Improvement of a Surfactant Blend for Enhanced Oil Recovery in Carbonate Reservoirs by Means of an Ionic Liquid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Section
2.1.1. Blend Scans
2.1.2. Stability Tests
2.1.3. Dynamic Interfacial Tension (IFT)
2.1.4. Dynamic Adsorption
2.1.5. Core Flooding Tests
3. Materials and Methods
3.1. Experimental
3.1.1. Materials
3.1.2. Methods
Blend Scans
Stability Tests
Dynamic Interfacial Tension
Dynamic Adsorption
Core Flooding Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheng, J. Enhanced Oil Recovery Field Case Studies, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Barati-Harooni, A.; Najafi-Marghmaleki, A.; Tatar, A.; Mohammadi, A.H. Experimental and modeling studies on adsorption of a nonionic surfactant on sandstone minerals in enhanced oil recovery process with surfactant flooding. J. Mol. Liq. 2016, 220, 1022–1032. [Google Scholar] [CrossRef]
- Ma, K.; Cui, L.; Dong, Y.; Wang, T.; Da, C.; Hirasaki, G.J.; Biswal, S.L. Adsorption of cationic and anionic surfactants on natural and synthetic carbonate materials. J. Colloid Interf. Sci. 2013, 408, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Scamehorn, J.F.; Schechter, R.S.; Wade, W.H. Adsorption of surfactants on mineral oxide surfaces from aqueous solutions. I: Isomerically pure anionic surfactants. J. Colloid Interf. Sci. 1982, 85, 463–478. [Google Scholar] [CrossRef]
- Sheng, J. Modern Chemical Enhanced Oil Recovery: Theory and Practice, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Wang, J.; Han, M.; Fuseni, A.B.; Cao, D. Surfactant adsorption in Surfactant-Polymer flooding for carbonate reservoirs. In Proceedings of the SPE Middle East Oil & Gas Show and Conference, Manama, Bahrain, 8–11 March 2015; pp. 1736–1746. [Google Scholar] [CrossRef]
- Akbar, M.; Alghamdi, A.H.; Herron, M.; Allen, D.; Carnegie, A.; Dutta, D.; Olesen, J.-R.; Chourasiya, R.D.; Logan, D.; Stief, D.; et al. A Snapshot of Carbonate Reservoir Evaluation. Oilf. Rev. 1995, 1, 38–57. [Google Scholar]
- Burchette, T.P. Carbonate rocks and petroleum reservoirs: A geological perspective from the industry. Geol. Soc. Spec. Publ. 2012, 370, 17–37. [Google Scholar] [CrossRef]
- Khormali, A.; Rezaei-Koochi, M.; Varfolomeev, M.A.; Ahmadi, S. Experimental study of the low salinity water injection process in the presence of scale inhibitor and various nanoparticles. J. Petrol. Expl. Prod. Technol. 2022. [Google Scholar] [CrossRef]
- Feng, H.; Hou, J.; Ma, T.; Meng, Z.; Wu, H.; Yang, H.; Kang, W. The ultra-low interfacial tension behavior of the combined cationic/anionic-nonionic gemini surfactants system for chemical flooding. Colloid Surf. A 2018, 554, 74–80. [Google Scholar] [CrossRef]
- Kurnia, I.; Zhang, G.; Han, X.; Yu, J. Zwitterionic-anionic surfactant mixture for chemical enhanced oil recovery without alkali. Fuel 2020, 259, 116236. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Bailing, K.; Puerto, M.; Bao, X.; Ou, S.; Zhiqin, S.; Yiqing, Y.; Yanhua, L.; Songyuan, G.; et al. Mixtures of anionic/cationic surfactants: A new approach for enhanced oil recovery in low-salinity, high-temperature sandstone reservoir. SPE J. 2016, 21, 1164–1177. [Google Scholar] [CrossRef]
- Li, Z.; Wu, H.; Hu, Y.; Chen, X.; Yuan, Y.; Luo, Y.; Hou, J.; Bai, B.; Kang, W. Ultra-low interfacial tension biobased and catanionic surfactants for low permeability reservoirs. J. Mol. Liq. 2020, 309, 113099. [Google Scholar] [CrossRef]
- Pal, N.; Vajpayee, M.; Mandal, A. Cationic/nonionic mixed surfactants as enhanced oil recovery fluids: Influence of mixed micellization and polymer association on interfacial, rheological, and rock-wetting characteristics. Energ. Fuel 2019, 33, 6048–6059. [Google Scholar] [CrossRef]
- Tafur, N.; Somoza, A.; Soto, A. Evaluation of surfactant blends for enhanced oil recovery through activity maps. J. Mol. Liq. 2022, 364, 119984. [Google Scholar] [CrossRef]
- Sheu, E.Y.; Chen, S.H.; Huang, J.S. Structure and growth of Bis( 2-ethylhexyl) Sulfosuccinate Micelles in Aqueous Solutions. J. Phys. Chem. 1987, 91, 3306–3310. [Google Scholar] [CrossRef]
- Wan, W.; Zhao, J.; Harwell, J.H.; Shiau, B.J. Characterization of crude oil equivalent alkane carbon number (EACN) for surfactant flooding design. J. Dispers. Sci. Technol. 2016, 37, 280–287. [Google Scholar] [CrossRef]
- Wu, B.; Shiau, B.J.; Sabatini, D.A.; Harwell, J.H.; Vu, D.Q. Formulating microemulsion systems for a weathered jet fuel waste using surfactant/cosurfactant mixtures. Sep. Sci. Technol. 2000, 35, 1917–1937. [Google Scholar] [CrossRef]
- Denk, P.; El Maangar, A.; Lal, J.; Kleber, D.; Zemb, T.; Kunz, W. Phase diagrams and microstructures of aqueous short alkyl chain polyethylene glycol ether carboxylate and carboxylic acid triblock surfactant solutions. J. Colloid Interf. Sci. 2021, 590, 375–386. [Google Scholar] [CrossRef]
- Montes, J.; Blin, N.; Alvarez, A.E.; Barrio, I.; Panadero, A.; Rodriguez, R.; Coca, M.; Trujillo, F. Novel anionic surfactant formulation for high temperature carbonate reservoirs. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 26–28 March 2018. [Google Scholar] [CrossRef]
- Negin, C.; Ali, S.; Xie, Q. Most common surfactants employed in chemical enhanced oil recovery. Petroleum 2017, 3, 197–211. [Google Scholar] [CrossRef]
- Winsor, P.A. Hydrotropy, solubilisation and related emulsification processes. Part I. Trans. Farad. Soc. 1948, 44, 376–398. [Google Scholar] [CrossRef]
- Hezave, A.Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactants on interfacial tension of water/crude oil system. Fluid Phase Equilibr. 2013, 360, 139–145. [Google Scholar] [CrossRef]
- Hezave, A.Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Investigating the effect of ionic liquid (1-dodecyl-3-methylimidazolium chloride ([C12mim]Cl) on the water/oil interfacial tension as a novel surfactant. Colloid Surf. A 2013, 421, 63–71. [Google Scholar] [CrossRef]
- Pillai, P.; Kumar, A.; Mandal, A. Mechanistic studies of enhanced oil recovery by imidazolium-based ionic liquids as novel surfactants. J. Ind. Eng. Chem. 2018, 63, 262–274. [Google Scholar] [CrossRef]
- Rodriguez-Escontrela, I.; Puerto, M.C.; Miller, C.A.; Soto, A. Ionic liquids for low-tension oil recovery processes: Phase behavior tests. J. Colloid Interf. Sci. 2017, 504, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Somoza, A.; Arce, A.; Soto, A. Oil recovery tests with ionic liquids: A review and evaluation of 1-decyl-3-methylimidazolium triflate. Pet. Sci. 2022, 19, 1877–1887. [Google Scholar] [CrossRef]
- Fernández-Stefanuto, V.; Corchero, R.; Rodríguez-Escontrela, I.; Soto, A.; Tojo, E. Ionic Liquids Derived from Proline: Application as Surfactants. ChemPhysChem 2018, 19, 2885–2893. [Google Scholar] [CrossRef] [PubMed]
- Nandwani, S.K.; Chakraborty, M.; Bart, H.J.; Gupta, S. Synergism, phase behaviour and characterization of ionic liquid-nonionic surfactant mixture in high salinity environment of oil reservoirs. Fuel 2018, 229, 167–179. [Google Scholar] [CrossRef]
- Somoza, A.; Tafur, N.; Arce, A.; Soto, A. Design and performance analysis of a formulation based on SDBS and ionic liquid for EOR in carbonate reservoirs. J. Pet. Sci. Eng. 2022, 209, 109856. [Google Scholar] [CrossRef]
- Kume, G.; Gallotti, M.; Nunes, G. Review on anionic/cationic surfactant mixtures. J. Surfactants Deterg. 2008, 11, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Puerto, M.; Bao, X.; Zhang, W.; Jin, J.; Su, Z.; Shen, S.; Hirasaki, G.; Miller, C. Synergism and performance for systems containing binary mixtures of anionic/cationic surfactants for enhanced oil recovery. J. Surfactants Deterg. 2017, 20, 21–34. [Google Scholar] [CrossRef]
- Puerto, M.; Hirasaki, G.J.; Miller, C.A.; Barnes, J.R. Surfactant systems for EOR in high-temperature, high-salinity environments. SPE J. 2012, 17, 11–19. [Google Scholar] [CrossRef]
- Barnes, J.R.; Smit, J.P.; Smit, J.R.; Shpakoff, P.G.; Raney, K.H.; Puerto, M.C. Development of surfactants for chemical flooding at difficult reservoir conditions. SPE Symp. Improv. Oil Recover. 2008, 1, 435–452. [Google Scholar] [CrossRef]
- Antón, R.E.; Andérez, J.M.; Bracho, C.; Vejar, F.; Salager, J.L. Practical surfactant mixing rules based on the attainment of microemulsion-oil-water three-phase behavior systems. Adv. Polym. Sci. 2008, 218, 83–113. [Google Scholar] [CrossRef]
- Salager, J.L.; Forgiarini, A.M.; Bullón, J. How to attain ultralow interfacial tension and three-phase behavior with surfactant formulation for enhanced oil recovery: A review. Part 1. Optimum formulation for simple surfactant-oil-water ternary systems. J. Surfactants Deterg. 2013, 16, 449–472. [Google Scholar] [CrossRef]
- Salager, J.L.; Morgan, J.C.; Schechter, R.S.; Wade, W.H.; Vasquez, E. Optimum formulation of surfactant-water-oil systems for minimum interfacial tension or phase behaviour. Soc. Pet. Eng. J. 1979, 19, 107–115. [Google Scholar] [CrossRef]
- Huh, C. Interfacial tensions and solubilizing ability of a microemulsion phase that coexists with oil and brine. J. Colloid Interf. Sci. 1979, 71, 408–426. [Google Scholar] [CrossRef]
- Hu, H.; Joseph, D. Evolution of a liquid drop in a spinning drop tensiometer. J. Colloid Interf. 1994, 162, 331–339. [Google Scholar] [CrossRef]
- Vonnegut, B. Rotating bubble method for the determination of surface and interfacial tensions. Rev. Sci. Instrum. 1942, 13, 6–9. [Google Scholar] [CrossRef]
- Sharma, H.; Lu, J.; Weerasooriya, U.P.; Pope, G.A.; Mohanty, K.K. Adsorption in chemical floods with ammonia as the alkali. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar] [CrossRef]
AOT/LF2 | A-C/LF2 | |||
---|---|---|---|---|
Temperature | 25 °C | 50 °C | 25 °C | 50 °C |
Optimal blend ratio | 50.2/49.8 | 55/45 | 49.9/50.1 | 40.7/59.3 |
Vi/Vs* | 3.0 | 2.1 | 4.7 | 2.5 |
IFTHuh (mN/m) | 3.36 × 10−2 | 6.64 × 10−2 | 1.32 × 10−2 | 4.87 × 10−2 |
Formulation | ||
---|---|---|
Blend Composition | AOT (50 wt%) LF2 (50 wt%) | AOT (20.7 wt%) [C12mim]Br (25.3 wt%) LF2 (50 wt%) |
Concentration in SSW (wt%) | 1 | 0.8 |
Initial conditions | ||
Porosity, ø | 0.136 | 0.18 |
Permeability, Ka (mD) | 16.81 | 19.16 |
Pore volume, PV (mL) | 12.03 | 15.6 |
Oil visc. (mPa S) at 25 °C | 12 | 12 |
OOIP (mL) | 6.80 | 8.20 |
Initial water saturation, Swi | 0.43 | 0.47 |
Water Flooding | ||
Injection rate, Qi (mL/min) | 0.05 | 0.05 |
Injected SSW Volume (PV) | 1.97 | 1.96 |
Oil recovery (%OOIP) | 47.7 | 40.8 |
Residual oil saturation, Sorw | 0.36 | 0.37 |
Chemical Flooding | ||
Injection rate (Qi, mL/min) | 0.05 | 0.05 |
Injected blend volume (PV) | 0.495 | 0.511 |
Injected polymer volume (PV) | 1.26 | 1.38 |
AOR (%OOIP) | 7.3 | 11.5 |
Residual oil saturation, Sor2 | 0.33 | 0.32 |
Salt | Purity (wt%)/ Commercial | SSW (g/L) |
---|---|---|
Na2SO4 | >99%/Sigma-Aldrich | 4.84 |
CaCl2·2H2O | >99%/Sigma-Aldrich | 1.89 |
MgCl2·6H2O | >99%/Sigma-Aldrich | 15.06 |
NaCl | >99%/Panreac | 27.94 |
TDS (g/L) | 49.73 | |
Density at 25 °C (g/mL) | 1.028 |
Property | Crude Oil A |
---|---|
Density at 25 °C (g/mL) | 0.853 |
°API | 34.1 |
Viscosity at 25 °C (mPa·s) | 15.3 |
Saturates (wt%) | 61 |
Aromatics (wt%) | 33 |
Resins (wt%) | 4.6 |
Asphaltenes (wt%) | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafur, N.; Muñuzuri, A.P.; Soto, A. Improvement of a Surfactant Blend for Enhanced Oil Recovery in Carbonate Reservoirs by Means of an Ionic Liquid. Int. J. Mol. Sci. 2023, 24, 726. https://doi.org/10.3390/ijms24010726
Tafur N, Muñuzuri AP, Soto A. Improvement of a Surfactant Blend for Enhanced Oil Recovery in Carbonate Reservoirs by Means of an Ionic Liquid. International Journal of Molecular Sciences. 2023; 24(1):726. https://doi.org/10.3390/ijms24010726
Chicago/Turabian StyleTafur, Nestor, Alberto P. Muñuzuri, and Ana Soto. 2023. "Improvement of a Surfactant Blend for Enhanced Oil Recovery in Carbonate Reservoirs by Means of an Ionic Liquid" International Journal of Molecular Sciences 24, no. 1: 726. https://doi.org/10.3390/ijms24010726
APA StyleTafur, N., Muñuzuri, A. P., & Soto, A. (2023). Improvement of a Surfactant Blend for Enhanced Oil Recovery in Carbonate Reservoirs by Means of an Ionic Liquid. International Journal of Molecular Sciences, 24(1), 726. https://doi.org/10.3390/ijms24010726