Comprehensive Analyses of the Histone Deacetylases Tuin (HDT) Gene Family in Brassicaceae Reveals Their Roles in Stress Response
Abstract
:1. Introduction
2. Results
2.1. Identification and Characterization of HDT Genes in B. napus, B. rapa and B. oleracea
2.2. Phylogenetic Analysis and Chromosomal Locations of HDT Genes in B. napus, B. rapa and B. oleracea
2.3. Motif Analysis (MEME) of HDT
2.4. Expression Profiling of HDT Genes in Different Tissues
2.5. Expression Profiling of HDT Genes under Abiotic Stress and Phytohormone Treatments
2.6. Expression Profiling of HDT Genes under Low Temperature Stress
2.7. Expression Profiling of HDT Genes under Biotic Stress Stress
3. Discussion
4. Materials and Methods
4.1. Identification of the HDT Gene Family
4.2. Analysis of Gene Structure, Motif Composition
4.3. Phylogenetic Analysis and Chromosomal Locations
4.4. Plant Materials and Treatments, Heat Map Analysis of the HDT Transcriptome Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neganova, M.E.; Klochkov, S.G.; Aleksandrova, Y.R.; Aliev, G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin. Cancer Biol. 2022, 83, 452–471. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, J.; Demidov, D.; Houben, A.; Schubert, I. Chromosomal histone modification patterns—From conservation to diversity. Trends Plant Sci. 2006, 11, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Zentner, G.E.; Henikoff, S. Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 2013, 20, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, Y.Y.; Liu, X.; Yang, S.; Lu, Q.; Cui, Y.; Wu, K. HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J. Exp. Bot. 2012, 63, 3297–3306. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.S.; Tian, L. HD2-type histone deacetylases: Unique regulators of plant development and stress responses. Plant Cell Rep. 2021, 40, 1603–1615. [Google Scholar] [CrossRef]
- Hollender, C.; Liu, Z. Histone Deacetylase Genes in Arabidopsis Development. J. Integr. Plant Biol. 2008, 50, 875–885. [Google Scholar] [CrossRef]
- Yruela, I.; Moreno-Yruela, C.; Olsen, C.A. Zn(2+)-Dependent Histone Deacetylases in Plants: Structure and Evolution. Trends Plant Sci. 2021, 26, 741–757. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Zhang, W.; Zhao, J.H.; Zhang, J.X.; Wu, K.Q.; Tian, L.N.; Duan, J. Histone acetyltransferases in rice (Oryza sativa L.): Phylogenetic analysis, subcellular localization and expression. BMC Plant Biol. 2012, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Bourque, S.; Jeandroz, S.; Grandperret, V.; Lehotai, N.; Aime, S.; Soltis, D.E.; Miles, N.W.; Melkonian, M.; Deyholos, M.K.; Leebens-Mack, J.H.; et al. The Evolution of HD2 Proteins in Green Plants. Trends Plant Sci. 2016, 21, 1008–1016. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Z.; Liu, Y.; An, Z.; Peng, M.; Shen, W.H.; Dong, A.; Yu, Y. MRG1/2 histone methylation readers and HD2C histone deacetylase associate in repression of the florigen gene FT to set a proper flowering time in response to day-length changes. New Phytol. 2020, 227, 1453–1466. [Google Scholar] [CrossRef]
- Farhi, J.; Tian, G.; Fang, H.; Maxwell, D.; Xing, T.; Tian, L. Histone deacetylase HD2D is involved in regulating plant development and flowering time in Arabidopsis. Plant Signal. Behav. 2017, 12, e1300742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, R.; Takebayashi, Y.; Nambara, E.; Kamiya, Y.; Seo, M. Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana. Plant J. 2013, 74, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Torres-Garcia, J.; Latrasse, D.; Benhamed, M.; Schilderink, S.; Zhou, W.; Kulikova, O.; Hirt, H.; Bisseling, T. Plant-Specific Histone Deacetylases HDT1/2 Regulate GIBBERELLIN 2-OXIDASE2 Expression to Control Arabidopsis Root Meristem Cell Number. Plant Cell 2017, 29, 2183–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.Q.; Tian, L.N.; Malik, K.; Brown, D.; Miki, B. Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana. Plant J. 2000, 22, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Gao, Q.; Chen, G.; Guo, J.E.; Guo, X.; Tang, B.; Hu, Z. SlHDA5, a Tomato Histone Deacetylase Gene, Is Involved in Responding to Salt, Drought, and ABA. Plant Mol. Biol. Rep. 2017, 36, 36–44. [Google Scholar] [CrossRef]
- Zhu, J.H.; Yun, D.J.; Bressan, R.A.; Jeong, J.; Zhu, Y.; Sokolchik, I.; Miyazaki, S.; Zhu, J.K.; Hasegawa, P.M.; Bohnert, H.J. Involvement of Arabidopsis HOS15 In histone deacetylation and cold tolerance. Proc. Natl. Acad. Sci. USA 2008, 105, 4945–4950. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Yu, H.; Zhao, Z.; Hunter, D.; Luo, X.; Duan, J.; Tian, L. AtHD2D Gene Plays a Role in Plant Growth, Development, and Response to Abiotic Stresses in Arabidopsis thaliana. Front. Plant Sci. 2016, 7, 310. [Google Scholar] [CrossRef] [Green Version]
- Sridha, S.; Wu, K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J. 2006, 46, 124–133. [Google Scholar] [CrossRef]
- Zhou, C.; Labbe, H.; Sridha, S.; Wang, L.; Tian, L.; Latoszek-Green, M.; Yang, Z.; Brown, D.; Miki, B.; Wu, K. Expression and function of HD2-type histone deacetylases in Arabidopsis development. Plant J. 2004, 38, 715–724. [Google Scholar] [CrossRef]
- Dangl, M.; Brosch, G.; Haas, H.; Loidl, P.; Lusser, A. Comparative analysis of HD2 type histone deacetylases in higher plants. Planta 2001, 213, 280–285. [Google Scholar] [CrossRef]
- Ritu, P.; Andreas, M.; Napoli, C.A.; Selinger, D.A.; Pikaard, C.S.; Richards, E.J.; Bender, J.; Mount, D.W.; Jorgensen, R.A. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversfication of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 2002, 30, 5036–5055. [Google Scholar]
- Wu, K.Q.; Tian, L.N.; Zhou, C.H.; Brown, D.; Miki, B. Repression of gene expression by Arabidopsis HD2 histone deacetylases. Plant J. 2003, 34, 8. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y.; Ishikawa, T.; Watanabe, K.; Terakura, S.; Iwakawa, H.; Okada, K.; Machida, C.; Machida, Y. Histone deacetylases and ASYMMETRIC LEAVES2 are involved in the establishment of polarity in leaves of Arabidopsis. Plant Cell 2007, 19, 445–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zhang, J.; Zhang, W.; Wu, K.; Zheng, F.; Tian, L.; Liu, X.; Duan, J. Expression and functional analysis of the plant-specific histone deacetylase HDT701 in rice. Front. Plant Sci. 2014, 5, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.E.; Hu, Z.; Li, F.; Zhang, L.; Yu, X.; Tang, B.; Chen, G. Silencing of histone deacetylase SlHDT3 delays fruit ripening and suppresses carotenoid accumulation in tomato. Plant Sci. 2017, 265, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Qin, F.; Huang, L.; Sun, Q.; Li, C.; Zhao, Y.; Zhou, D.X. Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem. Biophys. Res. Commun. 2009, 388, 266–271. [Google Scholar] [CrossRef]
- Marie Lagac, S.C.C.; Geneviève, M.; Daniel, P.M. Fertilization induces strong accumulation of a histone deacetylase (HD2) and of other chromatin-remodeling proteins in restricted areas of the ovules. Plant Mol. Biol. 2003, 53, 759–769. [Google Scholar] [CrossRef]
- Demetriou, K.; Kapazoglou, A.; Tondelli, A.; Francia, E.; Stanca, M.A.; Bladenopoulos, K.; Tsaftaris, A.S. Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment. Physiol. Plant 2009, 136, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Bourque, S.; Dutartre, A.; Hammoudi, V.; Blanc, S.; Dahan, J.; Jeandroz, S.; Pichereaux, C.; Rossignol, M.; Wendehenne, D. Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants. New Phytol. 2011, 192, 127–139. [Google Scholar] [CrossRef]
- Lim, C.J.; Park, J.; Shen, M.; Park, H.J.; Cheong, M.S.; Park, K.S.; Baek, D.; Bae, M.J.; Ali, A.; Jan, M.; et al. The Histone-Modifying Complex PWR/HOS15/HD2C Epigenetically Regulates Cold Tolerance. Plant Physiol. 2020, 184, 1097–1111. [Google Scholar] [CrossRef]
- Cheng, F.; Sun, R.; Hou, X.; Zheng, H.; Zhang, F.; Zhang, Y.; Liu, B.; Liang, J.; Zhuang, M.; Liu, Y.; et al. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat. Genet. 2016, 48, 1218–1224. [Google Scholar] [CrossRef] [PubMed]
- Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.; Tang, H.; Wang, X.; Chiquet, J.; Belcram, H.; Tong, C.; Samans, B.; et al. Erratum: Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014, 345, 950–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, F.; Fan, G.; Hu, Q.; Zhou, Y.; Guan, M.; Tong, C.; Li, J.; Du, D.; Qi, C.; Jiang, L.; et al. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J. 2017, 92, 452–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Liu, Y.; Yang, X.; Tong, C.; Edwards, D.; Parkin, I.A.; Zhao, M.; Ma, J.; Yu, J.; Huang, S.; et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 2014, 5, 3930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, C.; Wang, X.; Yu, J.Y.; Wu, J.; Li, W.S.; Huang, J.Y.; Dong, C.H.; Hua, W.; Liu, S. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genom. 2013, 14, 689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Xie, S.; Xie, P.; Yao, M.; Liu, W.; Qin, L.; Liu, Z.; Zheng, M.; Liu, H.; Guan, M.; et al. Genome-wide identification of stress-associated proteins (SAP) with A20/AN1 zinc finger domains associated with abiotic stresses responses in Brassica napus. Environ. Exp. Bot. 2019, 165, 108–119. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, 412–419. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 9. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Wang, W.; Liu, J.; Yao, M.; Guan, M.; Guan, C.; He, X. Phytochrome-interacting factor (PIF) in rapeseed (Brassica napus L.): Genome-wide identification, evolution and expression analyses during abiotic stress, light quality and vernalization. Int. J. Biol. Macromol. 2021, 180, 14–27. [Google Scholar] [CrossRef]
- Gao, P.; Quilichini, T.D.; Yang, H.; Li, Q.; Nilsen, K.T.; Qin, L.; Babic, V.; Liu, L.; Cram, D.; Pasha, A.; et al. Evolutionary divergence in embryo and seed coat development of U’s Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. New Phytol. 2022, 233, 30–51. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liao, L.; Xie, S.; Yao, M.; Xie, P.; Liu, W.; Kang, Y.; Huang, L.; Wang, M.; Qian, L.; et al. Comprehensive analyses of the annexin (ANN) gene family in Brassica rapa, Brassica oleracea and Brassica napus reveals their roles in stress response. Sci. Rep. 2020, 10, 4295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Ni, X.C.; Xie, P.; Liu, W.; Yao, M.; Kang, Y.; Qian, L.W.; Hua, W. Comparative Transcriptome Analyses Revealed Conserved and Novel Responses to Cold and Freezing Stress in Brassica napus L. G3 2019, 9, 2723–2737. [Google Scholar] [CrossRef] [PubMed]
- Girard, I.J.; Tong, C.; Becker, M.G.; Mao, X.; Huang, J.; De Kievit, T.; Fernando, W.G.D.; Liu, S.; Belmonte, M.F. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection. J. Exp. Bot. 2017, 68, 5079–5091. [Google Scholar] [CrossRef] [PubMed]
Homologous Gene in B. rape/B. oleracea/B. napus | Gene ID | Nucleotide Length (bp) | Amino Acid | Domains | Isoelectric Point Prediction | Molecular Weight (kD) | Number of Introns | Number of Exons | Predicted Subcellular Localization | Chromosome Location | |
---|---|---|---|---|---|---|---|---|---|---|---|
HDT1 | Arabidopsis | AT3G44750 | 738 | 245 | NPL | 4.8566 | 26.372 | 7 | 8 | Nuclear | Chr3:16,297,656-16,299,876 |
B. rape | NO | ||||||||||
B. oleracea | Bo1g063760 | 984 | 327 | NPL | 4.8506 | 35.48 | 10 | 11 | Nuclear | C9:53771260-53773620 | |
B. napus | BnaC01g23930D | 984 | 327 | NPL | 4.8506 | 35.48 | 10 | 11 | Nuclear | ChrC01:371,077-374,932 | |
HDT2 | Arabidopsis | AT5G22650 | 918 | 305 | NPL | 4.4405 | 32.218 | 8 | 9 | Nuclear | Chr5:7,534,017-7,536,273 |
B. rape | Bra002425 | 786 | 261 | NPL | 4.391 | 28.085 | 5 | 6 | Nuclear | A10:9,653,453-9,655,071 | |
B. oleracea | Bo9g148250 | 801 | 266 | NPL | 4.6089 | 28.727 | 6 | 7 | Nuclear | C9:43880123-43881813 | |
B. napus | BnaC09g36350D | 783 | 260 | NPL | 4.7321 | 28.027 | 6 | 7 | Nuclear | ChrC09:229,647-231,492 | |
BnaA10g13800D | 786 | 261 | NPL | 4.3778 | 27.973 | 5 | 6 | Nuclear | ChrA10:60,660-62,567 | ||
B. rape | Bra006629 | 822 | 273 | NPL | 4.3589 | 29.371 | 4 | 5 | Nuclear | A03:4,353,992-4,355,262 | |
B. oleracea | Bo3g016960 | 819 | 272 | NPL | 4.418 | 29.167 | 4 | 5 | Nuclear | C3:5486467-5487752 | |
B. napus | BnaA03g08590D | 828 | 275 | NPL | 4.3442 | 29.495 | 4 | 5 | Nuclear | ChrA03:952,360-953,862 | |
BnaC03g10890D | 828 | 275 | NPL | 4.4263 | 29.574 | 4 | 5 | Nuclear | ChrC03:3,176,327-3,177,870 | ||
B. rape | Bra020207 | 840 | 279 | NPL | 8.8665 | 31.737 | 4 | 5 | NONE | ChrA02:5,568,145-5,570,144 | |
B. oleracea | Bo2g024210 | 939 | 312 | NPL | 6.96 | 35.64 | 7 | 8 | NONE | C2:6606801-6609175 | |
Bo2g024220 | 939 | 312 | NPL | 8.0531 | 35.565 | 5 | 6 | NONE | ChrC2:6614008-6616054 | ||
B. napus | BnaA02g05820D | 933 | 310 | NPL | 8.3296 | 35.276 | 5 | 6 | NONE | ChrA02:390,454-392,883 | |
NO | |||||||||||
B. rape | Bra020206 | 555 | 184 | NPL | 4.3025 | 19.974 | 2 | 3 | Nuclear | A02:5,565,814-5,566,844 | |
B. oleracea | Bo2g024200 | 1494 | 497 | NPL | 6.2865 | 56.102 | 7 | 8 | NONE | C2:6598993-6603942 | |
B. napus | BnaA02g05810D | 555 | 184 | NPL | 4.3025 | 19.974 | 2 | 3 | Nuclear | ChrA02:387,265-388,818 | |
NO | |||||||||||
B. rape | Bra020204 | 525 | 174 | NPL | 3.9815 | 18.988 | 2 | 3 | Nuclear | A02:5,555,265-5,556,304 | |
B. oleracea | Bo2g024150 | 489 | 162 | NPL | 3.881 | 17.763 | 2 | 3 | Nuclear | C2:6578131-6580929 | |
B. napus | BnaA02g05790D | 525 | 174 | NPL | 3.9815 | 18.988 | 2 | 3 | Nuclear | 031993:378,511-379,705 | |
BnaCnng34610D | 489 | 162 | NPL | 3.881 | 17.763 | 2 | 3 | Nuclear | ChrCnng:33,627-36,691 | ||
B. rape | Bra020209 | 903 | 300 | NPL | 4.4385 | 31.901 | 5 | 6 | Nuclear | A02:5,572,571-5,574,144 | |
B. oleracea | Bo2g024240 | 903 | 300 | NPL | 4.4385 | 32.051 | 5 | 6 | Nuclear | C2:6623475-6625018 | |
B. napus | BnaA02g05840D | 1047 | 348 | NPL | 4.4926 | 36.905 | 6 | 7 | Nuclear | ChrA02:393,948-396,765 | |
BnaC02g09720D | 903 | 300 | NPL | 4.4192 | 31.939 | 5 | 6 | Nuclear | ChrC02:292,978-294,839 | ||
HDT3 | Arabidopsis | AT5G03740 | 885 | 294 | NPL | 4.5108 | 31.830 | 7 | 8 | Nuclear | Chr5:981,859-984,289 |
B. rape | Bra009513 | 1083 | 360 | NPL | 4.468 | 39.679 | 6 | 7 | Nuclear | A10:17,010,728-17,012,399 | |
B. oleracea | Bo9g181760 | 972 | 323 | NPL | 4.3532 | 35.343 | 6 | 7 | Nuclear | C9:53,771,597-53,773,283 | |
B. napus | NO | ||||||||||
BnaCnng02600D | 1071 | 356 | NPL | 4.5045 | 39.242 | 7 | 8 | Nuclear | ChrCnng:25,960-27,981 | ||
HDT4 | Arabidopsis | AT2G27840 | 546 | 181 | NPL | 3.9932 | 20.073 | 6 | 7 | Nuclear | Chr2:11,861,806-11,863,908 |
B. rape | Bra034373 | 648 | 215 | NPL | 4.387 | 23.75 | 7 | 8 | Nuclear | A04:12,193,709-12,195,064 | |
B. oleracea | Bo4g164870 | 648 | 215 | NPL | 4.4398 | 23.793 | 7 | 8 | Nuclear | C4:44092147-44093599 | |
B. napus | BnaA04g16080D | 663 | 220 | NPL | 4.4965 | 24.205 | 6 | 7 | Nuclear | ChrA04:234,940-236,511 | |
BnaC04g39350D | 648 | 215 | NPL | 4.387 | 23.739 | 6 | 7 | Nuclear | ChrC04:1,402,081-1,403,742 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, P.; Liu, W.; Ren, R.; Kang, Y.; Liu, Y.; Jia, Y.; Qian, L.; He, X.; Guan, C. Comprehensive Analyses of the Histone Deacetylases Tuin (HDT) Gene Family in Brassicaceae Reveals Their Roles in Stress Response. Int. J. Mol. Sci. 2023, 24, 525. https://doi.org/10.3390/ijms24010525
Xie P, Liu W, Ren R, Kang Y, Liu Y, Jia Y, Qian L, He X, Guan C. Comprehensive Analyses of the Histone Deacetylases Tuin (HDT) Gene Family in Brassicaceae Reveals Their Roles in Stress Response. International Journal of Molecular Sciences. 2023; 24(1):525. https://doi.org/10.3390/ijms24010525
Chicago/Turabian StyleXie, Pan, Wei Liu, Rui Ren, Yu Kang, Yan Liu, Yuan Jia, Lunwen Qian, Xin He, and Chunyun Guan. 2023. "Comprehensive Analyses of the Histone Deacetylases Tuin (HDT) Gene Family in Brassicaceae Reveals Their Roles in Stress Response" International Journal of Molecular Sciences 24, no. 1: 525. https://doi.org/10.3390/ijms24010525
APA StyleXie, P., Liu, W., Ren, R., Kang, Y., Liu, Y., Jia, Y., Qian, L., He, X., & Guan, C. (2023). Comprehensive Analyses of the Histone Deacetylases Tuin (HDT) Gene Family in Brassicaceae Reveals Their Roles in Stress Response. International Journal of Molecular Sciences, 24(1), 525. https://doi.org/10.3390/ijms24010525