Early-Life Exposure to Traffic-Related Air Pollutants Induced Anxiety-like Behaviors in Rats via Neurotransmitters and Neurotrophic Factors
Abstract
:1. Introduction
2. Results
2.1. Assessment of Overall Toxicity
2.2. Anxiety-Related Behavior Assessment
2.2.1. Open Field Test
2.2.2. Elevated Plus Maze
2.2.3. Light Dark Transition Test
2.2.4. Novelty-Induced Hypophagia Test
2.3. Messenger RNA Expression Assay
2.3.1. Neurotransmitter Receptor Levels in the Hippocampus
2.3.2. Neurotrophin Levels in the Hippocampus
2.3.3. Proinflammatory Cytokines and Oxidative Stress Markers in the Hippocampus
2.4. Immunohistochemical Analyses
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Exposure to Clean Air, DE, or DE-SOA
4.3. Behavioral Assessment
4.3.1. Open Field Test
4.3.2. Elevated Plus Maze Test
4.3.3. Light Dark Transition Test
4.3.4. Novelty-Induced Hypophagia Test
4.4. MessengerRNA Expression Assay
4.5. Immunohistochemical Analyses
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASD | autism spectrum disorder |
DE | diesel exhaust |
DE-SOA | diesel exhaust (DE)-origin secondary organic aerosol |
5-HT1A | 5-hydroxytryptamine (serotonin) receptor 1A |
Drd2 | dopamine receptor D2 |
BDNF | brain-derived neurotrophic factor |
VEGFA | vascular endothelial growth factor A |
IL-1β | interleukin -1β |
COX2 | cyclooxygenase 2 |
HO1 | heme oxygenase 1 |
TNFα | tumor necrosis factor α |
Iba1 | ionized calcium binding adaptor molecule 1 |
PND | postnatal day |
References
- Win-Shwe, T.T.; Mitsushima, D.; Yamamoto, S.; Fukushima, A.; Funabashi, T.; Kobayashi, T.; Fujimaki, H. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure. Toxicol. Appl. Pharmacol. 2007, 226, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Win-Shwe, T.T.; Mitsushima, D.; Yamamoto, S.; Fujitani, Y.; Funabashi, T.; Hirano, S.; Fujimaki, H. Extracellular glutamate level and NMDA receptor subunit expression in mouse olfactory bulb following nanoparticle-rich diesel exhaust exposure. Inhal. Toxicol. 2009, 21, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Win-Shwe, T.T.; Yamamoto, S.; Fujitani, Y.; Hirano, S.; Fujimaki, H. Spatial learning and memory function-related gene expression in the hippocampus of mouse exposed to nanoparticle-rich diesel exhaust. Neurotoxicology 2008, 29, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Win-Shwe, T.T.; Yamamoto, S.; Fujitani, Y.; Hirano, S.; Fujimaki, H. Nanoparticle-rich diesel exhaust affects hippocampal-dependent spatial learning and NMDA receptor subunit expression in female mice. Nanotoxicology 2012, 6, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Win-Shwe, T.T.; Fujimaki, H.; Fujitani, Y.; Hirano, S. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust. Toxicol. Appl. Pharmacol. 2012, 262, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Win-Shwe, T.T.; Kyi-Tha-Thu, C.; Moe, Y.; Fujitani, Y.; Tsukahara, S.; Hirano, S. Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males. Front Neurosci. 2016, 9, 524. [Google Scholar] [CrossRef] [Green Version]
- Freire, C.; Ramos, R.; Puertas, R.; Lopez-Espinosa, M.J.; Julvez, J.; Aguilera, I.; Cruz, F.; Fernandez, M.F.; Sunyer, J.; Olea, N. Association of traffic-related air pollution with cognitive development in children. J. Epidemiol. Community Health 2010, 64, 223–228. [Google Scholar] [CrossRef]
- Calderon-Garciduenas, L.; Franco-Lira, M.; Henriquez-Roldan, C.; Osnaya, N.; Gomzalez-Maciel, A.; Reynoso-Robles, R.; Villareal-Calderon, R.; Herritt, L.; Brooks, D.; Keefe, S.; et al. Urban air pollution: Influences on olfactory function and pathology in exposed children and young adults. Exp. Toxicol. Pathol. 2010, 62, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Fonken, L.K.; Xu, X.; Weil, Z.M.; Chen, G.; Sun, Q.; Rajagopalan, S.; Nelson, R.J. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol. Psychiatry 2011, 16, 987–995. [Google Scholar] [CrossRef] [Green Version]
- Guxens, M.; Sunyer, J. A review of epidemiological studies on neuropsychological effects of air pollution. Swiss Med. Wkly. 2012, 141, w13322. [Google Scholar] [CrossRef]
- Crüts, B.; Driessen, A.; van Etten, L.; Törnqvist, H.; Blomberg, A.; Sandström, T.; Mills, N.L.; Borm, P.J. Exposure to diesel exhaust induces changes in EEG I human volunteers. Part. Fibre Toxicol. 2008, 5, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderón-Garcidueñas, L.; Solt, A.C.; Henríquez-Roldán, C.; Torres-Jardón, R.; Nuse, B.; Herritt, L.; Reed, W. Long-term Air Pollution Exposure Is Associated with Neuroinflammation, an Altered Innate Immune Response, Disruption of the Blood-Brain Barrier, Ultrafine Particulate Deposition, and Accumulation of Amyloid β-42 and α-Synuclein in Children and Young Adults. Toxicol. Pathol. 2008, 36, 289–310. [Google Scholar] [CrossRef] [PubMed]
- Levesque, S.; Surace, M.J.; McDonald, J.; Block, M.L. Air pollution and the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J. Neuroinflammation 2011, 8, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.; Liu, B.; Song, J.; Cheng, J.; Wang, H.; Su, H. Association between traffic-related air pollution and anxiety hospitalizations in a coastal Chinese city: Are there potentially susceptible groups? Environ. Res. 2022, 209, 112832. [Google Scholar] [CrossRef] [PubMed]
- Oberdoerster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Veronesi, B.; Calderón-Garcidueñas, L.; Gehr, P.; Chen, L.C.; Geiser, M.; Reed, W.; Rothen-Rutishauser, B.; Schürch, S.; Schulz, H. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part. Fibre Toxicol. 2006, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Oberdoerster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Lunts, A.; Kreyling, W.; Cox, C. Extra-pulmonary translocation of ultrafine carbon particles following whole body inhalation exposure of rats. J. Toxicol. Environ. Health A 2002, 65, 1531–1543. [Google Scholar] [CrossRef]
- Genc, S.; Zadeoglulari, Z.; Fuss, S.H.; Genc, K. The adverse effects of air pollution on the nervous system. J. Toxicol. 2012, 2012, 782462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.; Davis, D.A.; Hasheminassab, S.; Sioutas, C.; Morgan, T.E.; Finch, C.E. Urban traffic-derived nanoparticulate matter reduces neurite outgrowth via TNFα in vitro. J. Neuroinflammation 2016, 26, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.G.; Cole, T.B.; Coburn, J.; Chang, Y.C.; Dao, K.; Roqué, P.J. Neurotoxicity of traffic-related air pollution. Neurotoxicology 2017, 59, 133–139. [Google Scholar] [CrossRef]
- Tachibana, K.; Takayanagi, K.; Akimoto, A.; Ueda, K.; Shinkai, Y.; Umezawa, M.; Takeda, K. Prenatal diesel exhaust exposure disrupts the DNA methylation profile in the brain of mouse offspring. J. Toxicol. Sci. 2015, 40, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Win-Shwe, T.T.; Kyi-Tha-Thu, C.; Fujitani, Y.; Tsukahara, S.; Hirano, S. Perinatal Exposure to Diesel Exhaust-Origin Secondary Organic Aerosol Induces Autism-Like Behavior in Rats. Int. J. Mol. Sci. 2021, 22, 538. [Google Scholar] [CrossRef] [PubMed]
- Revest, J.M.; Dupret, D.; Koehl, M.; Funk-Reiter, C.; Grosjean, N.; Piazza, P.V.; Abrous, D.N. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol. Psychiatry 2009, 14, 959–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanselow, M.S.; Dong, H.W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010, 65, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strange, B.A.; Witter, M.P.; Lein, E.S.; Moser, E.I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 2014, 15, 655–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, J.C.; Su, K.; Goldberg, A.R.; Luna, V.M.; Biane, J.S.; Ordek, G.; Zhou, P.; Ong, S.K.; Wright, M.A.; Zweifel, L.; et al. Anxiety Cells in a Hippocampal-Hypothalamic Circuit. Neuron 2018, 97, 670–683.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulawa, S.C.; Holick, K.A.; Gundersen, B.; Hen, R. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004, 29, 1321–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunsberger, J.; Duman, C. Animal models for depression-like and anxiety-like behavior. Protoc. Exch. 2007, 1–13. [Google Scholar] [CrossRef]
- Vaughan, A. China Tops WHO List for Deadly Outdoor Air Pollution. The Guardian, 27 September 2016. [Google Scholar]
- Frampton, M.W.; Rich, D.Q. Does particle size matter? Ultrafine particles and hospital visits in Eastern Europe. Am. J. Respir. Crit. Care Med. 2016, 194, 1180–1182. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. 2014 National Emissions Inventory; United States Environmental Protection Agency: Washington, DC, USA, 2018.
- United States Environmental Protection Agency. Greenhouse Gas Emissions from a Typical Passenger Vehicle; United States Environmental Protection Agency: Washington, DC, USA, 2018.
- Forns, J.; Dadvand, P.; Foraster, M.; Alvarez-Pedrerol, M.; Rivas, I.; López-Vicente, M.; Suades-Gonzalez, E.; Garcia-Esteban, R.; Esnaola, M.; Cirach, M.; et al. Traffic-related air pollution, noise at school, and behavioral problems in Barcelona schoolchildren: A cross-sectional study. Environ. Health Perspect. 2016, 124, 529–535. [Google Scholar] [CrossRef]
- Yolton, K.; Khoury, J.C.; Burkle, J.; LeMasters, G.; Cecil, K.; Ryan, P. Lifetime exposure to traffic-related air pollution and symptoms of depression and anxiety at age 12 years. Environ. Res. 2019, 173, 199–206, Correction in Environ. Res. 2019, 176, 108519. [Google Scholar] [CrossRef] [PubMed]
- Brunst, K.J.; Ryan, P.H.; Altaye, M.; Yolton, K.; Maloney, T.; Beckwith, T.; Cecil, K.M.; LeMasters, G. Myo-inositol mediates the effects of traffic-related air pollution on generalized anxiety symptoms at age 12 years. Environ. Res. 2019, 175, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Lanfumey, L.; Mongeau, R.; Cohen-Salmon, C.; Hamon, M. Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci. Biobehav. Rev. 2008, 32, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Heisler, L.K.; Chu, H.-M.; Brennan, T.J.; Danao, J.A.; Bajwa, P.; Parsons, L.H.; Tecott, L.H. Elevated anxiety and antidepressant-like responses in serotonin 5-HT 1A receptor mutant mice. Proc. Natl. Acad. Sci. USA 1998, 95, 15049–15054. [Google Scholar] [CrossRef] [Green Version]
- Parks, C.L.; Robinson, P.S.; Sibille, E.; Shenk, T.; Toth, M. Increased anxiety of mice lacking the serotonin 1A receptor. Proc. Natl. Acad. Sci. USA 1998, 95, 10734–10739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusserow, H.; Davies, B.; Hörtnagl, H.; Voigt, I.; Stroh, T.; Bert, B.; Theuring, F. Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin 1A receptors. Brain Res. Mol. Brain Res. 2004, 129, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Lawford, B.R.; Young, R.; Noble, E.P.; Kann, B.; Ritchie, T. The D2 dopamine receptor (DRD2) gene is associated with co-morbid depression, anxiety and social dysfunction in untreated veterans with post-traumatic stress disorder. Eur. Psychiatry 2006, 21, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Block, M.L.; Wu, X.; Pei, Z.; Li, G.; Wang, T.; Qin, L.; Wilson, B.; Yang, J.; Hong, J.S.; Veronesi, B. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: The role of microglia, phagocytosis, and NADPH oxidase. FASEB J. 2004, 18, 1618–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, S.; Mizuo, K.; Moriya, N.; Oshio, S.; Sugawara, I.; Takeda, K. Effect of prenatal exposure to diesel exhaust on dopaminergic system in mice. Neurosci. Lett. 2009, 449, 38–41. [Google Scholar] [CrossRef]
- Ebrahimi-Ghiri, M.; Nasehi, M.; Zarrindast, M.R. The modulatory role of accumbens and hippocampus D2 receptors in anxiety and memory. Naunyn. Schmiedebergs Arch. Pharmacol. 2018, 391, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, D.P.; Croll, S.D.; Scharfman, H.E. Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J. Neurosci. 2005, 25, 8889–8897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventriglia, M.; Zanardini, R.; Pedrini, L.; Placentino, A.; Nielsen, M.G.; Gennarelli, M.; Chiavetto, L.B. VEGF serum levels in depressed patients during SSRI antidepressant treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, E.J.; Reichardt, L.F. Trk receptors: Roles in neuronal signal transduction. Annu. Rev. Biochem. 2003, 72, 609–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons. Science 1990, 250, 290–294. [Google Scholar] [CrossRef]
- Webster, M.J.; Herman, M.M.; Kleinman, J.E.; Shannon Weickert, C. BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expr. Patterns 2006, 6, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Frielingsdorf, H.; Bath, K.G.; Soliman, F.; Difede, J.; Casey, B.J.; Lee, F.S. Variant brain-derived neurotrophic factor Val66Met endophenotypes: Implications for posttraumatic stress disorder. Ann. N. Y. Acad. Sci. 2010, 1208, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Xu, K.; Hoberman, J.; Tian, F.; Marko, A.J.; Waheed, J.F.; Harris, C.R.; Marini, A.M.; Enoch, M.-A.; Lipsky, R.H. BDNF variation and mood disorders: A novel functional promoter polymorphism and Val66Met are associated with anxiety but have opposing effects. Neuropsychopharmacology 2005, 30, 1353–1361. [Google Scholar] [CrossRef] [Green Version]
- Wise, P.M.; Dubal, D.B.; Wilson, M.E.; Rau, S.W.; Böttner, M. Minireview: Neuroprotective effects of estrogen-new insights into mechanisms of action. Endocrinology 2001, 142, 969–973. [Google Scholar] [CrossRef]
- Jamwal, S.; Blackburn, J.K.; Elsworth, J.D. Sex-based disparity in paraoxonase-2 expression in the brains of African green monkeys. Free Radic. Biol. Med. 2021, 167, 201–204. [Google Scholar] [CrossRef]
- Fujitani, Y.; Hirano, S.; Kobayashi, S.; Tanabe, K.; Suzuki, A.; Furuyama, A.; Furuyama, A.; Kobayashi, T. Characterization of dilution conditions for diesel nanoparticle inhalation studies. Inhal. Toxicol. 2009, 21, 200–209. [Google Scholar] [CrossRef] [PubMed]
Behavioral Test | Parameters | DE (Compared to the Control) | DE-SOA (Compared to the Control) | Male & Female Difference | DE & DE-SOA Difference | ||
---|---|---|---|---|---|---|---|
Male | Female | Male | Female | ||||
OFT | Center entries | ↓ | ↓↓ | ↓↓ | ↓↓ | No | No |
Center time | ↓↓ | ↓↓ | ↓↓ | ↓↓ | No | No | |
EPM | Open arm entries | ↓ | ↓↓ | ↓↓ | ↓↓ | No | No |
Open arm time | — | — | — | — | No | — | |
LDT | Light entries | — | ↑↑ | — | — | Yes | Yes |
Light time | — | ↑ | — | — | Yes | Yes | |
NIH | Latency to approach food | ↑ | ↑ | ↑ | — | Yes | Yes |
Latency to eat food | ↑ | ↑ | ↑ | — | Yes | Yes |
Molecular Markers | Parameters | DE (Compared to the Control) | DE-SOA (Compared to the Control) | Male & Female Difference | DE & DE-SOA Difference | ||
---|---|---|---|---|---|---|---|
Male | Female | Male | Female | ||||
Neurotransmitters | 5HT1A | ↓ | — | ↓↓ | ↓↓ | Yes | No |
Drd2 | ↓ | — | ↓ | ↓↓ | Yes | No | |
Neurotrophins | BDNF | — | ↓ | ↓↓ | ↓↓ | No | No |
VEGFA | — | — | ↓ | — | No | No | |
Proinflammatory cytokines | IL-1β | ↑ | — | — | ↑ | Yes | No |
COX2 | — | — | ↑ | — | Yes | No | |
Oxidative stress marker | HO1 | ↑ | — | ↑ | — | Yes | No |
Microglia marker | Iba1 | ↑↑ | ↑↑ | ↑↑ | ↑↑ | No | No |
Diesel Exhaust Particles | Temperature | Relative Humidity | |||||
---|---|---|---|---|---|---|---|
Size (nm) | Particle Number (cm−3) | Concentration (mg/m3) | (°C) | (%) | EC/OC | WSOC/OC | |
Clean air | — | 0.87 ± 0.57 | 13.2 ± 2.78 | 23.58 ± 0.27 | 48.07 ± 0.77 | 0.15 ± 0.06 | 0.03 ± 0.04 |
DE-SOA | 24.45 ± 1.21 | 2.74 × 10⁶ ± 8.69 × 10⁴ | 118.23 ± 31.17 | 23.76 ± 0.19 | 48.4 ± 0.85 | 0.38 ± 0.03 | 0.11 ± 0.05 |
DE | 22.69 ± 1.47 | 2.85 × 10⁶ ± 6.10 × 10⁴ | 101.9 ± 19.46 | 22.97± 0.21 | 49.32 ± 0.87 | 0.36 ± 0.03 | 0.17 ± 0.11 |
Gaseous Compounds | |||||||
CO (ppm) | SO2 (ppm) | NOx (ppm) | NO2 (ppm) | NO (ppm) | O3 (ppm) | CO2 (%) | |
Clean air | 0.21 ± 0.04 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | — | 0.05 ± 0.00 |
DE-SOA | 2.51 ± 0.07 | 0.00 ± 0.00 | 1.14 ± 0.03 | 0.9 ± 0.03 | 0.15 ± 0.03 | 0.07 ± 0.00 | 0.07 ± 0.00 |
DE | 2.52 ± 0.07 | 0.01 ± 0.00 | 1.21 ± 0.03 | 0.43 ± 0.02 | 0.78 ± 0.02 | — | 0.07 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyi-Tha-Thu, C.; Fujitani, Y.; Hirano, S.; Win-Shwe, T.-T. Early-Life Exposure to Traffic-Related Air Pollutants Induced Anxiety-like Behaviors in Rats via Neurotransmitters and Neurotrophic Factors. Int. J. Mol. Sci. 2023, 24, 586. https://doi.org/10.3390/ijms24010586
Kyi-Tha-Thu C, Fujitani Y, Hirano S, Win-Shwe T-T. Early-Life Exposure to Traffic-Related Air Pollutants Induced Anxiety-like Behaviors in Rats via Neurotransmitters and Neurotrophic Factors. International Journal of Molecular Sciences. 2023; 24(1):586. https://doi.org/10.3390/ijms24010586
Chicago/Turabian StyleKyi-Tha-Thu, Chaw, Yuji Fujitani, Seishiro Hirano, and Tin-Tin Win-Shwe. 2023. "Early-Life Exposure to Traffic-Related Air Pollutants Induced Anxiety-like Behaviors in Rats via Neurotransmitters and Neurotrophic Factors" International Journal of Molecular Sciences 24, no. 1: 586. https://doi.org/10.3390/ijms24010586
APA StyleKyi-Tha-Thu, C., Fujitani, Y., Hirano, S., & Win-Shwe, T. -T. (2023). Early-Life Exposure to Traffic-Related Air Pollutants Induced Anxiety-like Behaviors in Rats via Neurotransmitters and Neurotrophic Factors. International Journal of Molecular Sciences, 24(1), 586. https://doi.org/10.3390/ijms24010586