, J.; Ossenkoppele, G.J.; Kruisbeek, A.M.; et al. A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission treatment of elderly patients with acute myeloid leukemia. Cancer Immunol. Immunother. 2018, 67, 1505–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, M.; Liang, D.; Li, Y.; Kong, D.; Kang, P.; Li, K.; Ping, C.; Zhang, Y.; Zhou, X.; Hong, L. Autologous Dendritic Cells Combined with Cytokine-Induced Killer Cells Synergize Low-Dose Chemotherapy in Elderly Patients with Acute Myeloid Leukaemia. J. Int. Med Res. 2012, 40, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Stroopinsky, D.; Liegel, J.; Bhasin, M.; Cheloni, G.; Thomas, B.; Bhasin, S.; Panchal, R.; Ghiasuddin, H.; Rahimian, M.; Nahas, M.; et al. Leukemia vaccine overcomes limitations of checkpoint blockade by evoking clonal T cell responses in a murine acute myeloid leukemia model. Haematologica 2021, 106, 1330–1342. [Google Scholar] [CrossRef] [PubMed]
- Anguille, S.; Van de Velde, A.L.; Smits, E.L.; Van Tendeloo, V.F.; Juliusson, G.; Cools, N.; Nijs, G.; Stein, B.; Lion, E.; Van Driessche, A.; et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood 2017, 130, 1713–1721. [Google Scholar] [CrossRef] [Green Version]
- Roddie, H.; Klammer, M.; Thomas, C.; Thomson, R.; Atkinson, A.; Sproul, A.; Waterfall, M.; Samuel, K.; Yin, J.; Johnson, P.; et al. Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br. J. Haematol. 2006, 133, 152–157. [Google Scholar] [CrossRef]
- Schmitt, M.; Schmitt, A.; Rojewski, M.T.; Chen, J.; Giannopoulos, K.; Fei, F.; Yu, Y.; Götz, M.; Heyduk, M.; Ritter, G.; et al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 2008, 111, 1357–1365. [Google Scholar] [CrossRef]
- Adan, A.; Kiraz, Y.; Baran, Y. Cell Proliferation and Cytotoxicity Assays. Curr. Pharm. Biotechnol. 2016, 17, 1213–1221. [Google Scholar] [CrossRef]
- Lowin, B.; Hahne, M.; Mattmann, C.; Tschopp, J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 1994, 370, 650–652. [Google Scholar] [CrossRef]
- Rabinovich, G.A.; Gabrilovich, D.; Sotomayor, E.M. Immunosuppressive Strategies that are Mediated by Tumor Cells. Annu. Rev. Immunol. 2007, 25, 267–296. [Google Scholar] [CrossRef] [Green Version]
- Bennett, J.M.; Catovsky, D.; Daniel, M.-T.; Flandrin, G.; Galton, D.A.G.; Gralnick, H.R.; Sultan, C. Proposals for the Classification of the Acute Leukaemias French-American-British (FAB) Co-operative Group. Br. J. Haematol. 1976, 33, 451–458. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2017. [Google Scholar]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, P.; Cox, C.; Lebeau, M.M.; Fenaux, P.; Morel, P.; Sanz, G.; Sanz, M.; Vallespi, T.; Hamblin, T.; Oscier, D.; et al. International Scoring System for Evaluating Prognosis in Myelodysplastic Syndromes. Blood 1997, 89, 2079–2088. [Google Scholar] [CrossRef]
- Böyum, A. Separation of leukocytes from blood and bone marrow. Introduction. Scand. J. Clin. Lab. Invest. Suppl. 1968, 97, 7. [Google Scholar]
- Willasch, A.; Eing, S.; Weber, G.; Kuci, S.; Schneider, G.; Soerensen, J.; Jarisch, A.; Rettinger, E.; Koehl, U.; Klingebiel, T.; et al. Enrichment of cell subpopulations applying automated MACS technique: Purity, recovery and applicability for PCR-based chimerism analysis. Bone Marrow Transplant. 2009, 45, 181–189. [Google Scholar] [CrossRef]
- Whitfield, S.J.C.; Taylor, C.; Risdall, J.E.; Griffiths, G.D.; Jones, J.T.A.; Williamson, E.D.; Rijpkema, S.; Saraiva, L.; Vessillier, S.; Green, A.C.; et al. Interference of the T Cell and Antigen-Presenting Cell Costimulatory Pathway Using CTLA4-Ig (Abatacept) Prevents Staphylococcal Enterotoxin B Pathology. J. Immunol. 2017, 198, 3989–3998. [Google Scholar] [CrossRef] [Green Version]
- Betts, M.R.; Koup, R.A. Detection of T-Cell Degranulation: CD107a and b. Methods Cell Biol. 2004, 75, 497–512. [Google Scholar] [CrossRef]
- Kufner, S.; Zitzelsberger, H.; Kroell, T.; Pelka-Fleischer, R.; Salem, A.; de Valle, F.; Schweiger, C.; Nuessler, V.; Schmid, C.; Kolb, H.J.; et al. Leukemia-Derived Dendritic Cells can be Generated from Blood or Bone Marrow Cells from Patients with Acute Myeloid Leukaemia: A Methodological Approach under Serum-Free Culture Conditions. Scand. J. Immunol. 2005, 62, 86–98. [Google Scholar] [CrossRef]
Group | Subgroup | Acronym | Markers | Abbrev. (Referred to Cell Fraction) | Reference |
---|---|---|---|---|---|
T-cells | T-cells | T | CD3+ | CD3+cells | [14] |
Transferrin-R-positive late-proliferating T-cells | Tprol-late | CD3+CD71+ | Tprol-late/CD3+ | [14] | |
Type II C- type lectin-positive early-proliferating T-cells | Tprol-early | CD3+CD69+ | Tprol-early/CD3+ | [14] | |
CD4-positive T-cells | TCD4+ | CD4+CD3+ | TCD4+/CD3+ | [14] | |
CD4-negative T-cells | TCD4− | CD4−CD3+ | TCD4−/CD3+ | [14] | |
Non-naive T-cells | Tnon-naive | CD3+CD45RO+ | Tnon-naive/CD3+ | [15] | |
Naive T-cells | Tnaive | CD3+CD45RO− | Tnaive/CD3+ | [15] | |
Central memory T-cells | Tcm | CD3+CD45RO+CCR7+ | Tcm/CD3+ | [15] | |
CD4-positive non-naive T-cells | Tnon-naiveCD4+ | CD3+CD4+CD45RO+ | Tnon-naiveCD4+/TCD4+ | [10] | |
CD4-negative non-naive T-cells | Tnon-naiveCD4− | CD3+CD4−CD45RO+ | Tnon-naiveCD4−/TCD4− | [10] | |
blasts | Blasts | Bla | e.g: CD15, CD34, CD65, CD117, | Bla/cells | [16] |
Proliferating blasts | Blaprol-CD71 | CD71+Bla+DC− | Blaprol-CDl71/Bla | [17] | |
Proliferating blasts | Blaprol−IPO38 | IPO38+Bla+DC− | Blaprol-IPO38/Bla | [17] | |
dendritic cells | Dendritic cells | DC | CD80, CD206, CD209, CD83 | DC/cells | [12] |
Mature DC | DCmat | DC+CCR7+ | DCmat/cells DCmat/DC | [13] | |
Leukemia-derived DC | DCleu | Bla+DC+ | DCleu/cells DCleu/DC DCleu/Bla | [12] | |
Mature leukemia-derived DC | DCleu-mat | Bla+DC+CCR7+ | DCleu-mat/cells DCleu-mat/DCleu DCleu-mat/DCmat | [17] | |
others | Cytokine-induced killer cells | CIK | CD3+CD56+ | CIK/cells | [10] |
Natural killer cells | NK | CD3−CD56+ | NK/cells | [10] | |
Monocytes | Mon | CD14+ | Mon/cells | [10] | |
Proliferating monocytes | Monprol-CD71 | CD71+CD14+DC− | Monprol-CD71/Mon | ||
B-cells | B | CD19+ | CD19+/cells | [10] | |
Integrin beta 7 (β7) | β7-positive T-cells | Tβ7+ | β7+CD3+ | Tβ7+/CD3+ | [15] |
β7-positive CIK-cells | CIKβ7+ | β7+CD3+CD56+ | CIKβ7+/CIK | ||
β7-positive NK-cells | NKβ7+ | β7+CD3−CD56+ | NKβ7+/NK | [18] | |
β7-positive non naive T-cells | Tnon-naiveβ7+ | β7+CD3+CD45RO− | Tnon-naiveβ7+/Tnon-naive | [15] | |
β7-positive naive T-cells | Tnaiveβ7+ | β7+CD3+CD45RO+ | Tnaiveβ7+/Tnaive | [15] | |
β7-positive central memory T-cells | Tcmβ7+ | β7+CCR7+CD3+CD45RO+ | Tcmβ7+/Tcm | [15] | |
DEG | CD107a-positive β7-positive T-cells | Tβ7+107a+ | CD107a+β7+CD3+ | Tβ7+107a+/T β7+ | [19] |
CD107a-positive β7-positive CIK-cells | CIKβ7+107a+ | CD107a+β7+CD3+CD56+ | CIKβ7+107a+/CIKβ7+ | [19] | |
CD 107a-positive β7-positive NK-cells | NKβ7+107a+ | CD107a+β7+CD3−CD56+ | NKβ7+107a+/NKβ7+ | [19] | |
INTCYT | TNF alpha-positive β7-positive T-cells | Tβ7+TNFα+ | TNFa+β7+CD3+ | Tβ7+TNFα+/Tβ7+ | [20] |
IFN gamma-positive β7-positive T-cells | Tβ7+IFNγ+ | IFNg+β7+CD3+ | Tβ7+IFNγ+/Tβ7+ | [21] |
Diagn. | No. | Age | Sex | Subtype | Stage | Ic bla | Blast Phenotype [cd] | Risk Class. | Response | Exp. |
---|---|---|---|---|---|---|---|---|---|---|
AML | 1444 | 35 | f | p/M1 | dgn. | 41 | 33, 65, 15, 34, 117 | favorable | yes | DC; MLC; CTX |
AML | 1540 | 83 | f | p/M1 | dgn. | 32 | 13, 34, 33, 15, 117, 56 | favorable | no | DC; MLC; CTX; D/I |
AML | 1427 | 52 | m | p/M2 | dgn. | 94 | 13, 33, 34, 117 | favorable | no | DC; MLC; CTX |
AML | 1541 | 82 | f | p/M2 | dgn. | 15 | 15, 34, 117 | interm. | no | DC; MLC; CTX; D/I |
AML | 1442 | 73 | f | p/M4 | dgn. | 15 | 33, 13, 34, 117, 15 | interm. | yes | DC; MLC; CTX |
AML | 1459 | 54 | m | p/M4 | dgn. | 51 | 33, 64, 15, 4, 56, 14 | favorable | yes | DC; MLC; CTX |
AML | 1430 | 79 | m | p/M5 | dgn. | 62 | 13, 33, 34, 117 | favorable | nd | DC; MLC; CTX |
AML | 1432 | 34 | m | p/M5 | dgn. | 57 | 34, 13, 33, 64, 4 | interm. | yes | DC; MLC; CTX |
AML | 1466 | 47 | f | p/M5 | dgn. | 11 | 33, 15, 13, 117, 34 | adverse | yes | DC; MLC; CTX |
AML | 1575 | 62 | f | p/M5a | dgn. | 75 | 14, 56, 64, 65, 4 | interm. | yes | DC; MLC; CTX; D/I |
AML | 1452 | 44 | m | p/nd | dgn. | 11 | 34, 117, 33, 13 | interm. | no | DC; MLC; CTX |
AML | 1568 | 29 | m | p/nd | dgn. | 69 | 34, 117, 33, 13, 19, 20, 65 | interm. | no | DC; MLC; CTX; D/I |
AML | 1570 | 36 | f | p/nd | dgn. | 11 | 34, 117, 65, 13, 33 | favorable | no | DC; MLC; CTX; D/I |
AML | 1492 | 52 | f | s/M2 | dgn. | 38 | 117, 34, 13, 33, 7, 15 | nd | no | DC; MLC; CTX |
AML | 1542 | 58 | f | s/M4 | dgn. | 52 | 13, 33, 34, 117, 15, 65, 64, 2, 56, 14 | adverse | no | DC; MLC; CTX; D/I |
AML | 1426 | 61 | f | s/M5 | dgn. | 34 | 13, 33, 34, 64, 117, 14 | adverse | yes | DC; MLC; CTX |
AML | 1464 | 72 | m | s/nd | dgn. | 38 | 34, 117, 13 | nd | nd | DC; MLC; CTX |
AML | 1555 | 46 | f | s/nd | dgn. | 20 | 33, 14, 15, 117, 13 | favorable | nd | DC; MLC; D/I |
AML | 1574 | 56 | m | s/nd | dgn. | 41 | 34, 117, 15, 19 | nd | no | DC; MLC; CTX; D/I |
AML | 1571 | 61 | m | p/M2 | rel. | 18 | 117, 33, 13, 7 | nd | yes | DC; MLC; CTX; D/I |
AML | 1424 | 37 | f | p/M4 | rel. | 13 | 13, 14, 33, 117 | nd | nd | DC; MLC; CTX |
AML | 1548 | 87 | m | p/M5a | rel. | 12 | 33, 15, 117, 34, 56 | nd | no | DC; MLC; CTX; D/I |
AML | 1449 | 78 | m | s/nd | rel. | 32 | 65, 14, 15, 33, 56, 34 | nd | nd | DC; MLC; CTX |
AML | 1482 | 75 | m | s/nd | rel. | 12 | 117, 13, 64, 15, 117, 33 | nd | nd | DC; MLC; CTX |
AML | 1546 | 80 | m | p/nd | pers. | 22 | 33, 34, 13, 117, 14, 65 | nd | no | DC; MLC; |
AML | 1470 | 67 | m | p/nd | PR a. SCT | 38 | 33, 117, 34, 56, 65 | nd | no | DC; MLC |
AML | 1457 | 63 | m | s/nd | rel. a. SCT | 37 | 34, 117, 13, 65, 15 | nd | no | DC; MLC; CTX |
AML | 1543 | 61 | m | p/nd | rel. a. SCT. | 38 | 13, 33, 117, 56, 34 | nd | no | DC; MLC; CTX |
MDS | 1567 | 98 | f | MDS | dgn. | 14 | 34, 117, 15, 65, 56, 14 | very high | nd | DC; MLC; CTX; D/I |
MDS | 1573 | 61 | m | MDS | dgn. | 12 | 34, 117, 65, 13, 61 | high | no | DC; MLC; CTX; D/I |
MDS | 1572 | 63 | f | MDS-EB2 | dgn. | 10 | 34, 117, 65, 33, 13 | very high | no | DC; MLC; CTX; D/I |
healthy | 1417 | 34 | f | DC; MLC | ||||||
healthy | 1418 | 22 | m | DC; MLC | ||||||
healthy | 1421 | 27 | f | DC; MLC | ||||||
healthy | 1422 | 20 | f | DC; MLC | ||||||
healthy | 1425 | 27 | m | DC; MLC | ||||||
healthy | 1428 | 56 | f | DC; MLC | ||||||
healthy | 1429 | 22 | f | DC; MLC | ||||||
healthy | 1431 | 22 | m | DC; MLC | ||||||
healthy | 1436 | 25 | m | DC; MLC | ||||||
healthy | 1440 | 20 | f | DC; MLC | ||||||
healthy | 1448 | 27 | f | DC; MLC | ||||||
healthy | 1458 | 21 | f | DC; MLC | ||||||
healthy | 1544 | 22 | m | DC; MLC; D/I | ||||||
healthy | 1545 | 32 | m | DC; MLC; D/I | ||||||
healthy | 1547 | 46 | f | DC; MLC; D/I | ||||||
healthy | 1566 | 54 | f | DC; MLC; D/I | ||||||
healthy | 1576 | 55 | m | DC; MLC; D/I | ||||||
healthy | 1578 | 32 | m | DC; MLC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rackl, E.; Li, L.; Klauer, L.K.; Ugur, S.; Pepeldjiyska, E.; Seidel, C.L.; Gunsilius, C.; Weinmann, M.; Doraneh-Gard, F.; Reiter, N.; et al. Dendritic Cell-Triggered Immune Activation Goes along with Provision of (Leukemia-Specific) Integrin Beta 7-Expressing Immune Cells and Improved Antileukemic Processes. Int. J. Mol. Sci. 2023, 24, 463. https://doi.org/10.3390/ijms24010463
Rackl E, Li L, Klauer LK, Ugur S, Pepeldjiyska E, Seidel CL, Gunsilius C, Weinmann M, Doraneh-Gard F, Reiter N, et al. Dendritic Cell-Triggered Immune Activation Goes along with Provision of (Leukemia-Specific) Integrin Beta 7-Expressing Immune Cells and Improved Antileukemic Processes. International Journal of Molecular Sciences. 2023; 24(1):463. https://doi.org/10.3390/ijms24010463
Chicago/Turabian StyleRackl, Elias, Lin Li, Lara Kristina Klauer, Selda Ugur, Elena Pepeldjiyska, Corinna L. Seidel, Carina Gunsilius, Melanie Weinmann, Fatemeh Doraneh-Gard, Nina Reiter, and et al. 2023. "Dendritic Cell-Triggered Immune Activation Goes along with Provision of (Leukemia-Specific) Integrin Beta 7-Expressing Immune Cells and Improved Antileukemic Processes" International Journal of Molecular Sciences 24, no. 1: 463. https://doi.org/10.3390/ijms24010463
APA StyleRackl, E., Li, L., Klauer, L. K., Ugur, S., Pepeldjiyska, E., Seidel, C. L., Gunsilius, C., Weinmann, M., Doraneh-Gard, F., Reiter, N., Plett, C., Amberger, D. C., Bojko, P., Kraemer, D., Schmohl, J., Rank, A., Schmid, C., & Schmetzer, H. M. (2023). Dendritic Cell-Triggered Immune Activation Goes along with Provision of (Leukemia-Specific) Integrin Beta 7-Expressing Immune Cells and Improved Antileukemic Processes. International Journal of Molecular Sciences, 24(1), 463. https://doi.org/10.3390/ijms24010463