Genomics and Epigenomics in the Molecular Biology of Melanoma—A Prerequisite for Biomarkers Studies
Abstract
:1. Introduction
2. Genomics in Melanoma and Implications for Biomarkers
2.1. BRAF
2.2. NRAS
2.3. NF1
2.4. MAP2K1/MAP2K2 (MEK1/MEK2)
2.5. KIT
2.6. CDKN2A
2.7. PTEN
2.8. TERT Promoter Mutations
2.9. TYRP1
2.10. ctDNA and CTC
2.11. Common Variants
2.12. Copy Number Variations (CNV)
2.13. Hereditary Melanoma
3. Epigenomics in Melanoma and Implications for Biomarkers
3.1. Histones Modifications
3.1.1. Methyltransferases and histone demethylases
3.1.2. Histone Deacetylases (HDACs) and Histone Acetyltransferases (Lysine Acetyltransferases—KATs)
3.1.3. Histone Variants
3.2. Long Non-Coding RNAs
3.3. MicroRNAs
3.4. Circular RNA
3.5. Abnormal DNA Methylation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Uong, A.; Zon, L.I. Melanocytes in Development and Cancer. J. Cell Physiol. 2010, 222, 38–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggermont, A.M.; Spatz, A.; Robert, C. Cutaneous Melanoma. Lancet 2014, 383, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, W.; Mwamba, R.N.; Grullon, K.; Armstrong, M.; Zhao, P.; Hendren-Santiago, B.; Qin, K.H.; Li, A.J.; Hu, D.A.; Youssef, A.; et al. Melanoma: Molecular Genetics, Metastasis, Targeted Therapies, Immunotherapies, and Therapeutic Resistance. Genes Dis. 2022, 9, 1608–1623. [Google Scholar] [CrossRef] [PubMed]
- Bolognia, J.L.; Schaffer, J.V.; Cerroni, L. Dermatology, 4th ed.; Elsevier Saunders: Philadelphia, PA, USA, 2017. [Google Scholar]
- Goydos, J.S.; Shoen, S.L. Acral Lentiginous Melanoma. Cancer Treat. Res. 2016, 167, 321–329. [Google Scholar] [CrossRef]
- Menzies, S.W.; Moloney, F.J.; Byth, K.; Avramidis, M.; Argenziano, G.; Zalaudek, I.; Braun, R.P.; Malvehy, J.; Puig, S.; Rabinovitz, H.S.; et al. Dermoscopic Evaluation of Nodular Melanoma. JAMA Dermatol. 2013, 149, 699–709. [Google Scholar] [CrossRef]
- Barreiro-Capurro, A.; Andres-Lencina, J.J.; Podlipnik, S.; Carrera, C.; Requena, C.; Manrique-Silva. Differences in cutaneous melanoma survival between the 7th and 8th edition of the American Joint Committee on Cancer (AJCC). A multicentric population-based study. Eur. J. Cancer 2021, 145, 29–37. [Google Scholar] [CrossRef]
- Tonella, L.; Pala, V.; Ponti, R.; Rubatto, M.; Gallo, G.; Mastorino, L.; Avallone, G.; Merli, M.; Agostini, A.; Fava, P.; et al. Prognostic and predictive biomarkers in stage III melanoma: Current insights and clinical implications. Int. J. Mol. Sci. 2021, 22, 4561. [Google Scholar] [CrossRef]
- Potrony, M.; Badenas, C.; Aguilera, P.; Puig-Butille, J.A.; Carrera, C.; Malvehy, J.; Puig, S. Update in Genetic Susceptibility in Melanoma. Ann. Transl. Med. 2015, 3, 210. [Google Scholar] [CrossRef]
- Nikolaou, V.; Stratigos, A. Emerging Trends in the Epidemiology of Melanoma. Br. J. Dermatol. 2014, 170, 11–19. [Google Scholar] [CrossRef]
- Leonardi, G.C.; Candido, S.; Falzone, L.; Spandidos, D.A.; Libra, M. Cutaneous Melanoma and the Immunotherapy Revolution (Review). Int. J. Oncol. 2020, 57, 609–618. [Google Scholar] [CrossRef]
- Giunta, E.F.; De Falco, V.; Napolitano, S.; Argenziano, G.; Brancaccio, G.; Moscarella, E.; Ciardiello, D.; Ciardiello, F.; Troiani, T. Optimal Treatment Strategy for Metastatic Melanoma Patients Harboring BRAF-V600 Mutations. Ther. Adv. Med. Oncol. 2020, 12, 1758835920925219. [Google Scholar] [CrossRef] [PubMed]
- Michielin, O.; Atkins, M.B.; Koon, H.B.; Dummer, R.; Ascierto, P.A. Evolving Impact of Long-Term Survival Results on Metastatic Melanoma Treatment. J. Immunother. Cancer 2020, 8, e000948. [Google Scholar] [CrossRef] [PubMed]
- Narrandes, S.; Xu, W. Gene expression detection assay for cancer clinical use. J. Cancer 2018, 9, 2249. [Google Scholar] [CrossRef] [PubMed]
- Zager, J.S.; Gastman, B.R.; Leachman, S.; Gonzalez, R.C.; Fleming, M.D.; Ferris, L.K.; Ho, J.; Miller, A.R.; Cook, R.W.; Covington, K.R.; et al. Performance of a Prognostic 31-Gene Expression Profile in an Independent Cohort of 523 Cutaneous Melanoma Patients. BMC Cancer 2018, 18, 130. [Google Scholar] [CrossRef] [PubMed]
- Fath, M.K.; Azargoonjahromi, A.; Soofi, A.; Almasi, F.; Hosseinzadeh, S.; Khalili, S.; Sheikhi, K.; Ferdousmakan, S.; Owrangi, S.; Fahimi, M.; et al. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int. 2022, 22, 313. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wang, H.; Li, C. Signal pathways of melanoma and targeted therapy. Signal Transduct. Target. Ther. 2021, 6, 424. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.J.; Greenman, C.D.; Fu, B.; Yang, F.; Bignell, G.R.; Mudie, L.J.; Pleasance, E.D.; Lau, K.W.; Beare, D.; Stebbings, L.A.; et al. Massive Genomic Rearrangement Acquired in a Single Catastrophic Event During Cancer Development. Cell 2011, 144, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Shain, A.H.; Yeh, I.; Kovalyshyn, I.; Sriharan, A.; Talevich, E.; Gagnon, A.; Dummer, R.; North, J.; Pincus, L.; Ruben, B.; et al. The Genetic Evolution of Melanoma from Precursor Lesions. N. Engl. J. Med. 2015, 373, 1926–1936. [Google Scholar] [CrossRef]
- Akbani, R.; Akdemir, K.C.; Aksoy, B.A.; Albert, M.; Ally, A.; Amin, S.B.; Arachchi, H.; Arora, A.; Auman, J.T.; Ayala, B.; et al. Genomic classification of cutaneous melanoma. Cell 2015, 161, 1681–1696. [Google Scholar] [CrossRef] [Green Version]
- Hayward, N.K.; Wilmott, J.S.; Waddell, N.; Johansson, P.A.; Field, M.A.; Nones, K.; Patch, A.-M.; Kakavand, H.; Alexandrov, L.B.; Burke, H.; et al. Whole-Genome Landscapes of Major Melanoma Subtypes. Nature 2017, 545, 175–180. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, G.; Li, G. Targeting MAPK pathway in melanoma therapy. Cancer Metastasis Rev. 2013, 32, 567–584. [Google Scholar] [CrossRef] [PubMed]
- Pampena, R.; Kyrgidis, A.; Lallas, A.; Moscarella, E.; Argenziano, G.; Longo, C. A Meta-Analysis of Nevus-Associated Melanoma: Prevalence and Practical Implications. J. Am. Acad. Dermatol. 2017, 77, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Shain, A.H.; Bastian, B.C. From Melanocytes to Melanomas. Nat. Rev. Cancer 2016, 16, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Shain, A.H.; Joseph, N.M.; Yu, R.; Benhamida, J.; Liu, S.; Prow, T.; Ruben, B.; North, J.; Pincus, L.; Yeh, I.; et al. Genomic and Transcriptomic Analysis Reveals Incremental Disruption of Key Signaling Pathways During Melanoma Evolution. Cancer Cell 2018, 34, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Mahi, A.; Ablain, J. RAS pathway regulation in melanoma. Dis. Models Mech. 2022, 15, dmm049229. [Google Scholar] [CrossRef]
- HGNC. HUGO Gene Nomenclature Committee Home Page. Available online: http://www.genenames.org/ (accessed on 5 October 2022).
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF Gene in Human Cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef] [Green Version]
- Pollock, P.M.; Harper, U.L.; Hansen, K.S.; Yudt, L.M.; Stark, M.; Robbins, C.M.; Moses, T.Y.; Hostetter, G.; Wagner, U.; Kakareka, J.; et al. High Frequency of BRAF Mutations in Nevi. Nat. Genet. 2003, 33, 19–20. [Google Scholar] [CrossRef]
- Long, G.V.; Menzies, A.M.; Nagrial, A.M.; Haydu, L.E.; Hamilton, A.L.; Mann, G.J.; Hughes, T.M.; Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Prognostic and Clinicopathologic Assimilations of Oncogenes BRAF in Metastatic Melanoma. J. Clin. Oncol. 2011, 29, 1239–1246. [Google Scholar] [CrossRef]
- Mann, G.J.; Pupo, G.M.; Campain, A.E.; Carter, C.D.; Schramm, S.J.; Pianova, S.; Gerega, S.K.; De Silva, C.; Lai, K.; Wilmott, J.S.; et al. BRAF Mutation, NRAS Mutation, and the Absence of an Immune-Related Expressed Gene Profile Predict Poor Outcome in Patients with Stage III Melanoma. J. Investig. Dermatol. 2013, 133, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, P.; Friedlander, P.; Zakaria, E.A.; Kandil, E. Impact of BRAF Mutation Status in the Prognosis of Cutaneous Melanoma: An Area of Ongoing Research. Ann. Transl. Med. 2015, 3, 24. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Haydon, A.M.; Meshcheryakov, A.; Khattak, A.; Carlino, M.S.; et al. Longer Follow-Up Confirms Recurrence-Free Survival Benefit of Adjuvant Pembrolizumab in High-Risk Stage III Melanoma: Updated Results From the EORTC 1325-MG/KEYNOTE-054 Trial. J. Clin. Oncol. 2020, 38, 3925–3936. [Google Scholar] [CrossRef] [PubMed]
- Tas, F.; Erturk, K. BRAF V600E Mutation as a Prognostic Factor in Cutaneous Melanoma Patients. Dermatol. Ther. 2020, 33, e13270. [Google Scholar] [CrossRef] [PubMed]
- Zocco, D.; Bernardi, S.; Novelli, M.; Astrua, C.; Fava, P.; Zarovni, N.; Carpi, F.M.; Bianciardi, L.; Malavenda, O.; Quaglino, P.; et al. Isolation of Extracellular Vesicles Improves the Detection of Mutant DNA from Plasma of Metastatic Melanoma Patients. Sci. Rep. 2020, 10, 15745. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Marshall, C.J.; Spurr, N.K.; Weiss, R.A. Identification of Transforming Gene in Two Human Sarcoma Cell Lines as A New Member of The Ras Gene Family Located on Chromosome 1. Nature 1983, 303, 396–400. [Google Scholar] [CrossRef]
- Albino, A.P.; Le Strange, R.; Oliff, A.I.; Furth, M.E.; Old, L.J. Transforming Ras Genes from Human Melanoma: A Manifestation of Tumor Heterogeneity? Nature 1984, 308, 69–72. [Google Scholar] [CrossRef]
- Fernández-Medarde, A.; Santos, E. Ras in cancer and developmental diseases. Genes Cancer 2011, 2, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Wallace, M.R.; Marchuk, D.A.; Andersen, L.B.; Letcher, R.; Odeh, H.M.; Saulino, A.M.; Fountain, J.W.; Brereton, A.; Nicholson, J.; Mitchell, A.L.; et al. Type 1 Neurofibromatosis Gene: Identification of a Large Transcript Disrupted in Three NF1 Patients. Science 1990, 249, 181–186. [Google Scholar] [CrossRef]
- Ding, L.; Getz, G.; Wheeler, D.A.; Mardis, E.R.; McLellan, M.D.; Cibulskis, K.; Sougnez, C.; Greulich, H.; Muzny, D.M.; Morgan, M.B.; et al. Somatic Mutations Affect Key Pathways in Lung Adenocarcinoma. Nature 2008, 455, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.-H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.-M.; Gallia, G.L.; et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science 2008, 321, 1807–1812. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.A.; Viskochil, D.; Bollag, G.; McCabe, P.C.; Crosier, W.J.; Haubruck, H.; Conroy, L.; Clark, R.; O’Connell, P.; Cawthon, R.M.; et al. The GAP-Related Domain of the Neurofibromatosis Type 1 Gene Product Interacts with ras p21. Cell 1990, 63, 843–849. [Google Scholar] [CrossRef]
- Dasgupta, B.; Yi, Y.; Chen, D.Y.; Weber, J.D.; Gutmann, D.H. Proteomic Analysis Reveals Hyperactivation of The Mammalian Target of Rapamycin Pathway in Neurofibromatosis 1-Associated Human and Mouse Brain Tumors. Cancer Res. 2005, 65, 2755–2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauthammer, M.; Kong, Y.; Bacchiocchi, A.; Evans, P.; Pornputtapong, N.; Wu, C.; McCusker, J.P.; Ma, S.; Cheng, E.; Straub, R.; et al. Exome Sequencing Identifies Recurrent Mutations in NF1 And Rasopathy Genes in Sun-Exposed Melanomas. Nat. Genet. 2015, 47, 996–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shain, A.H.; Garrido, M.; Botton, T.; Talevich, E.; Yeh, I.; Sanborn, J.Z.; Chung, J.; Wang, N.J.; Kakavand, H.; Mann, G.J.; et al. Exome Sequencing of Desmoplastic Melanoma Identifies Recurrent NFKBIE Promoter Mutations and Diverse Activating Mutations in The MAPK Pathway. Nat. Genet. 2015, 47, 1194–1199. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, T.; Kiuru, M.; Scott, S.N.; Arcila, M.; Halpern, A.C.; Hollmann, T.; Berger, M.F.; Busam, K.J. NF1 Mutations Are Common in Desmoplastic Melanoma. Am. J. Surg. Pathol. 2015, 39, 1357–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosgarea, I.; Ugurel, S.; Sucker, A.; Livingstone, E.; Zimmer, L.; Ziemer, M.; Utikal, J.; Mohr, P.; Pfeiffer, C.; Pföhler, C.; et al. Targeted Next Generation Sequencing of Mucosal Melanomas Identifies Frequent NF1 and RAS Mutations. Oncotarget 2017, 8, 40683–40692. [Google Scholar] [CrossRef]
- Moon, K.R.; Choi, Y.D.; Kim, J.M.; Jin, S.; Shin, M.H.; Shim, H.J.; Lee, J.B.; Yun, S.J. Genetic Alterations in Primary Acral Melanoma and Acral Melanocytic Nevus in Korea: Common Mutated Genes Show Distinct Cytomorphological Features. J. Investig. Dermatol. 2018, 138, 933–945. [Google Scholar] [CrossRef] [Green Version]
- Maertens, O.; Johnson, B.; Hollstein, P.; Frederick, D.T.; Cooper, Z.A.; Messiaen, L.; Bronson, R.T.; McMahon, M.; Granter, S.; Flaherty, K.; et al. Elucidating Distinct Roles for NF1 In Melanomagenesis. Cancer Discov. 2013, 3, 338–349. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, S.R.; Theurillat, J.P.; Van Allen, E.; Wagle, N.; Hsiao, J.; Cowley, G.S.; Schadendorf, D.; Root, D.E.; Garraway, L.A. A Genome-Scale RNA Interference Screen Implicates NF1 Loss in Resistance to RAF Inhibition. Cancer Discov. 2013, 3, 350–362. [Google Scholar] [CrossRef] [Green Version]
- Cirenajwis, H.; Lauss, M.; Ekedahl, H.; Törngren, T.; Kvist, A.; Saal, L.H.; Olsson, H.; Staaf, J.; Carneiro, A.; Ingvar, C.; et al. NF1-Mutated Melanoma Tumors Harbor Distinct Clinical and Biological Characteristics. Mol. Oncol. 2017, 11, 438–451. [Google Scholar] [CrossRef] [Green Version]
- Eroglu, Z.; Zaretsky, J.M.; Hu-Lieskovan, S.; Kim, D.W.; Algazi, A.; Johnson, D.B.; Liniker, E.; Kong, B.; Munhoz, R.; Rapisuwon, S.; et al. High Response Rate to PD-1 Blockade in Desmoplastic Melanomas. Nature 2018, 553, 347–350. [Google Scholar] [CrossRef]
- Caunt, C.J.; Sale, M.J.; Smith, P.D.; Cook, S.J. MEK1 And MEK2 Inhibitors and Cancer Therapy: The Long and Winding Road. Nat. Rev. Cancer 2015, 15, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Nikolaev, S.I.; Rimoldi, D.; Iseli, C.; Valsesia, A.; Robyr, D.; Gehrig, C.; Harshman, K.; Guipponi, M.; Bukach, O.; Zoete, V.; et al. Exome Sequencing Identifies Recurrent Somatic MAP2K1 and MAP2K2 Mutations in Melanoma. Nat. Genet. 2011, 44, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Van Allen, E.M.; Wagle, N.; Sucker, A.; Treacy, D.J.; Johannessen, C.M.; Goetz, E.M.; Place, C.S.; Taylor-Weiner, A.; Whittaker, S.; Kryukov, G.V.; et al. The Genetic Landscape of Clinical Resistance to RAF Inhibition in Metastatic Melanoma. Cancer Discov. 2014, 4, 94–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtin, J.A.; Busam, K.; Pinkel, D.; Bastian, B.C. Somatic Activation of KIT in Distinct Subtypes of Melanoma. J. Clin. Oncol. 2006, 24, 4340–4346. [Google Scholar] [CrossRef] [PubMed]
- Beadling, C.; Jacobson-Dunlop, E.; Hodi, F.S.; Le, C.; Warrick, A.; Patterson, J.; Town, A.; Harlow, A.; Cruz, F., 3rd; Azar, S.; et al. KIT Gene Mutations and Copy Number in Melanoma Subtypes. Clin. Cancer Res. 2008, 14, 6821–6828. [Google Scholar] [CrossRef] [Green Version]
- Hodi, F.S.; Friedlander, P.; Corless, C.L.; Heinrich, M.C.; Mac Rae, S.; Kruse, A.; Jagannathan, J.; Van den Abbeele, A.D.; Velazquez, E.F.; Demetri, G.D.; et al. Major Response to Imatinib Mesylate in KIT-Mutated Melanoma. J. Clin. Oncol. 2008, 26, 2046–2051. [Google Scholar] [CrossRef]
- Carvajal, R.D.; Antonescu, C.R.; Wolchok, J.D.; Chapman, P.B.; Roman, R.A.; Teitcher, J.; Panageas, K.S.; Busam, K.J.; Chmielowski, B.; Lutzky, J.; et al. KIT as a Therapeutic Target in Metastatic Melanoma. JAMA 2011, 305, 2327–2334. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Si, L.; Kong, Y.; Flaherty, K.T.; Xu, X.; Zhu, Y.; Corless, C.L.; Li, L.; Li, H.; Sheng, X.; et al. Phase II, Open-Label, Single-Arm Trial of Imatinib Mesylate in Patients with Metastatic Melanoma Harboring C-Kit Mutation or Amplification. J. Clin. Oncol. 2011, 29, 2904–2909. [Google Scholar] [CrossRef]
- Wiesner, T.; He, J.; Yelensky, R.; Esteve-Puig, R.; Botton, T.; Yeh, I.; Lipson, D.; Otto, G.; Brennan, K.; Murali, R.; et al. Kinase Fusions Are Frequent in Spitz Tumors and Spitzoid Melanomas. Nat. Commun. 2014, 5, 3116. [Google Scholar] [CrossRef] [Green Version]
- Yeh, I.; Botton, T.; Talevich, E.; Shain, A.H.; Sparatta, A.J.; de la Fouchardiere, A.; Mully, T.W.; North, J.P.; Garrido, M.C.; Gagnon, A.; et al. Activating MET Kinase Rearrangements in Melanoma and Spitz Tumours. Nat. Commun. 2015, 6, 7174. [Google Scholar] [CrossRef]
- Botton, T.; Yeh, I.; Nelson, T.; Vemula, S.S.; Sparatta, A.; Garrido, M.C.; Allegra, M.; Rocchi, S.; Bahadoran, P.; McCalmont, T.H.; et al. Recurrent BRAF Kinase Fusions in Melanocytic Tumors Offer an Opportunity for Targeted Therapy. Pigment. Cell Melanoma Res. 2013, 26, 845–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon-Albright, L.; Goldgar, D.; Meyer, L.; Lewis, C.; Anderson, D.; Fountain, J.; Hegi, M.; Wiseman, R.; Petty, E.; Bale, A.; et al. Assignment of a Locus for Familial Melanoma, MLM, to Chromosome 9p13-P22. Science 1992, 258, 1148–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamb, A.; Shattuck-Eidens, D.; Eeles, R.; Liu, Q.; Gruis, N.A.; Ding, W.; Hussey, C.; Tran, T.; Miki, Y.; Weaver-Feldhaus, J.; et al. Analysis of the P16 Gene (CDKN2) as a Candidate for the Chromosome 9p Melanoma Susceptibility Locus. Nat. Genet. 1994, 8, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Curtin, J.A.; Fridlyand, J.; Kageshita, T.; Patel, H.N.; Busam, K.J.; Kutzner, H.; Cho, K.H.; Aiba, S.; Bröcker, E.B.; LeBoit, P.E.; et al. Distinct Sets of Genetic Alterations in Melanoma. N. Engl. J. Med. 2005, 353, 2135–2147. [Google Scholar] [CrossRef] [PubMed]
- Gast, A.; Scherer, D.; Chen, B.; Bloethner, S.; Melchert, S.; Sucker, A.; Hemminki, K.; Schadendorf, D.; Kumar, R. Somatic Alterations in the Melanoma Genome: A High-Resolution Array-Based Comparative Genomic Hybridization Study. Genes Chromosom. Cancer 2010, 49, 733–745. [Google Scholar] [CrossRef]
- Bennett, D.C. How to Make a Melanoma: What Do We Know of the Primary Clonal Events? Pigment. Cell Melanoma Res. 2008, 21, 27–38. [Google Scholar] [CrossRef]
- Koh, J.; Enders, G.H.; David Dynlacht, B.; Harlow, E.D. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature 1995, 375, 506–510. [Google Scholar] [CrossRef]
- Lukas, J.; Bartkova, J.; Rohde, M.; Strauss, M.; Bartek, J. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol. Cell. Biol. 1995, 15, 2600–2611. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, R.A. The retinoblastoma protein and cell cycle control. Cell 1995, 81, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Lahtz, C.; Stranzenbach, R.; Fiedler, E.; Helmbold, P.; Dammann, R.H. Methylation of PTEN as a Prognostic Factor in Malignant Melanoma of the Skin. J. Investig. Dermatol. 2010, 130, 620–622. [Google Scholar] [CrossRef]
- Zuo, Q.; Liu, J.; Huang, L.; Qin, Y.; Hawley, T.; Seo, C.; Merlino, G.; Yu, Y. AXL/AKT Axis Mediated-Resistance to BRAF Inhibitor Depends on PTEN Status in Melanoma. Oncogene 2018, 37, 3275–3289. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Chen, J.Q.; Liu, C.; Malu, S.; Creasy, C.; Tetzlaff, M.T.; Xu, C.; McKenzie, J.A.; Zhang, C.; Liang, X.; et al. Loss of PTEN Promotes Resistance to T Cell–Mediated Immunotherapy. Cancer Discov. 2016, 6, 202–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, F.W.; Hodis, E.; Xu, M.J.; Kryukov, G.V.; Chin, L.; Garraway, L.A. Highly Recurrent TERT Promoter Mutations in Human Melanoma. Science 2013, 339, 957–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, R.J.; Rube, H.T.; Kreig, A.; Mancini, A.; Fouse, S.D.; Nagarajan, R.P.; Choi, S.; Hong, C.; He, D.; Pekmezci, M.; et al. The Transcription Factor GABP Selectively Binds and Activates the Mutant TERT Promoter in Cancer. Science 2015, 348, 1036–1039. [Google Scholar] [CrossRef] [Green Version]
- Chiba, K.; Lorbeer, F.K.; Shain, A.H.; McSwiggen, D.T.; Schruf, E.; Oh, A.; Ryu, J.; Darzacq, X.; Bastian, B.C.; Hockemeyer, D. Mutations in the Promoter of the Telomerase Gene TERT Contribute to Tumorigenesis by a Two-Step Mechanism. Science 2017, 357, 1416–1420. [Google Scholar] [CrossRef] [Green Version]
- Lu, A.T.; Xue, L.; Salfati, E.L.; Chen, B.H.; Ferrucci, L.; Levy, D.; Joehanes, R.; Murabito, J.M.; Kiel, D.P.; Tsai, P.C.; et al. GWAS of epigenetic aging rates in blood reveals a critical role for TERT. Nat. Commun. 2018, 9, 387. [Google Scholar] [CrossRef] [Green Version]
- Journe, F.; Boufker, H.I.; Van Kempen, L.; Galibert, M.-D.; Wiedig, M.; Salès, F.; Theunis, A.; Nonclercq, D.; Frau, A.; Laurent, G.; et al. TYRP1 mRNA Expression in Melanoma Metastases Correlates with Clinical Outcome. Br. J. Cancer 2011, 105, 1726–1732. [Google Scholar] [CrossRef] [Green Version]
- Gandini, S.; Zanna, I.; De Angelis, S.P.; Cocorocchio, E.; Queirolo, P.; Lee, J.H.; Carlino, M.S.; Mazzarella, L.; Achutti Duso, B.; Palli, D.; et al. Circulating Tumour DNA and Melanoma Survival: A Systematic Literature Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2021, 157, 103187. [Google Scholar] [CrossRef]
- Landi, M.T.; Bishop, D.T.; MacGregor, S.; Machiela, M.J.; Stratigos, A.J.; Ghiorzo, P.; Brossard, M.; Calista, D.; Choi, J.; Fargnoli, M.C.; et al. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat. Genet. 2020, 52, 494–504. [Google Scholar] [CrossRef]
- Bastian, B.C.; LeBoit, P.E.; Hamm, H.; Bröcker, E.B.; Pinkel, D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 1998, 58, 2170–2175. [Google Scholar]
- James, A.W.M.; Le Chang, B.S.; Shrestha, S.; Cochran, A.; Binder, S.; Tirado, C.A. Cytogenetics of melanoma: A review. J. Assoc. Genet. Technol. 2014, 40, 209–218. [Google Scholar] [PubMed]
- Chiu, C.G.; Nakamura, Y.; Chong, K.K.; Huang, S.K.; Kawas, N.P.; Triche, T.; Elashoff, D.; Kiyohara, E.; Irie, R.F.; Morton, D.L.; et al. Genome-wide characterization of circulating tumor cells identifies novel prognostic genomic alterations in systemic melanoma metastasis. Clin. Chem. 2014, 60, 873–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ransohoff, K.J.; Jaju, P.D.; Tang, J.Y.; Carbone, M.; Leachman, S.; Sarin, K.Y. Familial skin cancer syndromes: Increased melanoma risk. J. Am. Acad. Dermatol. 2016, 74, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Pho, L.N.; Champine, M.; Leachman, S.A.; Kohlmann, W. Inherited gene mutations in melanoma. In Genetics of Melanoma; Springer: New York, NY, USA, 2016; pp. 117–149. [Google Scholar]
- Soura, E.; Eliades, P.J.; Shannon, K.; Stratigos, A.J.; Tsao, H. Hereditary melanoma: Update on syndromes and management: Genetics of familial atypical multiple mole melanoma syndrome. J. Am. Acad. Dermatol. 2016, 74, 395–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Online Mendelian Inheritance in Man, OMIM®; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University Baltimore: Baltimore, MD, USA; Available online: https://omim.org/ (accessed on 14 October 2022).
- Chang, H.H.; Hemberg, M.; Barahona, M.; Ingber, D.E.; Huang, S. Transcriptome wide noise controls lineage choice in mammalian progenitor cells. Nature 2008, 453, 544–547. [Google Scholar] [CrossRef] [Green Version]
- Giunta, E.F.; Arrichiello, G.; Curvietto, M.; Pappalardo, A.; Bosso, D.; Rosanova, M.; Diana, A.; Giordano, P.; Petrillo, A.; Federico, P.; et al. Epigenetic Regulation in Melanoma: Facts and Hopes. Cells 2021, 10, 2048. [Google Scholar] [CrossRef]
- Hsu, C.J.; Meers, O.; Buschbeck, M.; Heidel, F.H. The role of MacroH2A histone variants in cancer. Cancer 2021, 13, 3003. [Google Scholar] [CrossRef]
- Hatzimichael, E.; Lagos, K.; Sim, V.R.; Briasoulis, E.; Crook, T. Epigenetics in diagnosis, prognostic assessment and treatment of cancer: An update. Exp. Clin. Sci. J. 2014, 13, 954–976. [Google Scholar]
- Yoo, C.B.; Jones, P.A. Epigenetic therapy of cancer: Past, present and future. Nat. Rev. Drug Discov. 2006, 5, 37–50. [Google Scholar] [CrossRef]
- Wilting, R.H.; Dannenberg, J.H. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist. Update 2012, 15, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Mannavola, F.; D’oronzo, S.; Cives, M.; Stucci, L.S.; Ranieri, G.; Silvestris, F.; Tucci, M. Extracellular vesicles and epigenetic modifications are hallmarks of melanoma progression. Int. J. Mol. Sci. 2019, 21, 52. [Google Scholar] [CrossRef] [Green Version]
- Orouji, E.; Utikal, J. Tackling malignant melanoma epigenetically: Histone lysine methylation. Clin. Epigenet. 2018, 10, 145. [Google Scholar] [CrossRef]
- Gallagher, S.J.; Tiffen, J.C.; Hersey, P. Histone modifications, modifiers and readers in melanoma resistance to targeted and immune therapy. Cancer 2015, 7, 1959–1982. [Google Scholar] [CrossRef]
- Yun, M.; Wu, J.; Workman, J.L.; Li, B. Readers of histone modifications. Cell Res. 2011, 21, 564–578. [Google Scholar] [CrossRef] [Green Version]
- Grønbaek, K.; Hother, C.; Jones, P.A. Epigenetic changes in cancer. APMIS 2007, 115, 1039–1059. [Google Scholar] [CrossRef]
- UniProt. Available online: https://www.uniprot.org/ (accessed on 5 October 2022).
- Verfaillie, A.; Imrichova, H.; Atak, Z.K.; Dewaele, M.; Rambow, F.; Hulselmans, G.; Christiaens, V.; Svetlichnyy, D.; Luciani, F.; Van den Mooter, L.; et al. Decoding the regulatory landscape of melanomareveals TEADS as regulators of the invasive cell state. Nat. Commun. 2015, 6, 6683. [Google Scholar] [CrossRef] [Green Version]
- Tiffen, J.C.; Gunatilake, D.; Gallagher, S.J.; Gowrishankar, K.; Heinemann, A.; Cullinane, C.; Dutton-Regester, K.; Pupo, G.M.; Strbenac, D.; Yang, J.Y.; et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget 2015, 6, 27023. [Google Scholar] [CrossRef] [Green Version]
- Milazzo, G.; Mercatelli, D.; Di Muzio, G.; Triboli, L.; De Rosa, P.; Perini, G.; Giorgi, F.M. Histone deacetylases (HDACs): Evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes 2020, 11, 556. [Google Scholar] [CrossRef]
- Vardabasso, C.; Hasson, D.; Ratnakumar, K.; Chung, C.Y.; Duarte, L.F.; Bernstein, E. Histone variants: Emerging players in cancer biology. Cell. Mol. Life Sci. 2014, 71, 379–404. [Google Scholar] [CrossRef] [Green Version]
- Amatori, S.; Tavolaro, S.; Gambardella, S.; Fanelli, M. The dark side of histones: Genomic organization and role of oncohistones in cancer. Clin. Epigenet. 2021, 13, 71. [Google Scholar] [CrossRef]
- Konstantinov, N.K.; Ulff-Møller, C.J.; Dimitrov, S. Histone variants and melanoma: Facts and hypotheses. Pigment. Cell Melanoma Res. 2016, 29, 426–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, A.; Goldberg, M.S.; Cumberland, L.K.; Ratnakumar, K.; Segura, M.F.; Emanuel, P.O.; Menendez, S.; Vardabasso, C.; Leroy, G.; Vidal, C.I.; et al. The histone variant MACROH2A suppresses melanoma progression through regulation of CDK8. Nature 2010, 468, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Vardabasso, C.; Gaspar-Maia, A.; Hasson, D.; Punzeler, S.; Valle-Garcia, D.; Straub, T.; Keilhauer, E.C.; Strub, T.; Dong, J.; Panda, T.; et al. Histone variant H2A.Z.2 mediates proliferation and drug sensitivity ofmalignant melanoma. Mol. Cell 2015, 59, 75–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ávila-López, P.A.; Guerrero, G.; Nuñez-Martínez, H.N.; Peralta-Alvarez, C.A.; Hernández-Montes, G.; Álvarez-Hilario, L.G.; Hernández-Rivas, R. H2A. Z overexpression suppresses senescence and chemosensitivity in pancreatic ductal adenocarcinoma. Oncogene 2021, 40, 2065–2080. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zheng, H.; Tse, G.; Chan, M.T.; Wu, W.K. Long non-coding RNAs in melanoma. Cell Prolif. 2018, 51, e12457. [Google Scholar] [CrossRef] [Green Version]
- Leucci, E. Melanoma addiction to the long non-coding RNA SAMMSON. Nature 2016, 531, 518–522. [Google Scholar] [CrossRef]
- Lazăr, A.D.; Dinescu, S.; Costache, M. The non-coding landscape of cutaneous malignant melanoma: A possible route to efficient targeted therapy. Cancers 2020, 12, 3378. [Google Scholar] [CrossRef]
- Shan, N.L.; Kahn, A.; Pusztai, L. Intratumour heterogeneity, from hypothesis to the clinic. Br. J. Cancer 2022. [Google Scholar] [CrossRef]
- Du, M.; Han, L.; Shen, P.; Wu, D.; Tu, S. Long Noncoding RNA LINC02249 Is a Prognostic Biomarker and Correlates with Immunosuppressive Microenvironment in Skin Cutaneous Melanoma. J. Oncol. 2022, 2022, 2054901. [Google Scholar] [CrossRef]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Watson, C.N.; Belli, A.; Di Pietro, V. Small non-coding RNAs: New class of biomarkers and potential therapeutic targets in neurodegenerative disease. Front. Genet. 2019, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.M.; Mott, J.L. Overview of microRNA biology. Semin. Liver Dis. 2015, 35, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Neagu, M.; Constantin, C.; Cretoiu, S.M.; Zurac, S. miRNAs in the Diagnosis and Prognosis of Skin Cancer. Front. Cell Dev. Biol. 2020, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, V.; Vallacchi, V.; Fleming, V.; Hu, X.; Cova, A.; Dugo, M.; Shahaj, E.; Sulsenti, R.; Vergani, E.; Filipazzi, P.; et al. Tumor-Derived MicroRNAs Induce Myeloid Suppressor Cells and Predict Immunotherapy Resistance in Melanoma. J. Clin. Investig. 2018, 128, 5505–5516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanemaru, H.; Fukushima, S.; Yamashita, J.; Honda, N.; Oyama, R.; Kakimoto, A.; Masuguchi, S.; Ishihara, T.; Inoue, Y.; Jinnin, M.; et al. The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. J. Dermatol. Sci. 2011, 61, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Zhang, H.; Li, Y.; Sun, Q.; Jin, H. Circular RNA as a potential biomarker for melanoma: A systematic review. Front. Cell Dev. Biol. 2021, 9, 638548. [Google Scholar] [CrossRef]
- Caba, L.; Florea, L.; Gug, C.; Dimitriu, D.C.; Gorduza, E.V. Circular RNA—Is the Circle Perfect? Biomolecules 2021, 11, 1755. [Google Scholar] [CrossRef]
- Zhou, M.Y.; Yang, J.M.; Xiong, X.D. The emerging landscape of circular RNA in cardiovascular diseases. J. Mol. Cell. Cardiol. 2018, 122, 134–139. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y. Circ_0079593 facilitates proliferation, metastasis, glucose metabolism and inhibits apoptosis in melanoma by regulating the miR-516b/GRM3 axis. Mol. Cell. Biochem. 2020, 475, 227–237. [Google Scholar] [CrossRef]
- Hanniford, D.; Ulloa-Morales, A.; Karz, A.; Berzoti-Coelho, M.G.; Moubarak, R.S.; Sánchez-Sendra, B.; Kloetgen, A.; Davalos, V.; Imig, J.; Wu, P.; et al. Epigenetic silencing of CDR1as drives IGF2BP3-mediated melanoma invasion and metastasis. Cancer Cell 2020, 37, 55–70. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Sarfaraz, S.; Taheri, M.; Ayatollahi, S.A. Circ_CDR1as: A circular RNA with roles in the carcinogenesis. Pathol. Res. Pract. 2022, 236, 153968. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, B.E.; Meissner, A.; Lander, E.S. The mammalian epigenome. Cell 2007, 128, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Wu, H.; Zhang, H.; Lian, C.G.; Lu, Q. DNA methylation/hydroxymethylation in melanoma. Oncotarget 2017, 8, 78163. [Google Scholar] [CrossRef] [Green Version]
- Sigalotti, L.; Covre, A.; Fratta, E.; Parisi, G.; Sonego, P.; Colizzi, F.; Coral, S.; Massarut, S.; Kirkwood, J.M.; Maio, M. Whole Genome Methylation Profiles as Independent Markers of Survival in Stage IIIC Melanoma Patients. J. Transl. Med. 2012, 10, 185. [Google Scholar] [CrossRef] [PubMed]
Approved Gene Symbol | Approved Gene Name | Chromosomal Location | Protein | Frequency of Mutations in Melanoma (%) |
---|---|---|---|---|
BRAF | B-Raf proto-oncogene, serine/threonine kinase | 7q34 | Serine/threonine-protein kinase B-raf | 53 |
NRAS | NRAS proto-oncogene, gtpase | 1p13.2 | GTPase NRas | 32 |
NF1 | Neurofibromin 1 | 17q11.2 | Neurofibromin | 19 |
KIT | KIT proto-oncogene, receptor tyrosine kinase | 4q12 | Mast/stem cell growth factor receptor Kit | 8 |
MAP2K1 | Mitogen-activated protein kinase kinase 1 | 15q22.31 | Dual specificity mitogen-activated protein kinase kinase 1 | 7 |
SPRED1 | Sprouty related EVH1 domain containing 1 | 15q14 | Sprouty-related, EVH1 domain-containing protein 1 | 6 |
GNA11 | G protein subunit alpha 11 | 19p13.3 | Guanine nucleotide-binding protein subunit alpha-11 | 5 |
KRAS | KRAS proto-oncogene, gtpase | 12p12.1 | GTPase KRas | 4 |
MAP2K2 | Mitogen-activated protein kinase kinase 2 | 19p13.3 | Dual specificity mitogen-activated protein kinase kinase 2 | 4 |
MAPK1 | Mitogen-activated protein kinase 1 | 22q11.22 | Mitogen-activated protein kinase 1 | 4 |
GNAQ | G protein subunit alpha q | 9q21.2 | Guanine nucleotide-binding protein G(q) subunit alpha | 3 |
MAPK3 | Mitogen-activated protein kinase 3 | 16p11.2 | Mitogen-activated protein kinase 3 | 1.9 |
HRAS | Hras proto-oncogene, gtpase | 11p15.5 | GTPase HRas | 1.9 |
Syndrome (Phenotype MIM Number) | Gene Symbol/Susceptibility Locus | Gene Name | Inheritance |
---|---|---|---|
Familial atypical multiple mole melanoma syndrome (FAMMM) (OMIM #155600) | CDKN2A (9p21.3) CDK4 (12q14.1) MC1R (16q24.3) XRCC3 (14q32.33) MITF (3p13) TERT (5p15.33) POT1 (7q31.33) 1p36 1p22 20q11 | cyclin dependent kinase inhibitor 2A cyclin dependent kinase 4 melanocortin 1 receptor X-ray repair cross complementing 3 melanocyte inducing transcription factor telomerase reverse transcriptase protection of telomeres 1 | AD |
Melanoma-pancreatic cancer syndrome (OMIM #606719) | CDKN2A (9p21.3) | cyclin dependent kinase inhibitor 2A | AD |
Melanoma-astrocytoma syndrome (OMIM #155755) | CDKN2A (9p21.3) | cyclin dependent kinase inhibitor 2A | AD |
Susceptibility to uveal melanoma 2 (OMIM #606661) Tumor predisposition syndrome-1 (OMIM# 614327) | BAP1 (3p21.1) BAP1 (3p21.1) | BRCA1-associated protein 1 BRCA1-associated protein 1 | AD |
Xeroderma pigmentosum XPA (OMIM#278700) XPB (OMIM#610651) XPC (OMIM#278720) XPD (OMIM#278730) XPE (OMIM#278740) XPF (OMIM#278760) XPG (OMIM#278780) XPV (OMIM#278750) | XPA (9q22.33) ERCC3 (2q14.3) XPC (3p25.1) ERCC2 (19q13.32) DDB2 (11p11.2) ERCC4 (16p13.12) ERCC5 (13q33.1) POLH (6p21.1) | XPA, DNA damage recognition, and repair factor ERCC excision repair 3, TFIIH core complex helicase subunit XPC complex subunit, DNA damage recognition, and repair factor ERCC excision repair 2, TFIIH core complex helicase subunit damage specific DNA binding protein 2 ERCC excision repair 4, endonuclease catalytic subunit ERCC excision repair 5, endonuclease DNA polymerase eta | AR |
Oculocutaneous albinism type 2 (OMIM#203200) | OCA2 (15q12-q13.1) | OCA2 melanosomal transmembrane protein | AR |
Hereditary Retinoblastoma (OMIM#180200) | RB1 (13q14.2) | RB transcriptional corepressor 1 | AD |
Li-Fraumeni syndrome (OMIM#151623) | TP53 (17p13.1) | tumor protein p53 | AD |
PTEN hamartoma tumor syndromes | PTEN (10q23.31) | phosphatase and tensin homolog | AD |
Hereditary breast and ovary cancer syndrome | BRCA1 (17q21.31) and BRCA2 (13q13.1) | BRCA1 DNA repair associated BRCA2 DNA repair associated | AD |
Location | Enzyme Symbol/Name | Gene Symbol/Name | Action | |
---|---|---|---|---|
Methylation | H3K4 | KMT2D (Histone-lysine N-methyltransferase 2D) | KMT2D (lysine methyltransferase 2D) | Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of ‘Lys-4’ of histone H3 (H3K4) |
ASH1L (Histone-lysine N-methyltransferase ASH1L) | ASH1L (ASH1 like histone lysine methyltransferase) | Generates lysine 4-trimethylated histone h3k4me3 | ||
H3K9 | EHMT2 (G9a) (Histone-lysine N-methyltransferase EHMT2) | EHMT2 (euchromatic histone lysine methyltransferase 2) | Specifically mono- and dimethylates ‘Lys-9’ of histone H3 (h3k9me1 and h3k9me2, respectively) | |
EHMT1 (GLP) (Histone-lysine N-methyltransferase EHMT1) | EHMT1 (euchromatic histone lysine methyltransferase 1) | Specifically mono- and dimethylates ‘Lys-9’ of histone H3 (h3k9me1 and h3k9me2 | ||
SUV39H1 (Histone-lysine N-methyltransferase SUV39H1) | SUV39H1 (SUV39H1 histone lysine methyltransferase) | Specifically trimethylates ‘Lys-9’ of histone H3 using monomethylated H3 ‘Lys-9’ as substrate | ||
SUV39H2 (Histone-lysine N-methyltransferase SUV39H2) | SUV39H2 (SUV39H2 histone lysine methyltransferase) | Specifically trimethylates ‘Lys-9’ of histone H3 using monomethylated H3 ‘Lys-9’ as substrate | ||
SETDB1 (Histone-lysine N-methyltransferase SETDB1 ) | SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) | Specifically trimethylates ‘Lys-9’ of histone H3 | ||
H3K27 | EZH2 (Histone-lysine N-methyltransferase EZH2 ) | EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) | Catalytic subunit of the PRC2/EED-EZH2 complex, which methylates ‘Lys-9’ (h3k9me) and ‘Lys-27’ (h3k27me) of histone H3 | |
H3K36 | SETD2 (Histone-lysine N-methyltransferase SETD2) | SETD2 (SET domain containing 2, histone lysine methyltransferase) | Specifically trimethylates ‘Lys-36’ of histone H3 (h3k36me3) using dimethylated ‘Lys-36’ (h3k36me2) as substrate | |
NSD1 (Histone-lysine N-methyltransferase, H3 lysine-36 specific) | NSD1 (nuclear receptor binding SET domain protein 1) | Dimethylates Lys-36 of histone H3 (h3k36me2) | ||
H3K79 | DOT1L (Histone-lysine N-methyltransferase, H3 lysine-79 specific) | DOT1L (DOT1-like histone lysine methyltransferase) | Methylates ‘Lys-79’ of histone H3 | |
H4K20 | KMT5A (N-lysine methyltransferase KMT5A) | KMT5A (lysine methyltransferase 5A) | Specifically monomethylates ‘Lys-20’ of histone H4 (h4k20me1) | |
KMT5B (Histone-lysine N-methyltransferase KMT5B) | KMT5B (lysine methyltransferase 5B) | Specifically methylates monomethylated ‘Lys-20’ (h4k20me1) and dimethylated ‘Lys-20’ (h4k20me2) of histone H4 to produce respectively dimethylated ‘Lys-20’ (h4k20me2) and trimethylated ’Lys-20’ (h4k20me3) | ||
KMT5C (Histone-lysine N-methyltransferase KMT5C) | KMT5C (lysine methyltransferase 5C) | Specifically methylates monomethylated ‘Lys-20’ (h4k20me1) and dimethylated ‘Lys-20’ (h4k20me2) of histone H4 to produce respectively dimethylated ‘Lys-20’ (h4k20me2) and trimethylated ‘Lys-20’ (h4k20me3) | ||
Demethylation | H3K4 | KDM1A (Lysine-specific histone demethylase 1A) | KDM1A (lysine demethylase 1A) | Demethylate both ’Lys-4’ (h3k4me) and ‘Lys-9’ (h3k9me) of histone H3 |
KDM5B (Lysine-specific demethylase 5B) | KDM5B (lysine demethylase 5B) | Demethylates ‘Lys-4’ of histone H3 | ||
H3K9 | KDM4A (Lysine-specific demethylase 4A) | KDM4A (lysine demethylase 4A) | Specifically demethylates ‘Lys-9’ and ‘Lys-36’ residues of histone H3 | |
H3K27 | JMJD3 (Lysine-specific demethylase 6B) | KDM6B (lysine demethylase 6B) | Specifically demethylates ‘Lys-27’ of histone H3 | |
KMD6A (Lysine-specific demethylase 6A) | KDM6A (lysine demethylase 6A) | Specifically demethylates ‘Lys-27’ of histone H3 | ||
H3K36 | KDM2B (Lysine-specific demethylase 2B) | KDM2B (lysine demethylase 2B) | Demethylates ‘Lys-4’ and ‘Lys-36’ of histone H3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zob, D.L.; Augustin, I.; Caba, L.; Panzaru, M.-C.; Popa, S.; Popa, A.D.; Florea, L.; Gorduza, E.V. Genomics and Epigenomics in the Molecular Biology of Melanoma—A Prerequisite for Biomarkers Studies. Int. J. Mol. Sci. 2023, 24, 716. https://doi.org/10.3390/ijms24010716
Zob DL, Augustin I, Caba L, Panzaru M-C, Popa S, Popa AD, Florea L, Gorduza EV. Genomics and Epigenomics in the Molecular Biology of Melanoma—A Prerequisite for Biomarkers Studies. International Journal of Molecular Sciences. 2023; 24(1):716. https://doi.org/10.3390/ijms24010716
Chicago/Turabian StyleZob, Daniela Luminita, Iolanda Augustin, Lavinia Caba, Monica-Cristina Panzaru, Setalia Popa, Alina Delia Popa, Laura Florea, and Eusebiu Vlad Gorduza. 2023. "Genomics and Epigenomics in the Molecular Biology of Melanoma—A Prerequisite for Biomarkers Studies" International Journal of Molecular Sciences 24, no. 1: 716. https://doi.org/10.3390/ijms24010716
APA StyleZob, D. L., Augustin, I., Caba, L., Panzaru, M. -C., Popa, S., Popa, A. D., Florea, L., & Gorduza, E. V. (2023). Genomics and Epigenomics in the Molecular Biology of Melanoma—A Prerequisite for Biomarkers Studies. International Journal of Molecular Sciences, 24(1), 716. https://doi.org/10.3390/ijms24010716