Hepatotoxicity of Drugs Used in Multiple Sclerosis, Diagnostic Challenge, and the Role of HLA Genotype Susceptibility
Abstract
:1. Introduction
- (1).
- The potential hepatotoxicity of drugs used to treat MS and the clinical manifestation of DILI;
- (2).
- The criteria to differentiate DILI from idiopathic autoimmunity;
- (3).
- Whether DILI is due to an immune-related susceptibility;
- (4).
- Whether there are susceptible genes that promote both the development of MS and DILI after treatment of MS.
2. MS Therapies and Drug-Induced Liver Injury
2.1. Interferon Beta (IFN-β)
- -
- Recombinant IFN-β 1b is found under three market forms: Betaseron, Betaferon, and Extavia. Recombinant IFN-β 1b is administered subcutaneously every day at the dose of 250 μg. Extavia is also approved for weekly administration.
- -
- Rebif is a recombinant IFN-β 1a that is administered subcutaneously at different doses: 8.8 μg, 22 μg, or 44 μg thrice weekly.
- -
- Plegridy is a recombinant peginterferon-β1 that is administered subcutaneously at the doses of 63 μg, 94 μg, or 125 μg every two weeks.
2.2. Methylprednisolone Pulse Therapy
2.3. Glatiramer Acetate (GA) [28,29,30,31,32,33,34,35,36,37,38,39,40,41,42]
2.4. Dimethyl Fumarate (DMF) [33]
2.5. Teriflunomide [13,45,46,47,48]
2.6. Alemtuzumab [34,39,40,41]
2.7. Natalizumab [13,50,51,52,53]
2.8. Ocrelizumab [13,54,55]
2.9. Cladribine
3. Distinction between Drug-Induced Liver Injury (DILI) and Autoimmune Hepatitis (AIH) Associated with MS
Idiopathic Autoimmune Hepatitis | Drug-Induced Autoimmune Hepatitis | |
---|---|---|
Clinical presentation | ||
Sex prevalence | Female | None |
Clinical symptoms Predominant AST > ALT | Non-specific Yes | Non-specific No |
Other signs of autoimmunity | Yes | None |
Immunology | ||
Autoantibodies | ||
Non-specific (ANA and/or ASMA and/or LKM 1) | Present | Present |
Specific (anti-mitochondria 6, LKM 2, CYP1A2) | No | Yes, for specific drugs: Iproniazid, tienilic acid, dihydralazine |
Increased IgG level >1.5x ULN | No | Yes |
Histology | ||
Plasmocytes | Absent or rare | Present |
Chronic hepatitis/cirrhosis/fibrosis | Absent | Frequently present |
Interface hepatitis | Absent | Frequent |
Eosinophilia | Frequent | Absent |
CD4+/CD20+ | Rare | Present |
HLA genotype | ||
DRB1*1501 | Increased risk | Decreased risk |
HLA DRB1*03 et *04 | Not related | Increased risk |
Clinical evolution | ||
Response to corticosteroids | Rapid | Variable, possibly slower |
Relapse after stopping corticosteroids | None | Yes |
Immunosuppressive treatment required | None | Yes |
4. The Role of Human Leukocyte Antigen (HLA) in MS Patients Who Develop Hepatitis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
MS | multiple sclerosis |
DMTs | disease-modifying therapies |
DILI | drug-induced liver injury |
GA | Glatiramer acetate |
IFN-β | interferon beta |
AIH | autoimmune hepatitis |
FDA | Food and Drug Administration |
ROR | reporting odds ratios |
HLA | human leukocyte antigen |
GGT | gamma glutamyltransferase |
References
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Ferrò, M.T.; Franciotta, D.; Riccardi, T.; D’Adda, E.; Mainardi, E.; Montanelli, A. A Case of Multiple Sclerosis with Atypical Onset Associated with Autoimmune Hepatitis and Silent Coeliac Disease. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2008, 29, 29–31. [Google Scholar] [CrossRef]
- Kreisler, A.; de Seze, J.; Stojkovic, T.; Delisse, B.; Combelles, M.; Vérier, A.; Hautecoeur, P.; Vermersch, P.; Groupe septentrional d’étude et de recherche sur la Sclérose en Plaques (G-SEP). Multiple Sclerosis, Interferon Beta and Clinical Thyroid Dysfunction. Acta Neurol. Scand. 2003, 107, 154–157. [Google Scholar] [CrossRef]
- Attout, H.; Toussirot, E.; Augé, B.; Chavot, D.; Wendling, D. Rheumatoid Arthritis and Multiple Sclerosis in the Same Patient. Two Case-Reports. Rev. Rhum. Engl. Ed. 1999, 66, 169–172. [Google Scholar]
- Isbister, C.M.; Mackenzie, P.J.; Anderson, D.; Wade, N.K.; Oger, J. Co-Occurrence of Multiple Sclerosis and Myasthenia Gravis in British Columbia. Mult. Scler. Houndmills Basingstoke Engl. 2003, 9, 550–553. [Google Scholar] [CrossRef]
- Comi, G.; Radaelli, M.; Soelberg Sørensen, P. Evolving Concepts in the Treatment of Relapsing Multiple Sclerosis. Lancet Lond. Engl. 2017, 389, 1347–1356. [Google Scholar] [CrossRef]
- Antonazzo, I.C.; Poluzzi, E.; Forcesi, E.; Riise, T.; Bjornevik, K.; Baldin, E.; Muratori, L.; De Ponti, F.; Raschi, E. Liver Injury with Drugs Used for Multiple Sclerosis: A Contemporary Analysis of the FDA Adverse Event Reporting System. Mult. Scler. Houndmills Basingstoke Engl. 2019, 25, 1633–1640. [Google Scholar] [CrossRef]
- Zimmerman, H.J. Oncotherapeutic and Immunosuppressive Agents. In Hepatotoxicity: The Adverse Effects of Drugs and Other Chemicals on the Liver, 2nd ed.; Zimmerman, H.J., Ed.; Lippincott: Philadelphia, PA, USA, 1999; pp. 673–708. [Google Scholar]
- Fontana, R.J.; Seeff, L.B.; Andrade, R.J.; Björnsson, E.; Day, C.P.; Serrano, J.; Hoofnagle, J.H. Standardization of Nomenclature and Causality Assessment in Drug-Induced Liver Injury: Summary of a Clinical Research Workshop. Hepatology 2010, 52, 730–742. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.J.; Aithal, G.P.; Björnsson, E.S.; Kaplowitz, N.; Kullak-Ublick, G.A.; Larrey, D.; Karlsen, T.H. EASL Clinical Practice Guidelines: Drug-Induced Liver Injury. J. Hepatol. 2019, 70, 1222–1261. [Google Scholar] [CrossRef] [Green Version]
- Danan, G.; Teschke, R. RUCAM in Drug and Herb Induced Liver Injury: The Update. Int. J. Mol. Sci. 2015, 17, 14. [Google Scholar] [CrossRef]
- Biolato, M.; Bianco, A.; Lucchini, M.; Gasbarrini, A.; Mirabella, M.; Grieco, A. The Disease-Modifying Therapies of Relapsing-Remitting Multiple Sclerosis and Liver Injury: A Narrative Review. CNS Drugs 2021, 35, 861–880. [Google Scholar] [CrossRef] [PubMed]
- LiverTox. Available online: http://livertox.nlm.nih.gov (accessed on 10 September 2022).
- Francis, G.S.; Grumser, Y.; Alteri, E.; Micaleff, A.; O’Brien, F.; Alsop, J.; Stam Moraga, M.; Kaplowitz, N. Hepatic Reactions during Treatment of Multiple Sclerosis with Interferon-Beta-1a: Incidence and Clinical Significance. Drug Saf. 2003, 26, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Tremlett, H.L.; Yoshida, E.M.; Oger, J. Liver Injury Associated with the Beta-Interferons for MS: A Comparison between the Three Products. Neurology 2004, 62, 628–631. [Google Scholar] [CrossRef] [Green Version]
- Fontana, R.J.; Hayashi, P.; Bonkovsky, H.L.; Kleiner, D.E.; Kochhar, S.; Gu, J.; Ghabril, M. Presentation and Outcomes with Clinically Apparent Interferon Beta Hepatotoxicity. Dig. Dis. Sci. 2013, 58, 1766–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, H.; Takeda, A.; Kikukawa, T.; Hasegawa, I.; Mino, T.; Uchida-Kobayashi, S.; Ohsawa, M.; Itoh, Y. Liver Injury after Methylprednisolone Pulse Therapy in Multiple Sclerosis Is Usually Due to Idiosyncratic Drug-Induced Toxicity Rather than Autoimmune Hepatitis. Mult. Scler. Relat. Disord. 2020, 42, 102065. [Google Scholar] [CrossRef]
- Cottin, J.; Pierre, S.; Pizzoglio, V.; Simon, C.; Durrieu, G.; Bleyzac, N.; Gouraud, A.; Dumortier, J. Methylprednisolone-Related Liver Injury: A Descriptive Study Using the French Pharmacovigilance Database. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Zoubek, M.E.; Pinazo-Bandera, J.; Ortega-Alonso, A.; Hernández, N.; Crespo, J.; Contreras, F.; Medina-Cáliz, I.; Sanabria-Cabrera, J.; Sanjuan-Jiménez, R.; González-Jiménez, A.; et al. Liver Injury after Methylprednisolone Pulses: A Disputable Cause of Hepatotoxicity. A Case Series and Literature Review. United Eur. Gastroenterol. J. 2019, 7, 825–837. [Google Scholar] [CrossRef] [Green Version]
- Nociti, V.; Biolato, M.; De Fino, C.; Bianco, A.; Losavio, F.A.; Lucchini, M.; Marrone, G.; Grieco, A.; Mirabella, M. Liver Injury after Pulsed Methylprednisolone Therapy in Multiple Sclerosis Patients. Brain Behav. 2018, 8, e00968. [Google Scholar] [CrossRef] [Green Version]
- Allgeier, J.; Weber, S.; Todorova, R.; Neumann, J.; Gerbes, A. Acute Liver Injury Following Methylprednisolone Pulse Therapy: 13 Cases from a Prospectively Collected Cohort. Eur. J. Gastroenterol. Hepatol. 2022, 34, 457–461. [Google Scholar] [CrossRef]
- Davidov, Y.; Har-Noy, O.; Pappo, O.; Achiron, A.; Dolev, M.; Ben-Ari, Z. Methylprednisolone-Induced Liver Injury: Case Report and Literature Review. J. Dig. Dis. 2016, 17, 55–62. [Google Scholar] [CrossRef]
- Cação, G.; Santos, E.; Martins Silva, A. Concurrent Autoimmune Hepatitis in Multiple Sclerosis. Mult. Scler. Houndmills Basingstoke Engl. 2018, 24, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Negro, F.; Mondardini, A.; Palmas, F. Hepatotoxicity of Saccharin. N. Engl. J. Med. 1994, 331, 134–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larrey, D. Drug-Induced Liver Diseases. J. Hepatol. 2000, 32, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, E.S.; Vucic, V.; Stirnimann, G.; Robles-Díaz, M. Role of Corticosteroids in Drug-Induced Liver Injury. A Systematic Review. Front. Pharmacol. 2022, 13, 820724. [Google Scholar] [CrossRef]
- Hu, P.F.; Xie, W.F. Corticosteroid Therapy in Drug-Induced Liver Injury: Pros and Cons. J. Dig. Dis. 2019, 20, 122–126. [Google Scholar] [CrossRef]
- Ziemssen, T.; Ashtamker, N.; Rubinchick, S.; Knappertz, V.; Comi, G. Long-Term Safety and Tolerability of Glatiramer Acetate 20 Mg/Ml in the Treatment of Relapsing Forms of Multiple Sclerosis. Expert Opin. Drug Saf. 2017, 16, 247–255. [Google Scholar] [CrossRef]
- Deltenre, P.; Peny, M.-O.; Dufour, A.; Nady, M.E.; Henrion, J. Acute Hepatitis Induced by Glatiramer Acetate. BMJ Case Rep. 2009, 2009, bcr0920080913. [Google Scholar] [CrossRef] [Green Version]
- Onmez, A.; Eminler, A.T.; Ergenç, H.; Baykara, M.; Uslan, I.; Tamer, A. Drug-Induced Liver Injury by Glatiramer Acetate Used for Treatment of Multiple Sclerosis: A Case Report. J. Investig. Med. High Impact Case Rep. 2013, 1, 2324709613517493. [Google Scholar] [CrossRef]
- Neumann, H.; Csepregi, A.; Sailer, M.; Malfertheiner, P. Glatiramer Acetate Induced Acute Exacerbation of Autoimmune Hepatitis in a Patient with Multiple Sclerosis. J. Neurol. 2007, 254, 816–817. [Google Scholar] [CrossRef]
- Antezana, A.; Herbert, J.; Park, J.; Kister, I. Glatiramer Acetate-Induced Acute Hepatotoxicity in an Adolescent with MS. Neurology 2014, 82, 1846–1847. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, K.; Pavli, P.; Llewellyn, H.; Chitturi, S. Glatiramer Acetate Induced Hepatotoxicity. Curr. Drug Saf. 2012, 7, 186–188. [Google Scholar] [CrossRef]
- Flaire, A.; Carra-Dalliere, C.; Ayrignac, X.; Blanc, P.; Labauge, P. Glatiramer Acetate-Induced Hepatitis in a Patient with Multiple Sclerosis. Acta Neurol. Belg. 2016, 116, 99–100. [Google Scholar] [CrossRef]
- La Gioia, S.; Bacis, G.; Sonzogni, A.; Frigeni, B.; Conti, M.Z.; Vedovello, M.; Rottoli, M. Glatiramer Acetate-Induced Hepatitis in a Young Female Patient with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2014, 3, 732–734. [Google Scholar] [CrossRef]
- Makhani, N.; Ngan, B.; Kamath, B.M.; Yeh, E.A. Glatiramer Acetate-Induced Acute Hepatotoxicity in an Adolescent with MS. Neurology 2013, 81, 850–852. [Google Scholar] [CrossRef] [Green Version]
- Fernández Fernández, N.; Joao Matias, D.; Pisabarros Blanco, C.; Rodríguez Martín, L.; Aparicio Cabezudo, M.; Linares Torres, P.; Hernando Martín, M.; Olcoz Goñi, J.L. Hepatitis induced by glatiramer acetate. Gastroenterol. Hepatol. 2015, 38, 280–281. [Google Scholar] [CrossRef]
- Sinagra, E.; Raimondo, D.; Cottone, S.; Guddo, F.; Gabriele Rizzo, A.; Amvrosiadis, G.; Perricone, G.; Cottone, M.; Madonia, S. Does Glatiramer Acetate Provoke Hepatitis in Multiple Sclerosis? Mult. Scler. Relat. Disord. 2014, 3, 266–268. [Google Scholar] [CrossRef] [Green Version]
- Almeida, J.; Solà-Valls, N.; Pose, E.; Blanco, Y.; Sepúlveda, M.; Llufriu, S.; Gines, P.; Saiz, A. Liver Injury and Glatiramer Acetate, an Uncommon Association: Case Report and Literature Review. Ther. Adv. Neurol. Disord. 2017, 10, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Arruti, M.; Castillo-Triviño, T.; de la Riva, P.; Martí-Massó, J.F.; López de Munain, A.; Olascoaga, J. Autoimmune hepatitis in a patient with multiple sclerosis under treatment with glatiramer acetate. Rev. Neurol. 2012, 55, 190–192. [Google Scholar]
- von Kalckreuth, V.; Lohse, A.W.; Schramm, C. Unmasking Autoimmune Hepatitis under Immunomodulatory Treatment of Multiple Sclerosis—Not only Beta Interferon. Am. J. Gastroenterol. 2008, 103, 2147–2148. [Google Scholar] [CrossRef]
- Michels, S.; Zizer, E.; Barth, T.F.; Wassner, A.; Fangerau, T.; Taranu, D.; Bachhuber, F.; Tumani, H.; Senel, M. Drug-Induced Liver Injury Associated with the Biosimilar Glatiramer Acetate (Clift®). Mult. Scler. Relat. Disord. 2020, 40, 101948. [Google Scholar] [CrossRef]
- Muñoz, M.A.; Kulick, C.G.; Kortepeter, C.M.; Levin, R.L.; Avigan, M.I. Liver Injury Associated with Dimethyl Fumarate in Multiple Sclerosis Patients. Mult. Scler. Houndmills Basingstoke Engl. 2017, 23, 1947–1949. [Google Scholar] [CrossRef]
- Uetrecht, J. Mechanistic Studies of Idiosyncratic DILI: Clinical Implications. Front. Pharmacol. 2019, 10, 837. [Google Scholar] [CrossRef]
- O’Connor, P.W.; Li, D.; Freedman, M.S.; Bar-Or, A.; Rice, G.P.A.; Confavreux, C.; Paty, D.W.; Stewart, J.A.; Scheyer, R.; Teriflunomide Multiple Sclerosis Trial Group; et al. A Phase II Study of the Safety and Efficacy of Teriflunomide in Multiple Sclerosis with Relapses. Neurology 2006, 66, 894–900. [Google Scholar] [CrossRef]
- O’Connor, P.; Wolinsky, J.S.; Confavreux, C.; Comi, G.; Kappos, L.; Olsson, T.P.; Benzerdjeb, H.; Truffinet, P.; Wang, L.; Miller, A.; et al. Randomized Trial of Oral Teriflunomide for Relapsing Multiple Sclerosis. N. Engl. J. Med. 2011, 365, 1293–1303. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, L.; Wagner, M.L.; Maroney, M.; Ryan, M. Teriflunomide for the Treatment of Relapsing Multiple Sclerosis: A Review of Clinical Data. Ann. Pharmacother. 2013, 47, 1153–1160. [Google Scholar] [CrossRef]
- Ferreira, C.M.; de Vasconcelos-Pereira, E.F.; de Oliveira, V.M.; Salgado, P.R.; Domingos, J.A.; Monreal, M.T.F.D.; Guerra-Shinohara, E.M.; Gubert, V.T. Hepatotoxicity Associated with the Use of Teriflunomide in a Patient with Multiple Sclerosis: A Case Report. Medicine 2021, 100, e28246. [Google Scholar] [CrossRef]
- Baker, D.; Herrod, S.S.; Alvarez-Gonzalez, C.; Giovannoni, G.; Schmierer, K. Interpreting Lymphocyte Reconstitution Data from the Pivotal Phase 3 Trials of Alemtuzumab. JAMA Neurol. 2017, 74, 961–969. [Google Scholar] [CrossRef]
- Polman, C.H.; O’Connor, P.W.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Miller, D.H.; Phillips, J.T.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; et al. A Randomized, Placebo-Controlled Trial of Natalizumab for Relapsing Multiple Sclerosis. N. Engl. J. Med. 2006, 354, 899–910. [Google Scholar] [CrossRef] [Green Version]
- Bezabeh, S.; Flowers, C.M.; Kortepeter, C.; Avigan, M. Clinically Significant Liver Injury in Patients Treated with Natalizumab. Aliment. Pharmacol. Ther. 2010, 31, 1028–1035. [Google Scholar] [CrossRef]
- Lisotti, A.; Azzaroli, F.; Brillanti, S.; Mazzella, G. Severe Acute Autoimmune Hepatitis after Natalizumab Treatment. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2012, 44, 356–357. [Google Scholar] [CrossRef]
- Martínez-Lapiscina, E.H.; Lacruz, F.; Bolado-Concejo, F.; Rodríguez-Pérez, I.; Ayuso, T.; Garaigorta, M.; Urman, J.M. Natalizumab-Induced Autoimmune Hepatitis in a Patient with Multiple Sclerosis. Mult. Scler. Houndmills Basingstoke Engl. 2013, 19, 1234–1235. [Google Scholar] [CrossRef]
- Ciardi, M.R.; Iannetta, M.; Zingaropoli, M.A.; Salpini, R.; Aragri, M.; Annecca, R.; Pontecorvo, S.; Altieri, M.; Russo, G.; Svicher, V.; et al. Reactivation of Hepatitis B Virus with Immune-Escape Mutations after Ocrelizumab Treatment for Multiple Sclerosis. Open Forum Infect. Dis. 2019, 6, ofy356. [Google Scholar] [CrossRef]
- Nicolini, L.A.; Canepa, P.; Caligiuri, P.; Mikulska, M.; Novi, G.; Viscoli, C.; Uccelli, A. Fulminant Hepatitis Associated with Echovirus 25 during Treatment with Ocrelizumab for Multiple Sclerosis. JAMA Neurol. 2019, 76, 866–867. [Google Scholar] [CrossRef]
- Giovannoni, G.; Comi, G.; Cook, S.; Rammohan, K.; Rieckmann, P.; Soelberg Sørensen, P.; Vermersch, P.; Chang, P.; Hamlett, A.; Musch, B.; et al. A Placebo-Controlled Trial of Oral Cladribine for Relapsing Multiple Sclerosis. N. Engl. J. Med. 2010, 362, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.; Vermersch, P.; Comi, G.; Giovannoni, G.; Rammohan, K.; Rieckmann, P.; Sørensen, P.S.; Hamlett, A.; Miret, M.; Weiner, J.; et al. Safety and Tolerability of Cladribine Tablets in Multiple Sclerosis: The CLARITY (CLAdRIbine Tablets Treating Multiple Sclerosis OrallY) Study. Mult. Scler. Houndmills Basingstoke Engl. 2011, 17, 578–593. [Google Scholar] [CrossRef] [Green Version]
- Leist, T.P.; Comi, G.; Cree, B.A.C.; Coyle, P.K.; Freedman, M.S.; Hartung, H.-P.; Vermersch, P.; Casset-Semanaz, F.; Scaramozza, M.; Oral Cladribine for Early MS (ORACLE MS) Study Group. Effect of Oral Cladribine on Time to Conversion to Clinically Definite Multiple Sclerosis in Patients with a First Demyelinating Event (ORACLE MS): A Phase 3 Randomised Trial. Lancet Neurol. 2014, 13, 257–267. [Google Scholar] [CrossRef]
- Leist, T.; Cook, S.; Comi, G.; Montalban, X.; Giovannoni, G.; Nolting, A.; Damian, D.; Syed, S.; Galazka, A. Long-Term Safety Data from the Cladribine Tablets Clinical Development Program in Multiple Sclerosis. Mult. Scler. Relat. Disord. 2020, 46, 102572. [Google Scholar] [CrossRef]
- Busuttil, D.P.; Chasty, R.C.; Fraser, M.; Copplestone, J.A.; Prentice, A.G. Delayed Reactivation of Hepatitis B Infection after Cladribine. Lancet 1996, 348, 129. [Google Scholar] [CrossRef]
- Lohse, A.W.; Chazouilleres, O.; Dalekos, G.; Drenth, J.; Heneghan, M.; Hofer, H.; Lammert, F.; Lenzi, M. European Association for the Study of the Liver EASL Clinical Practice Guidelines: Autoimmune Hepatitis. J. Hepatol. 2015, 63, 971–1004. [Google Scholar] [CrossRef]
- L Volk, M.; Reau, N. Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: A Patient-Friendly Summary of the 2019 AASLD Guidelines. Clin. Liver Dis. 2021, 17, 85–89. [Google Scholar] [CrossRef]
- Rigopoulou, E.I.; Gyftaki, S.; Arvaniti, P.; Tsimourtou, V.; Koukoulis, G.K.; Hadjigeorgiou, G.; Dalekos, G.N. Autoimmune Hepatitis in Patients with Multiple Sclerosis: The Role of Immunomodulatory Treatment. Clin. Res. Hepatol. Gastroenterol. 2019, 43, e25–e32. [Google Scholar] [CrossRef] [PubMed]
- de Seze, J.; Canva-Delcambre, V.; Fajardy, I.; Delalande, S.; Stojkovic, T.; Godet, E.; Vermersch, P. Autoimmune Hepatitis and Multiple Sclerosis: A Coincidental Association? Mult. Scler. Houndmills Basingstoke Engl. 2005, 11, 691–693. [Google Scholar] [CrossRef]
- Mack, C.L.; Adams, D.; Assis, D.N.; Kerkar, N.; Manns, M.P.; Mayo, M.J.; Vierling, J.M.; Alsawas, M.; Murad, M.H.; Czaja, A.J. Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines from the American Association for the Study of Liver Diseases. Hepatology 2020, 72, 671–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunio, N.A.; Mansoor, E.; Sheriff, M.Z.; Cooper, G.S.; Sclair, S.N.; Cohen, S.M. Epidemiology of Autoimmune Hepatitis (AIH) in the United States between 2014 and 2019: A Population-Based National Study. J. Clin. Gastroenterol. 2021, 55, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.-W.; Yeong, T.; Lawrence, D.; Yeoman, A.D.; Verma, S.; Heneghan, M.A. Concurrent Extrahepatic Autoimmunity in Autoimmune Hepatitis: Implications for Diagnosis, Clinical Course and Long-Term Outcomes. Liver Int. Off. J. Int. Assoc. Study Liver 2017, 37, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Hennes, E.M.; Zeniya, M.; Czaja, A.J.; Parés, A.; Dalekos, G.N.; Krawitt, E.L.; Bittencourt, P.L.; Porta, G.; Boberg, K.M.; Hofer, H.; et al. Simplified Criteria for the Diagnosis of Autoimmune Hepatitis. Hepatology 2008, 48, 169–176. [Google Scholar] [CrossRef]
- de Boer, Y.S.; Kosinski, A.S.; Urban, T.J.; Zhao, Z.; Long, N.; Chalasani, N.; Kleiner, D.E.; Hoofnagle, J.H.; Drug-Induced Liver Injury Network. Features of Autoimmune Hepatitis in Patients with Drug-Induced Liver Injury. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2017, 15, 103–112.e2. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Brunt, E.M.; Kleiner, D.E.; Miquel, R.; Smyrk, T.C.; Andrade, R.J.; Lucena, M.I.; Castiella, A.; Lindor, K.; Björnsson, E. The Use of Liver Biopsy Evaluation in Discrimination of Idiopathic Autoimmune Hepatitis versus Drug-Induced Liver Injury. Hepatology 2011, 54, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Jersild, C.; Svejgaard, A.; Fog, T. HL-A Antigens and Multiple Sclerosis. Lancet Lond. Engl. 1972, 1, 1240–1241. [Google Scholar] [CrossRef]
- Björnsson, E.; Talwalkar, J.; Treeprasertsuk, S.; Kamath, P.S.; Takahashi, N.; Sanderson, S.; Neuhauser, M.; Lindor, K. Drug-Induced Autoimmune Hepatitis: Clinical Characteristics and Prognosis. Hepatology 2010, 51, 2040–2048. [Google Scholar] [CrossRef]
- Fontana, R.J.; Liou, I.; Reuben, A.; Suzuki, A.; Fiel, M.I.; Lee, W.; Navarro, V. AASLD Practice Guidance on Drug, Herbal, and Dietary Supplement-Induced Liver Injury. Hepatology 2022. [Google Scholar] [CrossRef] [PubMed]
- Handunnetthi, L.; Ramagopalan, S.V.; Ebers, G.C. Multiple Sclerosis, Vitamin D, and HLA-DRB1*15. Neurology 2010, 74, 1905–1910. [Google Scholar] [CrossRef]
- Stürner, K.H.; Siembab, I.; Schön, G.; Stellmann, J.-P.; Heidari, N.; Fehse, B.; Heesen, C.; Eiermann, T.H.; Martin, R.; Binder, T.M. Is Multiple Sclerosis Progression Associated with the HLA-DR15 Haplotype? Mult. Scler. J.-Exp. Transl. Clin. 2019, 5, 2055217319894615. [Google Scholar] [CrossRef] [PubMed]
- Werneck, L.C.; Lorenzoni, P.J.; Kay, C.S.K.; Scola, R.H. Multiple Sclerosis: Disease Modifying Therapy and the Human Leukocyte Antigen. Arq. Neuropsiquiatr. 2018, 76, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Mazdeh, M.; Taheri, M.; Sayad, A.; Bahram, S.; Omrani, M.D.; Movafagh, A.; Inoko, H.; Akbari, M.T.; Noroozi, R.; Hajilooi, M.; et al. HLA Genes as Modifiers of Response to IFN-β-1a Therapy in Relapsing-Remitting Multiple Sclerosis. Pharmacogenomics 2016, 17, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.J.; Towfic, F.; Shankar, J.; Laifenfeld, D.; Thoma, M.; Davis, M.; Weiner, B.; Kusko, R.; Zeskind, B.; Knappertz, V.; et al. A Pharmacogenetic Signature of High Response to Copaxone in Late-Phase Clinical-Trial Cohorts of Multiple Sclerosis. Genome Med. 2017, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramagopalan, S.V.; Dyment, D.A. What is Next for the Genetics of Multiple Sclerosis? Autoimmune Dis. 2011, 2011, 519450. [Google Scholar] [CrossRef]
MS Therapies | Mechanism of Action | Dose/Administration |
---|---|---|
Interferon beta 1a/1b (Avonex®, Rebif®, Betaferon®, Entavia®) | The mechanism of action of interferon in MS remains partially unknown: Increased expression of anti-inflammatory cytokines, downregulated expression of pro-inflammatory cytokines | Subcutaneous |
Glatiramer acetate (GA) (Copaxone®) | GA converts the population of T cells from pro-inflammatory Th1 cells to regulatory Th2 cells that can cross the blood–brain barrier and suppress the inflammatory response | 20 mg, 1 inj/day subcutaneous |
Natalizumab (Tysabri®) | Humanized therapeutic monoclonal antibody blocking α-4 integrin, a component of very late antigen (VLA)-4 on lymphocytes. Inhibition of the interaction between VLA4 and vascular cell adhesion molecule (VCAM) ligand prevents lymphocytes from crossing the blood–brain barrier | 150–300 mg/month subcutaneous |
Fingolimod (Gilenya®) | A sphingosine 1-phosphate analogue that acts as a functional antagonist of sphingosine 1-phosphate receptors. Given lymphocytes are dependent on sphingosine 1-phosphate receptors on their surfaces to egress from the lymphoid tissue, instead they remain trapped resulting in a decrease in the number of circulating lymphocytes | 0.5 mg/day oral |
Mitoxantrone (Novantrone®) | Mitoxantrone is a strong inhibitor of topoisomerase II, an enzyme responsible for the unfolding and repair of damaged DNA | Dose according to weight IV (intravenous) |
Teriflunomide (Aubagio®) | Inhibits proliferation of autoreactive B and T cells | 14mg/day oral |
Dimethyl fumarate (Tecfidera®) | An antioxidant activity via activation of the transcription factor nuclear-factor-erythroid-2-related factor 2 (Nrf2) and reduction in the release of inflammatory cytokines through inhibition of the transcription factor nuclear-factor κB | 240–480 mg/day oral |
Alemtuzumab (Lemtrada®) | Humanized monoclonal antibody directed against CD52, which is present on the surfaces of lymphocytes and monocytes | IV |
Daclizumab (Zinbryta®) | Monoclonal antibody acting as an interleukin 2 inhibitor | IV |
Ocrelizumab (Ocrevus®) | Humanized monoclonal antibody directed against CD20 | IV |
Cladribine (Mavenclad®) | Synthetic analog of adenosine | Oral |
Case | Sex | Age (Years) | Profile (Hep: Hepatocellular; Cho: Cholestatic) | Antibodies | Liver Biopsy | Previous Treatment before GA | Recovery (Days) | Treatment for Recovery |
---|---|---|---|---|---|---|---|---|
Deltenre et al. (2009) [29] | F | 52 | Hep | ANA: 1/320 ASMA: 1/80 | Centrilobular damage Lymphocyte Macrophage Eosinophil | MPDN | 90 | No |
Onmez et al. (2013) [30] | F | 36 | Hep | Negative | Polymorphonuclear-rich mixed-type inflammatory cell reaction | GA + MPDN | 36 | No |
Neuman et al. (2007) [31] | H | 71 | Hep | ANA: 1/1280 | Drug-induced liver-injury without fibrotic changes of the liver | IFN (switch due to elevation in liver function test) | 30 | Budesonide and mycophenolate mofetil |
Antezan et al. (2014) [32] | F | 28 | Hep | Negative | Hepatocellular necrosis, portal bridging, and portal lymphocytic inflammation | 30 | No | |
Subramaniam et al. (2012) [33] | F | 31 | Hep | ASMA: 1/320 | Centrilobular hepatocyte necrosis with portal-venous bridging, along with mild portal and interface hepatitis | |||
Flaire et al. (2015) [34] | F | 56 | Hep | Negative | Centrilobular hepatocyte necrosis with inflammatory infiltrates composed of lymphocytes and eosinophils | MPDN | 45 | No |
La Gioia et al. (2014) [35] | F | 25 | Hep | Negative | Inflammatory infiltration: lymphocytes, histiocytes, plasma cells, and a few eosinophil granulocytes | 56 | ||
Makhani et al. (2013) [36] | F | 15 | Hep | Negative | Lymphocytic inflammatory infiltration with mild portal fibrosis, no plasma cells, and no signs of chronic liver disease | IFN (switch due to elevation in liver function test) | 54 | No |
Fernandez et al. (2015) | F | 42 | Hep | ANA: 1/640 | No biopsy | IFN (switch due to elevation in liver function test) | 30 | |
Sinagra et al. (2013) [38] | F | 41 | Hep | ANA: 1/320 | Moderate interface hepatitis with eosinophilic infiltration and porto-portal fibrosis | IFN (switch due to elevation in liver function test) | 30 | |
Sinagra et al. (2013) [38] | F | 29 | Hep | ANA: 1/160 | Lymphoplasmacytic infiltration with porto-portal fibrosis and slight ductal proliferation | IFN (switch due to elevation in liver function test) | CTC + azathioprine | |
Almeida et al. (2016) [39] | F | 65 | Hep | ANA: 1/40 ASMA: 1/40 | No biopsy | MPDN | 147 | |
Arruti et al. (2012) [40] | F | 46 | Hep | Negative | No biopsy | CTC | ||
Von Kalckreuth et al. (2008) [41] | F | 42 | Cho | ANA and ASMA positive | Severe portal and periportal lymphocytic inflammation with necrosis | IFN (switch due to elevation in liver function test) | CTC + azathioprine | |
Michels F et al. (2020) [42] | F | 23 | Hep | Negative | Hepatocyte necrosis CD38-positive lymphocytes | CTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meunier, L.; Larrey, D. Hepatotoxicity of Drugs Used in Multiple Sclerosis, Diagnostic Challenge, and the Role of HLA Genotype Susceptibility. Int. J. Mol. Sci. 2023, 24, 852. https://doi.org/10.3390/ijms24010852
Meunier L, Larrey D. Hepatotoxicity of Drugs Used in Multiple Sclerosis, Diagnostic Challenge, and the Role of HLA Genotype Susceptibility. International Journal of Molecular Sciences. 2023; 24(1):852. https://doi.org/10.3390/ijms24010852
Chicago/Turabian StyleMeunier, Lucy, and Dominique Larrey. 2023. "Hepatotoxicity of Drugs Used in Multiple Sclerosis, Diagnostic Challenge, and the Role of HLA Genotype Susceptibility" International Journal of Molecular Sciences 24, no. 1: 852. https://doi.org/10.3390/ijms24010852
APA StyleMeunier, L., & Larrey, D. (2023). Hepatotoxicity of Drugs Used in Multiple Sclerosis, Diagnostic Challenge, and the Role of HLA Genotype Susceptibility. International Journal of Molecular Sciences, 24(1), 852. https://doi.org/10.3390/ijms24010852