Development of Human Adrenocortical Adenoma (HAA1) Cell Line from Zona Reticularis
Abstract
:1. Introduction
2. Results
2.1. Developing the Novel HAA1 Cell Line from a Benign Neoplasm
2.2. HAA1 Cells Exhibit Some Characteristics of the Progenitor Cells of the Adrenal
2.3. Increased Expression of Master Regulators alone Does Not Induce Re-Differentiation in HAA1 Cells
2.4. HAA1 Cells Respond to HDACis by Reprogramming Their Gene Expression
2.5. Multiple HDACs Contribute to Repression of Differentiation in the HAA1 Cells
2.6. RNA-Seq Analysis of Gene Expression in HAA1 Cells
2.7. Chromosomal Characteristics
2.8. Quantitative Characterization of the Steroidogenic Synthesis in HAA1 Cells upon HDACi Treatment
2.9. Short Tandem Repeat (STR) Analysis
3. Discussion
4. Materials and Methods
4.1. The HAA1 Cell Line Derivation
4.2. Ectopic Gene Expression in HAA1 Cells
4.3. Immunocytochemistry
4.4. Western Blot Analysis
4.5. Chromosome Analysis
4.6. HDACi Treatment
4.7. Total RNA Extraction, First cDNA Synthesis and Quantitative RT-PCR (qPCR)
4.8. RNAseq Analysis
4.9. Liquid Chromatography—Tandem Mass-Spectrometry (LC-MS/MS) Analysis
4.10. Short Tandem Repeat (STR) Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanaka, S.; Matsuzawa, A. Comparison of adrenocortical zonation in C57BL/6J and DDD mice. Exp. Anim. 1995, 44, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, S.; Nishimura, M.; Kitoh, J.; Matsuzawa, A. Strain difference of the adrenal cortex between A/J and SM/J mice, progenitors of SMXA recombinant inbred group. Exp. Anim. 1995, 44, 127–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inomata, A.; Sasano, H. Practical approaches for evaluating adrenal toxicity in nonclinical safety assessment. J. Toxicol. Pathol. 2015, 28, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gannon, A.L.; O’Hara, L.; Mason, J.I.; Jorgensen, A.; Frederiksen, H.; Milne, L.; Smith, S.; Mitchell, R.T.; Smith, L.B. Androgen receptor signalling in the male adrenal facilitates X-zone regression, cell turnover and protects against adrenal degeneration during ageing. Sci. Rep. 2019, 9, 10457. [Google Scholar] [CrossRef] [Green Version]
- Ghayee, H.K.; Auchus, R.J. Basic concepts and recent developments in human steroid hormone biosynthesis. Rev. Endocr. Metab. Disord. 2007, 8, 289–300. [Google Scholar] [CrossRef]
- Simon, D.P.; Hammer, G.D. Adrenocortical stem and progenitor cells: Implications for adrenocortical carcinoma. Mol. Cell. Endocrinol. 2012, 351, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Wood, M.A.; Acharya, A.; Finco, I.; Swonger, J.M.; Elston, M.J.; Tallquist, M.D.; Hammer, G.D. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus. Development 2013, 140, 4522–4532. [Google Scholar] [CrossRef] [Green Version]
- Morohashi, K.; Honda, S.; Inomata, Y.; Handa, H.; Omura, T. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J. Biol. Chem. 1992, 267, 17913–17919. [Google Scholar] [CrossRef]
- Luo, X.; Ikeda, Y.; Parker, K.L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994, 77, 481–490. [Google Scholar] [CrossRef]
- Achermann, J.C.; Ozisik, G.; Ito, M.; Orun, U.A.; Harmanci, K.; Gurakan, B.; Jameson, J.L. Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J. Clin. Endocrinol. Metab. 2002, 87, 1829–1833. [Google Scholar] [CrossRef]
- Achermann, J.C.; Ito, M.; Hindmarsh, P.C.; Jameson, J.L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet. 1999, 22, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Tevosian, S.; Jimenez, E.; Hatch, H.M.; Jiang, T.; Morse, D.A.; Fox, S.; Padua, M.B. Adrenal Development in Mice Requires GATA4 and GATA6 Transcription Factors. Endocrinology 2015, 156, 2503–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padua, M.B.; Jiang, T.; Morse, D.A.; Fox, S.C.; Hatch, H.M.; Tevosian, S.G. Combined Loss of the GATA4 and GATA6 Transcription Factors in Male Mice Disrupts Testicular Development and Confers Adrenal-Like Function in the Testes. Endocrinology 2015, 156, 1873–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rainey, W.E.; Bird, I.M.; Mason, J.I. The NCI-H295 cell line: A pluripotent model for human adrenocortical studies. Mol. Cell. Endocrinol. 1994, 100, 45–50. [Google Scholar] [CrossRef]
- Wang, T.; Rainey, W.E. Human adrenocortical carcinoma cell lines. Mol. Cell. Endocrinol. 2012, 351, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Gazdar, A.F.; Oie, H.K.; Shackleton, C.H.; Chen, T.R.; Triche, T.J.; Myers, C.E.; Chrousos, G.P.; Brennan, M.F.; Stein, C.A.; La Rocca, R.V. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res. 1990, 50, 5488–5496. [Google Scholar]
- Newbold, A.; Falkenberg, K.J.; Prince, M.H.; Johnstone, R.W. How do tumor cells respond to HDAC inhibition? FEBS J. 2016, 283, 4032–4046. [Google Scholar] [CrossRef] [Green Version]
- Gallo-Payet, N. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH. J. Mol. Endocrinol. 2016, 56, T135–T156. [Google Scholar] [CrossRef] [Green Version]
- King, P.; Paul, A.; Laufer, E. SHH signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages. Proc. Natl. Acad. Sci. USA 2009, 106, 21185–21190. [Google Scholar] [CrossRef] [Green Version]
- Bandiera, R.; Vidal, V.P.; Motamedi, F.J.; Clarkson, M.; Sahut-Barnola, I.; von Gise, A.; Pu, W.T.; Hohenstein, P.; Martinez, A.; Schedl, A. WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland. Dev. Cell 2013, 27, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.C.; Miyagawa, S.; Matsumaru, D.; Parker, K.L.; Yao, H.H. Progenitor cell expansion and organ size of mouse adrenal is regulated by sonic hedgehog. Endocrinology 2010, 151, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Ching, S.; Vilain, E. Targeted disruption of Sonic Hedgehog in the mouse adrenal leads to adrenocortical hypoplasia. Genesis 2009, 47, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Ghayee, H.K.; Rege, J.; Watumull, L.M.; Nwariaku, F.E.; Carrick, K.S.; Rainey, W.E.; Miller, W.L.; Auchus, R.J. Clinical, biochemical, and molecular characterization of macronodular adrenocortical hyperplasia of the zona reticularis: A new syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E243–E250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubair, M.; Oka, S.; Parker, K.L.; Morohashi, K. Transgenic expression of Ad4BP/SF-1 in fetal adrenal progenitor cells leads to ectopic adrenal formation. Mol. Endocrinol. 2009, 23, 1657–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riggs, M.G.; Whittaker, R.G.; Neumann, J.R.; Ingram, V.M. n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 1977, 268, 462–464. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.T. Modification of chromatin with acetic anhydride. Biochemistry 1971, 10, 4466–4470. [Google Scholar] [CrossRef]
- Easwaran, H.; Tsai, H.C.; Baylin, S.B. Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell 2014, 54, 716–727. [Google Scholar] [CrossRef] [Green Version]
- Rainey, W.E. Adrenal zonation: Clues from 11beta-hydroxylase and aldosterone synthase. Mol. Cell. Endocrinol. 1999, 151, 151–160. [Google Scholar] [CrossRef]
- Shahbazian, M.D.; Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 2007, 76, 75–100. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, J.; Zhuang, L.; Jiang, X.; Liu, E.T.; Yu, Q. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc. Natl. Acad. Sci. USA 2005, 102, 16090–16095. [Google Scholar] [CrossRef] [Green Version]
- Juan, L.J.; Shia, W.J.; Chen, M.H.; Yang, W.M.; Seto, E.; Lin, Y.S.; Wu, C.W. Histone deacetylases specifically down-regulate p53-dependent gene activation. J. Biol. Chem. 2000, 275, 20436–20443. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Weng, J.H.; Huang, C.C.; Chung, B.C. Histone deacetylase inhibitors reduce steroidogenesis through SCF-mediated ubiquitination and degradation of steroidogenic factor 1 (NR5A1). Mol. Cell. Biol. 2007, 27, 7284–7290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014, 13, 673–691. [Google Scholar] [CrossRef] [PubMed]
- Boeger, H.; Griesenbeck, J.; Strattan, J.S.; Kornberg, R.D. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 2003, 11, 1587–1598. [Google Scholar] [CrossRef]
- Reinke, H.; Horz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 2003, 11, 1599–1607. [Google Scholar] [CrossRef]
- Schones, D.E.; Cui, K.; Cuddapah, S.; Roh, T.Y.; Barski, A.; Wang, Z.; Wei, G.; Zhao, K. Dynamic regulation of nucleosome positioning in the human genome. Cell 2008, 132, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Uchida, T.; Nishimoto, K.; Fukumura, Y.; Asahina, M.; Goto, H.; Kawano, Y.; Shimizu, F.; Tsujimura, A.; Seki, T.; Mukai, K.; et al. Disorganized Steroidogenesis in Adrenocortical Carcinoma, a Case Study. Endocr. Pathol. 2017, 28, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, R.; Kamilaris, T.C.; Calogero, A.E.; Johnson, E.O.; Gomez, M.T.; Gold, P.W.; Chrousos, G.P. Interactions between tumor necrosis factor-alpha, hypothalamic corticotropin-releasing hormone, and adrenocorticotropin secretion in the rat. Endocrinology 1990, 126, 2876–2881. [Google Scholar] [CrossRef] [Green Version]
- Hantel, C.; Ozimek, A.; Lira, R.; Ragazzon, B.; Jackel, C.; Frantsev, R.; Reincke, M.; Bertherat, J.; Mussack, T.; Beuschlein, F. TNF alpha signaling is associated with therapeutic responsiveness to vascular disrupting agents in endocrine tumors. Mol. Cell. Endocrinol. 2016, 423, 87–95. [Google Scholar] [CrossRef]
- Mikhaylova, I.V.; Kuulasmaa, T.; Jaaskelainen, J.; Voutilainen, R. Tumor necrosis factor-alpha regulates steroidogenesis, apoptosis, and cell viability in the human adrenocortical cell line NCI-H295R. Endocrinology 2007, 148, 386–392. [Google Scholar] [CrossRef]
- Murakami, M.; Yoshimoto, T.; Nakano, Y.; Tsuchiya, K.; Minami, I.; Bouchi, R.; Fujii, Y.; Nakabayashi, K.; Hashimoto, K.; Hata, K.I.; et al. Expression of inflammation-related genes in aldosterone-producing adenomas with KCNJ5 mutation. Biochem. Biophys. Res. Commun. 2016, 476, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Heyninck, K.; Beyaert, R. Crosstalk between NF-kappaB-activating and apoptosis-inducing proteins of the TNF-receptor complex. Mol. Cell Biol. Res. Commun. 2001, 4, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Fotin-Mleczek, M.; Henkler, F.; Samel, D.; Reichwein, M.; Hausser, A.; Parmryd, I.; Scheurich, P.; Schmid, J.A.; Wajant, H. Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J. Cell Sci. 2002, 115 Pt 13, 2757–2770. [Google Scholar] [CrossRef]
- Ye, P.; Nakamura, Y.; Lalli, E.; Rainey, W.E. Differential effects of high and low steroidogenic factor-1 expression on CYP11B2 expression and aldosterone production in adrenocortical cells. Endocrinology 2009, 150, 1303–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Yang, W.H.; Gerin, I.; Hu, C.D.; Hammer, G.D.; Koenig, R.J. Dax-1 and steroid receptor RNA activator (SRA) function as transcriptional coactivators for steroidogenic factor 1 in steroidogenesis. Mol. Cell. Biol. 2009, 29, 1719–1734. [Google Scholar] [CrossRef] [Green Version]
- Witchel, S.F.; Lee, P.A.; Suda-Hartman, M.; Trucco, M.; Hoffman, E.P. Evidence for a heterozygote advantage in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1997, 82, 2097–2101. [Google Scholar] [CrossRef]
- Doi, M.; Takahashi, Y.; Komatsu, R.; Yamazaki, F.; Yamada, H.; Haraguchi, S.; Emoto, N.; Okuno, Y.; Tsujimoto, G.; Kanematsu, A.; et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat. Med. 2010, 16, 67–74. [Google Scholar] [CrossRef]
- Morales, A.; Vilchis, F.; Chavez, B.; Morimoto, S.; Chan, C.; Robles-Diaz, G.; Diaz-Sanchez, V. Differential expression of steroidogenic factors 1 and 2, cytochrome p450scc, and steroidogenic acute regulatory protein in human pancreas. Pancreas 2008, 37, 165–169. [Google Scholar] [CrossRef]
- Shimizu, C.; Fuda, H.; Yanai, H.; Strott, C.A. Conservation of the hydroxysteroid sulfotransferase SULT2B1 gene structure in the mouse: Pre- and postnatal expression, kinetic analysis of isoforms, and comparison with prototypical SULT2A1. Endocrinology 2003, 144, 1186–1193. [Google Scholar] [CrossRef] [Green Version]
- Mantel, A.; Carpenter-Mendini, A.B.; Vanbuskirk, J.B.; De Benedetto, A.; Beck, L.A.; Pentland, A.P. Aldo-keto reductase 1C3 is expressed in differentiated human epidermis, affects keratinocyte differentiation, and is upregulated in atopic dermatitis. J. Investig. Derm. 2012, 132, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Rhoads, K.; Sacco, J.C.; Drescher, N.; Wong, A.; Trepanier, L.A. Individual variability in the detoxification of carcinogenic arylhydroxylamines in human breast. Toxicol Sci 2011, 121, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Batalha, V.L.; Ferreira, D.G.; Coelho, J.E.; Valadas, J.S.; Gomes, R.; Temido-Ferreira, M.; Shmidt, T.; Baqi, Y.; Buee, L.; Muller, C.E.; et al. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci. Rep. 2016, 6, 31493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turcu, A.F.; Rege, J.; Chomic, R.; Liu, J.; Nishimoto, H.K.; Else, T.; Moraitis, A.G.; Palapattu, G.S.; Rainey, W.E.; Auchus, R.J. Profiles of 21-Carbon Steroids in 21-hydroxylase Deficiency. J. Clin. Endocrinol. Metab. 2015, 100, 2283–2290. [Google Scholar] [CrossRef] [PubMed]
- Turcu, A.F.; Nanba, A.T.; Chomic, R.; Upadhyay, S.K.; Giordano, T.J.; Shields, J.J.; Merke, D.P.; Rainey, W.E.; Auchus, R.J. Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency. Eur. J. Endocrinol. 2016, 174, 601–609. [Google Scholar] [CrossRef]
Top Canonical Pathways | ||
---|---|---|
Name | p-Value | Overlap |
Superpathway of Cholesterol Biosynthesis | 6.72 × 10−15 | 53.6% 15/28 |
LXR/RXR Activation | 1.89 × 10−12 | 20.7% 25/121 |
Hepatic Fibrosis/Hepatic Stellate Cell Activation | 2.10 × 10−12 | 16.6% 31/187 |
Cholesterol Biosynthesis I | 7.59 × 10−11 | 69.2% 9/13 |
Cholesterol Biosynthesis II (via 24,25, dihydrolanosterol) | 7.59 × 10−11 | 69.2% 9/13 |
Top Upstream Regulators | p value of overlap | Predicted activation |
TNF | 1.47 × 10−55 | Activated |
IL1B | 9.44 × 10−35 | Activated |
Cg | 6.48 × 10−34 | Activated |
TGFB1 | 1.32 × 10−32 | Activated |
Beta-estradiol | 1.73 × 10−30 |
Amelogenin | CSF1PO | D13S317 | D16S539 | D18S51 | D19S433 | D21S11 | D2S1338 | |
---|---|---|---|---|---|---|---|---|
HAA1 | X, Y | 11 | 12, 13 | 9, 11 | 14, 18 | 14, 15 | 27, 32.2 | 24, 25 |
D3S1358 | D5S818 | D7S820 | D8S1179 | FGA * | TH01 | TPOX | vWA | |
HAA1 | 14, 18 | 12 | 8 | 10, 14 | 21, 22, 24 | 7. 9.3 | 8, 10 | 16, 18 |
Gene Name | Primers | Reference |
---|---|---|
1. CYP11B1 | CYP11B1_For: GGCAGAGGCAGAGATGCTG CYP11B1_REV: TCTTGGGTTAGTGTCTCCACCTG | [44] |
2. CYP11B2 | CYP11B2_FOR: GGCAGAGGCAGAGATGCTG CYP11B2_REV: CTTGAGTTAGTGTCTCCACCAGGA | [44] |
3. CYP17A1 | CYP17A1_For: TGTGGACAAGGGCACAGAAG CYP17A1_Rev: GGATTCAAGAAACGCTCAGGC | [45] |
4. CYP11A1 | CYP11A1_FOR: AGCTAGAGATGACCATCTTCC CYP11A1_REV: GGCATCAGAATGAGGTTGAATG | [45] |
5. CYP21A2 | Cyp21a2_FOR: ACCTGTCCTTGGGAGACTAC Cyp21a2_REV: TGCGCTCACAGAACTCCTGGGT | [46] |
6. HSD3B2 | HSD3B2_FOR: AGAAGAGCCTCTGGAAAACACATG HSD3B2_REV: CGCACAAGTGTACAAGGTATCACCA | [47] |
7. NR5A1 | NR5A1_For: TGGCTACCTCTACCCTGCCTTTCC NR5A1_Rev: GCCTTCTCCTGAGCGTCTTTCACC | [48] |
8. StAR | hStAR For: AAGACCAAACTTACGTGGC hStAR Rev: GTGGTTGGCAAAATCCACC | [45] |
9. MC2R | MC2R_For: AGCCTGTCTGTGATTGCTG MC2R_Rev: AGATGACCGTAAGCACCACC | [45] |
10. SULT2A1 | SULT2A1_For: TGATGTCAGACTATAATTGGTTTGAAGGC SULT2A1_Rev: GGTTATGAGTCGTGGTCCTTCCTTATTG | [49] |
11. AKR1C3 | AKR1C3_For: GAGAAGTAAAGCTTTGGAGGTCACA AKR1C3_Rev: CAACCTGCTCCTCATTATTGTATAAATGA | [50] |
12. CYB5A | CYB5A_For: CCAAAGTTAAACAAGCCTCCG CYB5A_Rev: TGTTCAGTCCTCTGCCATG | [51] |
13. CYPA | CYPA_For: TATCTGCACTGCCAAGACTGAGTG CYPA_Rev: CTTCTTGCTGGTCTTGCCATTCC | [52] |
14. ACTN | hbAct_For: TCACCATTGGCAATGAGCG hbAct_Rev: TGGAGTTGAAGGTAGTTTCGTG | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghayee, H.K.; Xu, Y.; Hatch, H.; Brockway, R.; Multani, A.S.; Gu, T.; Bollag, W.B.; Turcu, A.; Rainey, W.E.; Rege, J.; et al. Development of Human Adrenocortical Adenoma (HAA1) Cell Line from Zona Reticularis. Int. J. Mol. Sci. 2023, 24, 584. https://doi.org/10.3390/ijms24010584
Ghayee HK, Xu Y, Hatch H, Brockway R, Multani AS, Gu T, Bollag WB, Turcu A, Rainey WE, Rege J, et al. Development of Human Adrenocortical Adenoma (HAA1) Cell Line from Zona Reticularis. International Journal of Molecular Sciences. 2023; 24(1):584. https://doi.org/10.3390/ijms24010584
Chicago/Turabian StyleGhayee, Hans K., Yiling Xu, Heather Hatch, Richard Brockway, Asha S. Multani, Tongjun Gu, Wendy B. Bollag, Adina Turcu, William E. Rainey, Juilee Rege, and et al. 2023. "Development of Human Adrenocortical Adenoma (HAA1) Cell Line from Zona Reticularis" International Journal of Molecular Sciences 24, no. 1: 584. https://doi.org/10.3390/ijms24010584
APA StyleGhayee, H. K., Xu, Y., Hatch, H., Brockway, R., Multani, A. S., Gu, T., Bollag, W. B., Turcu, A., Rainey, W. E., Rege, J., Nanba, K., Bhagwandin, V. J., Nwariaku, F., Stastny, V., Gazdar, A. F., Shay, J. W., Auchus, R. J., & Tevosian, S. G. (2023). Development of Human Adrenocortical Adenoma (HAA1) Cell Line from Zona Reticularis. International Journal of Molecular Sciences, 24(1), 584. https://doi.org/10.3390/ijms24010584