Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma
Abstract
:1. Introduction
2. Results
2.1. TCGA Cohort
2.2. Functional Characterization of the TCGA Cohort
2.3. Functional Differences According to Mutational Subtypes in the TCGA Cohort
2.4. Biological Layer Analysis
2.4.1. Layer 1: Melanogenesis
2.4.2. Layer 2: Immune Response
2.4.3. Layer 3: Epidermis Development & Keratinization
2.4.4. Layer 4: Extracellular Space & Membrane
2.4.5. Layers 5, 6 and 7
2.5. Immune Classification
2.6. Molecular Classification
2.7. Cohort of Patients Treated with Anti-PD1 Therapy in the Spanish Melanoma Group (GEM)
2.8. Sample Processing and RNA Capture Experiments
2.9. Biological Layer Classification in GEM Cohort
2.10. Relation to Survival of Molecular and Immune Classifications in GEM Cohort
3. Discussion
4. Materials and Methods
4.1. Preprocessing of TCGA Melanoma Data
4.2. GEM Cohort of Advanced Melanoma Patients Treated with Anti-PD1 Inhibitors
4.3. RNA Isolation
4.4. RNA Capture and Sequencing
4.5. Preprocessing of RNA Capture Data
4.6. Network Construction and Functional Node Activities
4.7. Biological Informative Layer Analyses
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Majem, M.; Manzano, J.L.; Marquez-Rodas, I.; Mujika, K.; Muñoz-Couselo, E.; Pérez-Ruiz, E.; de la Cruz-Merino, L.; Espinosa, E.; Gonzalez-Cao, M.; Berrocal, A. SEOM clinical guideline for the management of cutaneous melanoma. Clin. Transl. Oncol. 2021, 23, 948–960. [Google Scholar] [CrossRef] [PubMed]
- Ascierto, P.A.; Gogas, H.J.; Grob, J.J.; Algarra, S.M.; Mohr, P.; Hansson, J.; Hauschild, A. Adjuvant interferon alfa in malignant melanoma: An interdisciplinary and multinational expert review. Crit. Rev. Oncol. Hematol. 2013, 85, 149–161. [Google Scholar] [CrossRef]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 2014, 371, 1877–1888. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.; Ascierto, P.A.; Dréno, B.; Atkinson, V.; Liszkay, G.; Maio, M.; Mandalà, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 2014, 371, 1867–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Morrison, C.; Pabla, S.; Conroy, J.M.; Nesline, M.K.; Glenn, S.T.; Dressman, D.; Papanicolau-Sengos, A.; Burgher, B.; Andreas, J.; Giamo, V.; et al. Predicting response to checkpoint inhibitors in melanoma beyond PD-L1 and mutational burden. J. Immunother. Cancer 2018, 6, 32. [Google Scholar] [CrossRef]
- Tomela, K.; Pietrzak, B.; Schmidt, M.; Mackiewicz, A. The Tumor and Host Immune Signature, and the Gut Microbiota as Predictive Biomarkers for Immune Checkpoint Inhibitor Response in Melanoma Patients. Life 2020, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Gámez-Pozo, A.; Berges-Soria, J.; Arevalillo, J.M.; Nanni, P.; López-Vacas, R.; Navarro, H.; Grossmann, J.; Castaneda, C.; Main, P.; Díaz-Almirón, M.; et al. Combined label-free quantitative proteomics and microRNA expression analysis of breast cancer unravel molecular differences with clinical implications. Cancer Res. 2015, 75, 2243–2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gámez-Pozo, A.; Trilla-Fuertes, L.; Berges-Soria, J.; Selevsek, N.; López-Vacas, R.; Díaz-Almirón, M.; Nanni, P.; Arevalillo, J.M.; Navarro, H.; Grossmann, J.; et al. Functional proteomics outlines the complexity of breast cancer molecular subtypes. Sci. Rep. 2017, 7, 10100. [Google Scholar] [CrossRef]
- Prado-Vázquez, G.; Gámez-Pozo, A.; Trilla-Fuertes, L.; Arevalillo, J.M.; Zapater-Moros, A.; Ferrer-Gómez, M.; Díaz-Almirón, M.; López-Vacas, R.; Navarro, H.; Maín, P.; et al. A novel approach to triple-negative breast cancer molecular classification reveals a luminal immune-positive subgroup with good prognoses. Sci. Rep. 2019, 9, 1538. [Google Scholar] [CrossRef]
- Trilla-Fuertes, L.; Gámez-Pozo, A.; Prado-Vázquez, G.; Zapater-Moros, A.; Díaz-Almirón, M.; Arevalillo, J.M.; Ferrer-Gómez, M.; Navarro, H.; Maín, P.; Espinosa, E.; et al. Biological molecular layer classification of muscle-invasive bladder cancer opens new treatment opportunities. BMC Cancer 2019, 19, 636. [Google Scholar] [CrossRef]
- Network, C.G.A. Genomic Classification of Cutaneous Melanoma. Cell 2015, 161, 1681–1696. [Google Scholar] [CrossRef] [Green Version]
- Netanely, D.; Leibou, S.; Parikh, R.; Stern, N.; Vaknine, H.; Brenner, R.; Amar, S.; Factor, R.H.; Perluk, T.; Frand, J.; et al. Classification of node-positive melanomas into prognostic subgroups using keratin, immune, and melanogenesis expression patterns. Oncogene 2021, 40, 1792–1805. [Google Scholar] [CrossRef]
- Gostyński, A.; Pasmooij, A.M.; Del Rio, M.; Diercks, G.F.; Pas, H.H.; Jonkman, M.F. Pigmentation and melanocyte supply to the epidermis depend on type XVII collagen. Exp. Dermatol. 2014, 23, 130–132. [Google Scholar] [CrossRef] [Green Version]
- Krenacs, T.; Kiszner, G.; Stelkovics, E.; Balla, P.; Teleki, I.; Nemeth, I.; Varga, E.; Korom, I.; Barbai, T.; Plotar, V.; et al. Collagen XVII is expressed in malignant but not in benign melanocytic tumors and it can mediate antibody induced melanoma apoptosis. Histochem. Cell Biol. 2012, 138, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Kikulska, A.; Rausch, T.; Krzywinska, E.; Pawlak, M.; Wilczynski, B.; Benes, V.; Rutkowski, P.; Wilanowski, T. Coordinated expression and genetic polymorphisms in Grainyhead-like genes in human non-melanoma skin cancers. BMC Cancer 2018, 18, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Lv, G.; Jing, C.; Liu, J. ZNF750 inhibits the proliferation and invasion of melanoma cells through modulating the Wnt/b-catenin signaling pathway. Folia Histochem. Cytobiol. 2020, 58, 255–263. [Google Scholar] [CrossRef]
- Sztramska, A.; Dymerska, D.; Chwirot, B.W. Skin layer-specific Melan-A expression during progression of human cutaneous melanoma: Implications for diagnostic applications of the marker. Melanoma Res. 2008, 18, 259–267. [Google Scholar] [CrossRef]
- Stevens, G.L.; Scheer, W.D.; Levine, E.A. Detection of tyrosinase mRNA from the blood of melanoma patients. Cancer Epidemiol. Biomark. Prev. 1996, 5, 293–296. [Google Scholar]
- El Hajj, P.; Journe, F.; Wiedig, M.; Laios, I.; Salès, F.; Galibert, M.D.; Van Kempen, L.C.; Spatz, A.; Badran, B.; Larsimont, D.; et al. Tyrosinase-related protein 1 mRNA expression in lymph node metastases predicts overall survival in high-risk melanoma patients. Br. J. Cancer 2013, 108, 1641–1647. [Google Scholar] [CrossRef]
- Journe, F.; Id Boufker, H.; Van Kempen, L.; Galibert, M.D.; Wiedig, M.; Salès, F.; Theunis, A.; Nonclercq, D.; Frau, A.; Laurent, G.; et al. TYRP1 mRNA expression in melanoma metastases correlates with clinical outcome. Br. J. Cancer 2011, 105, 1726–1732. [Google Scholar] [CrossRef] [Green Version]
- Newton Bishop, J.A.; Bishop, D.T. The genetics of susceptibility to cutaneous melanoma. Drugs Today 2005, 41, 193–203. [Google Scholar] [CrossRef]
- Ainger, S.A.; Yong, X.L.; Wong, S.S.; Skalamera, D.; Gabrielli, B.; Leonard, J.H.; Sturm, R.A. DCT protects human melanocytic cells from UVR and ROS damage and increases cell viability. Exp. Dermatol. 2014, 23, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Satyamoorthy, K.; Oka, M.; Herlyn, M. An antisense strategy for inhibition of human melanoma growth targets the growth factor pleiotrophin. Pigment Cell Res. 2000, 13 (Suppl. S8), 87–93. [Google Scholar] [CrossRef]
- Malerczyk, C.; Schulte, A.M.; Czubayko, F.; Bellon, L.; Macejak, D.; Riegel, A.T.; Wellstein, A. Ribozyme targeting of the growth factor pleiotrophin in established tumors: A gene therapy approach. Gene Ther. 2005, 12, 339–346. [Google Scholar] [CrossRef]
- de Aguiar, R.B.; Parise, C.B.; Souza, C.R.; Braggion, C.; Quintilio, W.; Moro, A.M.; Navarro Marques, F.L.; Buchpiguel, C.A.; Chammas, R.; de Moraes, J.Z. Blocking FGF2 with a new specific monoclonal antibody impairs angiogenesis and experimental metastatic melanoma, suggesting a potential role in adjuvant settings. Cancer Lett. 2016, 371, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Rebecca, V.W.; Kossenkov, A.V.; Connelly, T.; Liu, Q.; Gutierrez, A.; Xiao, M.; Li, L.; Zhang, G.; Samarkina, A.; et al. Neural Crest-Like Stem Cell Transcriptome Analysis Identifies LPAR1 in Melanoma Progression and Therapy Resistance. Cancer Res. 2021, 81, 5230–5241. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Cheng, Y.; Martinka, M.; McElwee, K. High LIFr expression stimulates melanoma cell migration and is associated with unfavorable prognosis in melanoma. Oncotarget 2015, 6, 25484–25498. [Google Scholar] [CrossRef] [Green Version]
- Nsengimana, J.; Laye, J.; Filia, A.; O’Shea, S.; Muralidhar, S.; Poźniak, J.; Droop, A.; Chan, M.; Walker, C.; Parkinson, L.; et al. β-Catenin-mediated immune evasion pathway frequently operates in primary cutaneous melanomas. J. Clin. Investig. 2018, 128, 2048–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Karachaliou, N.; Gonzalez-Cao, M.; Crespo, G.; Drozdowskyj, A.; Aldeguer, E.; Gimenez-Capitan, A.; Teixido, C.; Molina-Vila, M.A.; Viteri, S.; De Los Llanos Gil, M.; et al. Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients. Ther. Adv. Med. Oncol. 2018, 10, 1758834017749748. [Google Scholar] [CrossRef]
- Tu, M.M.; Abdel-Hafiz, H.A.; Jones, R.T.; Jean, A.; Hoff, K.J.; Duex, J.E.; Chauca-Diaz, A.; Costello, J.C.; Dancik, G.M.; Tamburini, B.A.J.; et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Commun. Biol. 2020, 3, 720. [Google Scholar] [CrossRef]
- Gide, T.N.; Quek, C.; Menzies, A.M.; Tasker, A.T.; Shang, P.; Holst, J.; Madore, J.; Lim, S.Y.; Velickovic, R.; Wongchenko, M.; et al. Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell 2019, 35, 238–255.e236. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Quezada, S.A.; Sepulveda, M.A.; Sharma, P.; Allison, J.P. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J. Exp. Med. 2014, 211, 715–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkin, J.; Cohen, B. An overview of the immune system. Lancet 2001, 357, 1777–1789. [Google Scholar] [CrossRef] [PubMed]
- Mackay, C.R. Chemokines: Immunology’s high impact factors. Nat. Immunol. 2001, 2, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Reijers, L.M.; Versluis, J.M.; Menzies, A.M.; Dimitriadis, P.; Wouters, M.W.; Saw, R.P.M.; Klop, W.M.C.; Pennington, T.E.; v Houdt, W.J.; Bosch, L.J.W.; et al. DOMINI study: Personalized combinations of neoadjuvant dominostat, nivolumab and ipilimumab in macroscopic stage III melanoma based on the IFN-gamma signature. J. Clin. Oncol. 2020, 38, TPS10087. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote) omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Futami, R.; Muñoz-Pomer, A.; Viu, J.; Domínguez-Escribá, R.; Covelli, L.; Bernet, G.; Sempere, J.; Moya, A.; Llorens, C. GPRO The professional tool for annotation, management and functional analysis of omic databases. Biotechvana Bioinform. SOFT3 2011. [Google Scholar]
- Kinsella, R.J.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef] [PubMed]
- Abreu, G.; Edwards, D.; Labouriau, R. High-Dimensional Graphical Model Search with the gRapHD R Package. J. Stat. Softw. 2010, 37, 1–18. [Google Scholar] [CrossRef]
- Lauritzen, S. Graphical Models; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Witten, D.M.; Tibshirani, R. A framework for feature selection in clustering. J. Am. Stat. Assoc. 2010, 105, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Monti, S.; Tamayo, P.; Mesirov, J.; Golub, T. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Mach. Learn. 2003, 52, 91–118. [Google Scholar] [CrossRef]
- Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.; Thiagarajan, M.; et al. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 2003, 34, 374–378. [Google Scholar] [CrossRef] [PubMed]
Cluster Distribution% | |||||||
---|---|---|---|---|---|---|---|
Layer | Main Function | CCA | Genes | 1 | 2 | 3 | 4 |
1 | Melanogenesis | 3 | 57 | 49 | 37 | 14 | -- |
2 | Immune | 2 | 146 | 49 | 51 | -- | -- |
3 | Epidermis development & keratinization | 4 | 63 | 10.8 | 57.7 | 21.9 | 9.6 |
4 | Extracellular space & membrane | 2 | 86 | 53 | 47 | -- | -- |
5 | Extracellular space & extracellular matrix | 2 | 110 | 66 | 34 | -- | -- |
6 | Inflammatory response | 2 | 125 | 49 | 51 | -- | -- |
7 | Without function | 2 | 11 | 41 | 59 | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trilla-Fuertes, L.; Gámez-Pozo, A.; Prado-Vázquez, G.; López-Vacas, R.; Zapater-Moros, A.; López-Camacho, E.; Lumbreras-Herrera, M.I.; Soriano, V.; Garicano, F.; Lecumberri, M.J.; et al. Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma. Int. J. Mol. Sci. 2023, 24, 801. https://doi.org/10.3390/ijms24010801
Trilla-Fuertes L, Gámez-Pozo A, Prado-Vázquez G, López-Vacas R, Zapater-Moros A, López-Camacho E, Lumbreras-Herrera MI, Soriano V, Garicano F, Lecumberri MJ, et al. Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma. International Journal of Molecular Sciences. 2023; 24(1):801. https://doi.org/10.3390/ijms24010801
Chicago/Turabian StyleTrilla-Fuertes, Lucía, Angelo Gámez-Pozo, Guillermo Prado-Vázquez, Rocío López-Vacas, Andrea Zapater-Moros, Elena López-Camacho, María I. Lumbreras-Herrera, Virtudes Soriano, Fernando Garicano, Mª José Lecumberri, and et al. 2023. "Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma" International Journal of Molecular Sciences 24, no. 1: 801. https://doi.org/10.3390/ijms24010801
APA StyleTrilla-Fuertes, L., Gámez-Pozo, A., Prado-Vázquez, G., López-Vacas, R., Zapater-Moros, A., López-Camacho, E., Lumbreras-Herrera, M. I., Soriano, V., Garicano, F., Lecumberri, M. J., Rodríguez de la Borbolla, M., Majem, M., Pérez-Ruiz, E., González-Cao, M., Oramas, J., Magdaleno, A., Fra, J., Martín-Carnicero, A., Corral, M., ... Espinosa, E. (2023). Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma. International Journal of Molecular Sciences, 24(1), 801. https://doi.org/10.3390/ijms24010801