Anti-Inflammatory and Antioxidant Properties of Squalene in Copper Sulfate-Induced Inflammation in Zebrafish (Danio rerio)
Abstract
:1. Introduction
2. Results
2.1. Copper Chelating Activity (CCA) of Squalene
2.2. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity of Squalene
2.3. In Vivo Antioxidant Effect of Squalene
2.4. Effect of Squalene on the Expression of Antioxidant Genes sod and gpx4b
2.5. In Vivo Neutrophil Recruitment Assay
2.6. Effect of Squalene on Expression of tnfa and cox-2
3. Discussion
3.1. Antioxidant Effect of Squalene on Zebrafish
3.2. The Anti-Inflammatory Effect of Squalene in the Zebrafish Model
4. Materials and Methods
4.1. Fish Husbandry
4.2. Preparation of Test Samples
4.3. The Metal Chelating Ability
4.4. Antioxidant Capacity In Vitro
4.5. Antioxidant Capacity In Vivo
4.6. In Vivo Neutrophil Recruitment Assay
4.7. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) Analysis
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuqiang, S.; Subo, Y.; Jun, T.S. Reactive Oxygen Species (ROS) are Critical for Morphine Exacerbation of HIV-1 gp120-Induced Pain. J. Neuroimmune Pharmacol. 2020, 16, 581–591. [Google Scholar] [CrossRef]
- Baskaran, S.; Finelli, R.; Agarwal, A.; Henkel, R. Reactive oxygen species in male reproduction: A boon or a bane? Andrologia 2021, 53, e13577. [Google Scholar] [CrossRef] [PubMed]
- Ramani, S.; Pathak, A.; Dalal, V.; Paul, A.; Biswas, S. Oxidative Stress in Autoimmune Diseases: An Under Dealt Malice. Curr. Protein Pept. Sci. 2020, 21, 611–621. [Google Scholar] [CrossRef]
- Onodera, Y.; Teramura, T.; Takehara, T.; Obora, K.; Mori, T.; Fukuda, K. miR-155 induces ROS generation through downregulation of antioxidation-related genes in mesenchymal stem cells. Aging Cell 2017, 16, 1369–1380. [Google Scholar] [CrossRef]
- Minju, S.; Chong-Su, K.; Woo-Jeong, S.; Young-Kwan, L.; Young, C.E.; Dong-Mi, S. Hydrogen-rich water reduces inflammatory responses and prevents apoptosis of peripheral blood cells in healthy adults: A randomized, double-blind, controlled trial. Sci. Rep. 2020, 10, 12130. [Google Scholar] [CrossRef]
- Xie, Y.; Meijer, A.H.; Schaaf, M.J.M. Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Front. Cell Dev. Biol. 2021, 8, 620984. [Google Scholar] [CrossRef]
- Nishida, Y. The chemical process of oxidative stress by copper(II) and iron(III) ions in several neurodegenerative disorders. Monatsh. Chem. 2011, 142, 375–384. [Google Scholar] [CrossRef]
- Birnie-Gauvin, K.; Costantini, D.; Cooke, S.J.; Willmore, W.G. A comparative and evolutionary approach to oxidative stress in fish: A review. Fish Fish. 2017, 18, 928–942. [Google Scholar] [CrossRef]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2010, 101, 13–30. [Google Scholar] [CrossRef]
- Amérand, A.; Vettier, A.; Moisan, C.; Belhomme, M.; Sébert, P. Sex-related differences in aerobic capacities and reactive oxygen species metabolism in the silver eel. Fish Physiol. Biochem. 2010, 36, 741–747. [Google Scholar] [CrossRef]
- Meeker, N.D.; Trede, N.S. Immunology and zebrafish: Spawning new models of human disease. Dev. Comp. Immunol. 2007, 32, 745–757. [Google Scholar] [CrossRef]
- Beatriz, N.; Antonio, F. Zebrafish: Model for the study of inflammation and the innate immune response to infectious diseases. Adv. Exp. Med. Biol. 2012, 946, 253–275. [Google Scholar] [CrossRef] [Green Version]
- Fernando, I.P.S.; Sanjeewa, K.K.A.; Kim, H.-S.; Kim, S.-Y.; Lee, S.-H.; Lee, W.W.; Jeon, Y.-J. Identification of sterols from the soft coral Dendronephthya gigantea and their anti-inflammatory potential. Environ. Toxicol. Pharmacol. 2017, 55, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Brandão, P.T.C.; Martha, C.M.; Reis, B.M. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J. Appl. Toxicol. 2016, 36, 876–885. [Google Scholar] [CrossRef]
- Huang, Z.-R.; Lin, Y.-K.; Fang, J.-Y. Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef]
- Vázquez, L.; Fornari, T.; Señoráns, F.J.; Reglero, G.; Torres, C.F. Supercritical carbon dioxide fractionation of nonesterified alkoxyglycerols obtained from shark liver oil. J. Agric. Food Chem. 2008, 56, 1078–1083. [Google Scholar] [CrossRef]
- Narayan, B.H.; Naoto, T.; Hiroshi, N.; Tetsuya, K. Squalene as novel food factor. Curr. Pharm. Biotechnol. 2010, 11, 875–880. [Google Scholar] [CrossRef]
- Santana-Molina, C.; Henriques, V.; Hornero-Mendez, D.; Devos, D.P.; Rivas-Marin, E. The squalene route to C30 carotenoid biosynthesis and the origins of carotenoid biosynthetic pathways. Proc. Natl. Acad. Sci. USA 2022, 119, e2210081119. [Google Scholar] [CrossRef]
- Sotiroudis, T.G.; Kyrtopoulos, S.A. Anticarcinogenic compounds of olive oil and related biomarkers. Eur. J. Nutr. 2008, 47, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, S.; Yogeeta, S.K.; Subashini, R.; Devaki, T. Attenuation of cyclophosphamide induced toxicity by squalene in experimental rats. Chem. Interact. 2006, 160, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, S.; Devaki, T.; Manohar, B.M.; Babu, M.S. Effect of squalene on cyclophosphamide-induced toxicity. Clin. Chim. Acta. 2005, 364, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Karadeniz, F. Biological Importance and Applications of Squalene and Squalane. Adv. Food Nutr. Res. 2012, 65, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.H.; Couvreur, P. Squalene: A natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev. 2009, 61, 1412–1426. [Google Scholar] [CrossRef]
- Sánchez-Fidalgo, S.; Villegas, I.; Rosillo, M.; Aparicio-Soto, M.; de la Lastra, C.A. Dietary squalene supplementation improves DSS-induced acute colitis by downregulating p38 MAPK and NFkB signaling pathways. Mol. Nutr. Food Res. 2015, 59, 284–292. [Google Scholar] [CrossRef]
- Dormont, F.; Brusini, R.; Cailleau, C.; Reynaud, F.; Peramo, A.; Gendron, A.; Mougin, J.; Gaudin, F.; Varna, M.; Couvreur, P. Squalene-based multidrug nanoparticles forimproved mitigation of uncontrolled inflammation in rodents. Sci. Adv. 2020, 5, 23. [Google Scholar] [CrossRef]
- Warleta, F.; Campos, M.; Allouche, Y.; Sanchez-Quesada, C.; Ruiz-Mora, J.; Beltran, G.; Gaforio, J.J. Squalene protects against oxidative DNA damage in MCF10A human mammary epithelial cells but not in MCF7 and MDA-MB-231 human breast cancer cells. Food Chem. Toxicol. 2010, 48, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Elaasser, M.M.; Morsi, M.K.S.; Galal, S.M.; Abd El-Rahman, M.K.; Katry, M.A. Antioxidant, anti-inflammatory and cytotoxic activities of the unsaponifiable fraction of extra virgin olive oil. Grasas Aceites 2020, 71, 386. [Google Scholar] [CrossRef]
- Lou-Bonafonte, J.M.; Martinez-Beamonte, R.; Sanclemente, T.; Surra, J.C.; Herrera-Marcos, L.V.; Sanchez-Marco, J.; Arnal, C.; Osada, J. Current Insights into the Biological Action of Squalene. Mol. Nutr. Food Res. 2018, 62, e1800136. [Google Scholar] [CrossRef]
- Naziri, E.; Tsimidou, M.Z. Formulated squalene for food related applications. Recent Pat. Food Nutr. Agric. 2013, 5, 83–104. [Google Scholar] [CrossRef]
- Ovidiu, P.; Elena, B.N.; Ioana, P.; Sultana, N.; Elena, D.-P.C. Methods for obtaining and determination of squalene from natural sources. BioMed Res. Int. 2015, 2015, 367205. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Ding, A.; Yue, Q.; Li, W.; Zu, Y.; Zhang, Q. Dynamic interaction of neutrophils and RFP-labelled Vibrio parahaemolyticus in zebrafish (Danio rerio). Aquac. Fish. 2017, 2, 269–277. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, X.; Chen, B.; Zhang, Y.; Zu, Y.; Li, W. Zebrafish as a useful model for zoonotic Vibrio parahaemolyticus pathogenicity in fish and human. Dev. Comp. Immunol. 2016, 55, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, L.; Wang, M.-H. Antioxidant and nitric oxide release inhibition activities of methanolic extract from Clerodendrum cyrtophyllum Turcz. Hortic. Environ. Biotechnol. 2011, 52, 309–314. [Google Scholar] [CrossRef]
- Wang, C.-z.; Hui-hui, Y.; Xiao-li, B.; Min-bo, L. In vitro antioxidant and cytotoxic properties of ethanol extract of Alpinia oxyphylla fruits. Pharm Biol. 2013, 51, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Francesco, S.; Gianluca, P.; Domenico, C.; Domenico, C.; Tonino, C.; Ermanno, V. Monitoring antioxidants by coulometry: Quantitative assessment of the strikingly high antioxidant capacity of bergamot (Citrus bergamia R.) by-products. Talanta 2023, 251, 123765. [Google Scholar] [CrossRef]
- Kim, S.M.; Huh, C.K. Isolation and identification of squalene as an antioxidative compound from the fruits of Prunus mume. J. Food Process. Preserv. 2021, 45, e15810. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Le, H.D.; Kim, T.N.T.; The, H.P.; Nguyen, T.M.; Cornet, V.; Lambert, J.; Kestemont, P. Anti–Inflammatory and Antioxidant Properties of the Ethanol Extract of Clerodendrum cyrtophyllum Turcz in Copper Sulfate-Induced Inflammation in Zebrafish. Antioxidants 2020, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Jin-gui, H.U.; Jia-zhi, Z.; Rui, G.E.; Qing-shan, L.I. To investigate the in vivo and in vitro antioxidant effects of extract from Euonymus fortunei (Turcz.) Hand.-Mazz. Nat. Prod. Res. Dev. 2020, 32, 742–748. [Google Scholar] [CrossRef]
- Lanzarin, G.; Venâncio, C.; Félix, L.M.; Monteiro, S. Inflammatory, Oxidative Stress, and Apoptosis Effects in Zebrafish Larvae after Rapid Exposure to a Commercial Glyphosate Formulation. Biomedicines 2021, 9, 1784. [Google Scholar] [CrossRef]
- Lieke, T.; Steinberg, C.E.W.; Meinelt, T.; Knopf, K.; Kloas, W. Modification of the chemically induced inflammation assay reveals the Janus face of a phenol rich fulvic acid. Sci. Rep. 2022, 12, 5886. [Google Scholar] [CrossRef]
- Wang, Y.T.; Chen, G.C. Regulation of oxidative stress-induced autophagy by ATG9A ubiquitination. Autophagy 2022, 18, 2008–2010. [Google Scholar] [CrossRef]
- Wenju, L.; Fulong, L.; Xiaohui, W.; Bei, F.; Mingran, Y.; Wu, Z.; Dongyan, G.; Fengzhong, W.; Qiong, W. Anti-Inflammatory Effects and Mechanisms of Dandelion in RAW264.7 Macrophages and Zebrafish Larvae. Front. Pharmacol. 2022, 13, 906927. [Google Scholar] [CrossRef]
- Claudia, A.; Oscar, P.; Christine, W.; Viviana, G.; Rebecca, J.; Felix, L.; Urban, L.; Clemens, G.; Miguel, A. A high-throughput chemically induced inflammation assay in zebrafish. BMC Biol. 2010, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Fernando, I.P.S.; Sanjeewa, K.K.A.; Samarakoon, K.W.; Lee, W.W.; Kim, H.S.; Jeon, Y.J. Squalene isolated from marine macroalgae Caulerpa racemosa and its potent antioxidant and anti-inflammatory activities. J. Food Biochem. 2018, 42, e12628. [Google Scholar] [CrossRef]
- Bidooki, S.H.; Alejo, T.; Sanchez-Marco, J.; Martinez-Beamonte, R.; Abuobeid, R.; Burillo, J.C.; Lasheras, R.; Sebastian, V.; Rodriguez-Yoldi, M.J.; Arruebo, M.; et al. Squalene Loaded Nanoparticles Effectively Protect Hepatic AML12 Cell Lines against Oxidative and Endoplasmic Reticulum Stress in a TXNDC5-Dependent Way. Antioxidants 2022, 11, 581. [Google Scholar] [CrossRef]
- Olivari, F.A.; Hernández, P.P.; Allende, M.L. Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae. Brain Res. 2008, 1244, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Ko, C.-I.; Jee, Y.; Jeong, Y.; Kim, M.; Kim, J.-S.; Jeon, Y.-J. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydr. Polym. 2013, 92, 84–89. [Google Scholar] [CrossRef]
- Shibo, S.; Yici, Z.; Weiping, X.; Yue, Z.; Rui, Y.; Jianli, G.; Shui, G.; Qiang, M.; Kun, M.; Jianqiang, X. Chlorophyllin Inhibits Mammalian Thioredoxin Reductase 1 and Triggers Cancer Cell Death. Antioxidants 2021, 10, 1733. [Google Scholar] [CrossRef]
- Qingli, Z.; Fuhua, L.; Bing, W.; Jiquan, Z.; Yichen, L.; Qian, Z.; Jianhai, X. The mitochondrial manganese superoxide dismutase gene in Chinese shrimp Fenneropenaeus chinensis: Cloning, distribution and expression. Dev. Comp. Immunol. 2007, 31, 429–440. [Google Scholar] [CrossRef]
- Maharajan, K.; Muthulakshmi, S.; Nataraj, B.; Ramesh, M.; Kadirvelu, K. Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): A multi biomarker study. Aquat Toxicol. 2018, 196, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.M.G.; Park, S.Y.; Choi, J. Expression of catalase and glutathione S -transferase genes in Chironomus riparius on exposure to cadmium and nonylphenol. Comp. Biochem. Phys. 2011, 154, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.A.; Mossa, A.-T.H. Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pestic. Biochem. Phys. 2008, 93, 34–39. [Google Scholar] [CrossRef]
- Kayama, Y.; Raaz, U.; Jagger, A.; Adam, M.; Schellinger, I.N.; Sakamoto, M.; Suzuki, H.; Toyama, K.; Spin, J.M.; Tsao, P.S. Diabetic Cardiovascular Disease Induced by Oxidative Stress. Int. J. Mol. Sci. 2015, 16, 25234–25263. [Google Scholar] [CrossRef] [Green Version]
- Ying, C.; Huazhong, L.; Hao, H.; Yuetang, M.; Ruihua, W.; Yong, H.; Xiufen, Z.; Chunmei, C.; Hongfeng, T. Squid Ink Polysaccharides Protect Human Fibroblast against Oxidative Stress by Regulating NADPH Oxidase and Connexin43. Front. Pharmacol. 2019, 10, 1574. [Google Scholar] [CrossRef]
- Yan, L.; Ruixue, W.; Yingqiu, L.; Guijin, S.; Haizhen, M. Protective effects of tree peony seed protein hydrolysate on Cd-induced oxidative damage, inflammation and apoptosis in zebrafish embryos. Fish. Shellfish. Immun. 2022, 126, 292–303. [Google Scholar] [CrossRef]
- Sabeena Farvin, K.H.; Anandan, R.; Kumar, S.H.; Shiny, K.S.; Sankar, T.V.; Thankappan, T.K. Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats. Pharmacol. Res. 2004, 50, 231–236. [Google Scholar] [CrossRef]
- Motawi, T.M.; Sadik, N.A.; Refaat, A. Cytoprotective effects of DL-alpha-lipoic acid or squalene on cyclophosphamide-induced oxidative injury: An experimental study on rat myocardium, testicles and urinary bladder. Food Chem. Toxicol. 2010, 48, 2326–2336. [Google Scholar] [CrossRef]
- Wittmann, C.; Reischl, M.; Shah, A.H.; Mikut, R.; Liebel, U.; Grabher, C. Facilitating drug discovery: An automated high-content inflammation assay in zebrafish. J. Vis. Exp. 2012, 16, e4203. [Google Scholar] [CrossRef]
- Fang, A.; Huang, X.; Wu, Y.; Ji, C.; Gao, Y.; Yu, T.; Yan, F. Alleviative effects of a novel strain Bacillus coagulans XY2 on copper-induced toxicity in zebrafish larvae. J. Environ. Sci. 2023, 125, 750–760. [Google Scholar] [CrossRef]
- Cárdeno, A.; Aparicio-Soto, M.; Montserrat-de la Paz, S.; Bermudez, B.; Muriana, F.J.; Alarcón-De-La-Lastra, C. Squalene targets pro- and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages. J. Funct. Foods 2015, 14, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Luisa, M. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 2004, 63, 901–910. [Google Scholar] [CrossRef] [Green Version]
- Athapaththu, A.; Lee, K.T.; Kavinda, M.H.D.; Lee, S.; Kang, S.; Lee, M.H.; Kang, C.H.; Choi, Y.H.; Kim, G.Y. Pinostrobin ameliorates lipopolysaccharide (LPS)-induced inflammation and endotoxemia by inhibiting LPS binding to the TLR4/MD2 complex. Biomed. Pharmacother. 2022, 156, 113874. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, N.; Xue, M.; Zhang, M.; Liu, W.; Xu, C.; Fan, Y.; Meng, Y.; Zhang, Q.; Zhou, Y. Anti-Inflammatory and Antioxidant Properties of β-Sitosterol in Copper Sulfate-Induced Inflammation in Zebrafish (Danio rerio). Antioxidants 2023, 12, 391. [Google Scholar] [CrossRef]
- Di Paola, D.; Abbate, J.M.; Iaria, C.; Cordaro, M.; Crupi, R.; Siracusa, R.; D’Amico, R.; Fusco, R.; Impellizzeri, D.; Cuzzocrea, S.; et al. Environmental Risk Assessment of Dexamethasone Sodium Phosphate and Tocilizumab Mixture in Zebrafish Early Life Stage (Danio rerio). Toxics 2022, 10, 279. [Google Scholar] [CrossRef]
- Santos, J.S.; Alvarenga Brizola, V.R.; Granato, D. High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application. Food Chem. 2017, 214, 515–522. [Google Scholar] [CrossRef]
- Bernut, A.; Loynes, C.A.; Floto, R.A.; Renshaw, S.A. Deletion of cftr Leads to an Excessive Neutrophilic Response and Defective Tissue Repair in a Zebrafish Model of Sterile Inflammation. Front. Immunol. 2020, 11, P1733. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.; Amstislavskiy, V.; Risch, T.; Schuette, M.; Dökel, S.; Ralser, M.; Balzereit, D.; Lehrach, H.; Yaspo, M.-L. Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genom. 2014, 15, 675. [Google Scholar] [CrossRef] [Green Version]
- Di Paola, D.; Natale, S.; Iaria, C.; Cordaro, M.; Crupi, R.; Siracusa, R.; D’Amico, R.; Fusco, R.; Impellizzeri, D.; Cuzzocrea, S.; et al. Intestinal Disorder in Zebrafish Larvae (Danio rerio): The Protective Action of N-Palmitoylethanolamide-oxazoline. Life 2022, 12, 125. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Forward and Reverse Primer Sequences (5′-3′) | Product Size (bp) | GenBank Accession No. |
---|---|---|---|
actb | F: CCCCATTGAGCACGGTATTG R: ATACATGGCAGGGGTGTTGA | 193 | AF057040 |
tnfa | F: CACAAAGGCTGCCATTCACT R: GATTGATGGTGTGGCTCAGGT | 227 | AB183467 |
cox-2 | F: ACAGATGCGCTACCAGTCTT R: CCCATGAGGCCTTTGAGAGA | 240 | NM_153657.1 |
sod | F: ATGGTGAACAAGGCCGTTTG R: AAAGCATGGACGTGGAAACC | 152 | NM_131294.1 |
gpx4b | F: TGAGAAGGGTTTACGCATCCTG R: TGTTGTTCCCCAGTGTTCCT | 209 | BC095133.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Liu, N.; Xue, M.; Zhang, M.; Xiao, Z.; Xu, C.; Fan, Y.; Liu, W.; Qiu, J.; Zhang, Q.; et al. Anti-Inflammatory and Antioxidant Properties of Squalene in Copper Sulfate-Induced Inflammation in Zebrafish (Danio rerio). Int. J. Mol. Sci. 2023, 24, 8518. https://doi.org/10.3390/ijms24108518
Zhang P, Liu N, Xue M, Zhang M, Xiao Z, Xu C, Fan Y, Liu W, Qiu J, Zhang Q, et al. Anti-Inflammatory and Antioxidant Properties of Squalene in Copper Sulfate-Induced Inflammation in Zebrafish (Danio rerio). International Journal of Molecular Sciences. 2023; 24(10):8518. https://doi.org/10.3390/ijms24108518
Chicago/Turabian StyleZhang, Peng, Naicheng Liu, Mingyang Xue, Mengjie Zhang, Zidong Xiao, Chen Xu, Yuding Fan, Wei Liu, Junqiang Qiu, Qinghua Zhang, and et al. 2023. "Anti-Inflammatory and Antioxidant Properties of Squalene in Copper Sulfate-Induced Inflammation in Zebrafish (Danio rerio)" International Journal of Molecular Sciences 24, no. 10: 8518. https://doi.org/10.3390/ijms24108518
APA StyleZhang, P., Liu, N., Xue, M., Zhang, M., Xiao, Z., Xu, C., Fan, Y., Liu, W., Qiu, J., Zhang, Q., & Zhou, Y. (2023). Anti-Inflammatory and Antioxidant Properties of Squalene in Copper Sulfate-Induced Inflammation in Zebrafish (Danio rerio). International Journal of Molecular Sciences, 24(10), 8518. https://doi.org/10.3390/ijms24108518