COVID-19—The Shift of Homeostasis into Oncopathology or Chronic Fibrosis in Terms of Female Reproductive System Involvement
Abstract
:1. Introduction
2. Impact of COVID-19 on the Microbial Environment—Bacteriome and Viriome
3. The Impact of COVID on Comorbidities and the Background State of the Body
4. Main Events in the Systemic Circulation under the Influence of COVID-19
5. Events during Penetration of SARS-CoV-2 at the Tissue Level
6. Impact of COVID-19 on the Extracellular Matrix
7. Reversible Cellular Transitions—Polarization of Macrophages, Influence on EMT and EnMT
8. Impact of COVID-19 on the Genome and Epigenome
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahn, J.H.; Kim, J.; Hong, S.P.; Choi, S.Y.; Yang, M.J.; Ju, Y.S.; Kim, Y.T.; Kim, H.M.; Rahman, M.T.; Chung, M.K.; et al. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J. Clin. Investig. 2021, 131, e148517. [Google Scholar] [CrossRef]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Phelan, N.; Behan, L.A.; Owens, L. The impact of the COVID-19 pandemic on women’s reproductive health. Front. Endocrinol. 2021, 12, 642755. [Google Scholar] [CrossRef]
- Bornstein, S.R.; Cozma, D.; Kamel, M.; Hamad, M.; Mohammad, M.G.; Khan, N.A.; Saber, M.M.; Semreen, M.H.; Steenblock, C. Long-COVID, metabolic and endocrine disease. Horm. Metab. Res. 2022, 54, 562–566. [Google Scholar] [CrossRef]
- Balc’h, L.; Pinceaux, K.; Pronier, C.; Seguin, P.; Tadié, J.-M.; Reizine, F. Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Crit. Care 2020, 24, 530. [Google Scholar] [CrossRef]
- Celik, E.; Ozcan, G.; Vatansever, C.; Paerhati, E.; Kuşkucu, M.A.; Dogan, O.; Cekic, S.G.; Ergonul, O.; Gürsoy, A.; Keskin, Ö. Alterations in vaginal microbiota among pregnant women with COVID-19. J. Med. Virol. 2023, 95, e28132. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Lu, B.; Ding, R.; Liu, X.; Wu, X.; Li, Y.; Liu, X.; Qiu, L.; Zhang, Z.; Xie, J. Metatranscriptomic analysis of host response and vaginal microbiome of patients with severe COVID-19. Sci. China Life Sci. 2022, 65, 1473–1476. [Google Scholar] [CrossRef]
- Nakamura, K.; Kodama, J.; Hongo, A.; Hiramatsu, Y. Role of emmprin in endometrial cancer. BMC Cancer 2012, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Perera, M.R.; Greenwood, E.J.; Crozier, T.W.; Elder, E.G.; Schmitt, J.; Crump, C.M.; Lehner, P.J.; Wills, M.R.; Sinclair, J.H. Human cytomegalovirus infection of epithelial cells increases SARS-CoV-2 superinfection by upregulating the ACE2 receptor. J. Infect. Dis. 2023, 227, 543–553. [Google Scholar] [CrossRef]
- Charvet, B.; Brunel, J.; Pierquin, J.; Iampietro, M.; Decimo, D.; Queruel, N.; Lucas, A.; del Mar Encabo-Berzosa, M.; Arenaz, I.; Marmolejo, T.P. SARS-CoV-2 induces human endogenous retrovirus type W envelope protein expression in blood lymphocytes and in tissues of COVID-19 patients. medRxiv 2022. [Google Scholar] [CrossRef]
- Kitsou, K.; Lagiou, P.; Magiorkinis, G. Human endogenous retroviruses in cancer: Oncogenesis mechanisms and clinical implications. J. Med. Virol. 2023, 95, e28350. [Google Scholar] [CrossRef]
- Strick, R.; Ackermann, S.; Langbein, M.; Swiatek, J.; Schubert, S.W.; Hashemolhosseini, S.; Koscheck, T.; Fasching, P.A.; Schild, R.L.; Beckmann, M.W. Proliferation and cell–cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-β. J. Mol. Med. 2007, 85, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, T.; Weiler, J.; Luo, T.; Hass, R. Cell-cell fusion mediated by viruses and HERV-derived fusogens in cancer initiation and progression. Cancers 2021, 13, 5363. [Google Scholar] [CrossRef] [PubMed]
- Cokić-Damjanović, J.; Horvat, E.; Balog, A. Herpes simplex virus and malignancies of female genital organs. Medicinski Pregled 2001, 54, 432–437. [Google Scholar] [PubMed]
- Wang, K.; Hao, W.; Xia, H. Relationship between human papilloma virus-DNA and cytomegalovirus-DNA virus content and risk factors of endometrial cancer and prediction model. Chin. J. Postgrad. Med. 2021, 36, 481–486. [Google Scholar]
- Yin, Q.; Strong, M.J.; Zhuang, Y.; Flemington, E.K.; Kaminski, N.; de Andrade, J.A.; Lasky, J.A. Assessment of viral RNA in idiopathic pulmonary fibrosis using RNA-seq. BMC Pulm. Med. 2020, 20, 81. [Google Scholar] [CrossRef]
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017, 8, 875. [Google Scholar] [CrossRef] [PubMed]
- Kaakoush, N.O.; Olzomer, E.M.; Kosasih, M.; Martin, A.R.; Fargah, F.; Lambie, N.; Susic, D.; Hoehn, K.L.; Farrell, R.; Byrne, F.L. Differences in the Active Endometrial Microbiota across Body Weight and Cancer in Humans and Mice. Cancers 2022, 14, 2141. [Google Scholar] [CrossRef]
- Gholiof, M.; Adamson-De Luca, E.; Wessels, J.M. The female reproductive tract microbiotas, inflammation, and gynecological conditions. Front. Reprod. Health 2022, 4, 963752. [Google Scholar] [CrossRef]
- Kgatle, M.M.; Lawal, I.O.; Mashabela, G.; Boshomane, T.M.G.; Koatale, P.C.; Mahasha, P.W.; Ndlovu, H.; Vorster, M.; Rodrigues, H.G.; Zeevaart, J.R. COVID-19 is a multi-organ aggressor: Epigenetic and clinical marks. Front. Immunol. 2021, 12, 752380. [Google Scholar] [CrossRef]
- Saadedine, M.; El Sabeh, M.; Borahay, M.A.; Daoud, G. The influence of COVID-19 infection-associated immune response on the female reproductive system. Biol. Reprod. 2023, 108, 172–182. [Google Scholar] [CrossRef]
- Esakandari, H.; Nabi-Afjadi, M.; Fakkari-Afjadi, J.; Farahmandian, N.; Miresmaeili, S.-M.; Bahreini, E. A comprehensive review of COVID-19 characteristics. Biol. Proced. Online 2020, 22, 19. [Google Scholar] [CrossRef]
- Liu, C.; Mu, C.; Zhang, Q.; Yang, X.; Yan, H.; Jiao, H. Effects of infection with SARS-CoV-2 on the male and female reproductive systems: A review. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e930168-1. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Behl, T.; Sharma, N.; Singh, S.; Grewal, A.S.; Albarrati, A.; Albratty, M.; Meraya, A.M.; Bungau, S. COVID-19 and diabetes: Association intensify risk factors for morbidity and mortality. Biomed. Pharmacother. 2022, 151, 113089. [Google Scholar] [CrossRef]
- Qin, H.; Lin, Z.; Vásquez, E.; Luan, X.; Guo, F.; Xu, L. Association between obesity and the risk of uterine fibroids: A systematic review and meta-analysis. J. Epidemiol. Community Health 2021, 75, 197–204. [Google Scholar] [CrossRef]
- Stewart, E.A.; Cookson, C.; Gandolfo, R.A.; Schulze-Rath, R. Epidemiology of uterine fibroids: A systematic review. BJOG Int. J. Obstet. Gynaecol. 2017, 124, 1501–1512. [Google Scholar] [CrossRef]
- Raglan, O.; Kalliala, I.; Markozannes, G.; Cividini, S.; Gunter, M.J.; Nautiyal, J.; Gabra, H.; Paraskevaidis, E.; Martin-Hirsch, P.; Tsilidis, K.K. Risk factors for endometrial cancer: An umbrella review of the literature. Int. J. Cancer 2019, 145, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Rabaan, A.A.; Al-Ahmed, S.H.; Garout, M.A.; Al-Qaaneh, A.M.; Sule, A.A.; Tirupathi, R.; Mutair, A.A.; Alhumaid, S.; Hasan, A.; Dhawan, M. Diverse immunological factors influencing pathogenesis in patients with COVID-19: A review on viral dissemination, immunotherapeutic options to counter cytokine storm and inflammatory responses. Pathogens 2021, 10, 565. [Google Scholar] [CrossRef]
- Eskenazi, B.; Rauch, S.; Iurlaro, E.; Gunier, R.B.; Rego, A.; Gravett, M.G.; Cavoretto, P.I.; Deruelle, P.; García-May, P.K.; Mhatre, M. Diabetes mellitus, maternal adiposity, and insulin-dependent gestational diabetes are associated with COVID-19 in pregnancy: The INTERCOVID study. Am. J. Obstet. Gynecol. 2022, 227, 74.e1—74.e16. [Google Scholar] [CrossRef] [PubMed]
- Facondo, P.; Maltese, V.; Delbarba, A.; Pirola, I.; Rotondi, M.; Ferlin, A.; Cappelli, C. Case Report: Hypothalamic Amenorrhea Following COVID-19 Infection and Review of Literatures. Front. Endocrinol. 2022, 13, 840749. [Google Scholar] [CrossRef]
- Jasim, F.M.; yas khudhair Obada, A. COVID-19 and Infertility (Cross-Sectional Study). World Bull. Public Health 2022, 15, 156–167. [Google Scholar]
- Fernando, S.R.; Chen, X.; Cheng, K.-W.; Wong, B.P.; Qi, S.; Jiang, L.; Kodithuwakku, S.P.; Ng, E.H.; Yeung, W.S.; Lee, K.-F. ACE inhibitors on ACE1, ACE2, and TMPRSS2 expression and spheroid attachment on human endometrial Ishikawa cells. Reprod. Biol. 2022, 22, 100666. [Google Scholar] [CrossRef]
- Chadchan, S.B.; Popli, P.; Maurya, V.K.; Kommagani, R. The SARS-CoV-2 receptor, angiotensin-converting enzyme 2, is required for human endometrial stromal cell decidualization. Biol. Reprod. 2021, 104, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Racilan, A.M.; Assis, W.A.; Casalechi, M.; Spagnolo-Souza, A.; Pascoal-Xavier, M.A.; Simões-e-Silva, A.C.; Del Puerto, H.L.; Reis, F.M. Angiotensin-converting enzyme 2, the SARS-CoV-2 cellular receptor, is widely expressed in human myometrium and uterine leiomyoma. J. Endometr. Pelvic Pain Disord. 2021, 13, 20–24. [Google Scholar] [CrossRef]
- Dai, Y.-J.; Zhang, W.-N.; Wang, W.-D.; He, S.-Y.; Liang, C.-C.; Wang, D.-W. Comprehensive analysis of two potential novel SARS-CoV-2 entries, TMPRSS2 and IFITM3, in healthy individuals and cancer patients. Int. J. Biol. Sci. 2020, 16, 3028. [Google Scholar] [CrossRef]
- Delforce, S.J.; Lumbers, E.R.; de Meaultsart, C.C.; Wang, Y.; Proietto, A.; Otton, G.; Scurry, J.; Verrills, N.M.; Scott, R.J.; Pringle, K.G. Expression of renin–angiotensin system (RAS) components in endometrial cancer. Endocr. Connect. 2017, 6, 9. [Google Scholar] [CrossRef]
- Khoiwal, K.; Kalita, D.; Kumari, R.; Dhundi, D.; Shankar, R.; Kumari, R.; Gaurav, A.; Bahadur, A.; Panda, P.K.; Tomy, A. Presence of SARS-CoV-2 in the lower genital tract of women with active COVID-19 infection: A prospective study. Int. J. Gynaecol. Obstet. 2022, 157, 744. [Google Scholar] [CrossRef] [PubMed]
- Takmaz, O.; Kaya, E.; Erdi, B.; Unsal, G.; Sharifli, P.; Agaoglu, N.B.; Ozbasli, E.; Gencer, S.; Gungor, M. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is not detected in the vagina: A prospective study. PLoS ONE 2021, 16, e0253072. [Google Scholar] [CrossRef]
- Chen, X.; Shi, H.; Li, C.; Zhong, W.; Cui, L.; Zhang, W.; Geng, L.; Hu, K.; Fang, M.; Wei, D. The effect of SARS-CoV-2 infection on human embryo early development: A multicenter prospective cohort study. Sci. China Life Sci. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Martinez-Salazar, B.; Holwerda, M.; Stuedle, C.; Piragyte, I.; Mercader, N.; Engelhardt, B.; Rieben, R.; Doering, Y. COVID-19 and the vasculature: Current aspects and long-term consequences. Front. Cell Dev. Biol. 2022, 10, 824851. [Google Scholar] [CrossRef] [PubMed]
- Redline, R.W.; Ravishankar, S.; Bagby, C.; Saab, S.; Zarei, S. Diffuse and localized SARS-CoV-2 placentitis: Prevalence and pathogenesis of an uncommon complication of COVID-19 infection during pregnancy. Am. J. Surg. Pathol. 2022, 46, 1036. [Google Scholar] [CrossRef] [PubMed]
- Yael, H.K.; Lorenza, P.; Evelina, S.; Roberto, P.; Roberto, A.; Fabrizio, S. Incidental endometrial adenocarcinoma in early pregnancy: A case report and review of the literature. Int. J. Gynecol. Cancer 2009, 19, 1580–1584. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, L.G.; McGrail, D.J.; Li, K.; Marques-Piubelli, M.L.; Gonzalez, C.; Dai, H.; Ferri-Borgogno, S.; Godoy, M.; Burks, J.; Lin, S.-Y. Spontaneous tumor regression following COVID-19 vaccination. J. Immunother. Cancer 2022, 10, e004371. [Google Scholar] [CrossRef]
- Lodge, S.; Nitschke, P.; Kimhofer, T.; Coudert, J.D.; Begum, S.; Bong, S.-H.; Richards, T.; Edgar, D.; Raby, E.; Spraul, M. NMR spectroscopic windows on the systemic effects of SARS-CoV-2 infection on plasma lipoproteins and metabolites in relation to circulating cytokines. J. Proteome Res. 2021, 20, 1382–1396. [Google Scholar] [CrossRef]
- Lambert, D.W.; Yarski, M.; Warner, F.J.; Thornhill, P.; Parkin, E.T.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem. 2005, 280, 30113–30119. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, H.; An, Y. ACE2 Shedding and the Role in COVID-19. Front. Cell. Infect. Microbiol. 2022, 11, 1422. [Google Scholar] [CrossRef]
- Nagy, B., Jr.; Fejes, Z.; Szentkereszty, Z.; Sütő, R.; Várkonyi, I.; Ajzner, É.; Kappelmayer, J.; Papp, Z.; Tóth, A.; Fagyas, M. A dramatic rise in serum ACE2 activity in a critically ill COVID-19 patient. Int. J. Infect. Dis. 2021, 103, 412–414. [Google Scholar] [CrossRef]
- Swank, Z.; Senussi, Y.; Manickas-Hill, Z.; Yu, X.G.; Li, J.Z.; Alter, G.; Walt, D.R. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin. Infect. Dis. 2023, 76, e487–e490. [Google Scholar] [CrossRef]
- Chiok, K.; Hutchison, K.; Miller, L.G.; Bose, S.; Miura, T.A. Proinflammatory Responses in SARS-CoV-2 and Soluble Spike Glycoprotein S1 Subunit Activated Human Macrophages. Viruses 2023, 15, 754. [Google Scholar] [CrossRef]
- Kell, D.B.; Laubscher, G.J.; Pretorius, E. A central role for amyloid fibrin microclots in long COVID/PASC: Origins and therapeutic implications. Biochem. J. 2022, 479, 537–559. [Google Scholar] [CrossRef]
- Perreau, M.; Suffiotti, M.; Marques-Vidal, P.; Wiedemann, A.; Levy, Y.; Laouénan, C.; Ghosn, J.; Fenwick, C.; Comte, D.; Roger, T. The cytokines HGF and CXCL13 predict the severity and the mortality in COVID-19 patients. Nat. Commun. 2021, 12, 4888. [Google Scholar] [CrossRef] [PubMed]
- Costantini, S.; Madonna, G.; Di Gennaro, E.; Capone, F.; Bagnara, P.; Capone, M.; Sale, S.; Nicastro, C.; Atripaldi, L.; Fiorentino, G. New Insights into the Identification of Metabolites and Cytokines Predictive of Outcome for Patients with Severe SARS-CoV-2 Infection Showed Similarity with Cancer. Int. J. Mol. Sci. 2023, 24, 4922. [Google Scholar] [CrossRef]
- Loretelli, C.; Abdelsalam, A.; D’Addio, F.; Nasr, M.B.; Assi, E.; Usuelli, V.; Maestroni, A.; Seelam, A.J.; Ippolito, E.; Di Maggio, S. PD-1 blockade counteracts post–COVID-19 immune abnormalities and stimulates the anti–SARS-CoV-2 immune response. JCI Insight 2021, 6, e146701. [Google Scholar] [CrossRef] [PubMed]
- Che, Q.; Liu, B.-Y.; Wang, F.-Y.; He, Y.-Y.; Lu, W.; Liao, Y.; Gu, W.; Wan, X.-P. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK–NF-κB signaling pathway. Biochem. Biophys. Res. Commun. 2014, 446, 167–172. [Google Scholar] [CrossRef]
- Borghi, C.; Indraccolo, U.; Scutiero, G.; Iannone, P.; Martinello, R.; Greco, P.; Greco, F.; Nappi, L. Biomolecular basis related to inflammation in the pathogenesis of endometrial cancer. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 6294–6299. [Google Scholar]
- Heidari, F.; Rabizadeh, S.; Mansournia, M.A.; Mirmiranpoor, H.; Salehi, S.S.; Akhavan, S.; Esteghamati, A.; Nakhjavani, M. Inflammatory, oxidative stress and anti-oxidative markers in patients with endometrial carcinoma and diabetes. Cytokine 2019, 120, 186–190. [Google Scholar] [CrossRef]
- Zeng, X.; Li, X.; Zhang, Y.; Cao, C.; Zhou, Q. IL6 induces mtDNA leakage to affect the immune escape of endometrial carcinoma via cGAS-STING. J. Immunol. Res. 2022, 2022, 3815853. [Google Scholar] [CrossRef] [PubMed]
- Vathiotis, I.A.; Gomatou, G.; Stravopodis, D.J.; Syrigos, N. Programmed death-ligand 1 as a regulator of tumor progression and metastasis. Int. J. Mol. Sci. 2021, 22, 5383. [Google Scholar] [CrossRef]
- Pasanen, A.; Ahvenainen, T.; Pellinen, T.; Vahteristo, P.; Loukovaara, M.; Bützow, R. PD-L1 expression in endometrial carcinoma cells and intratumoral immune cells: Differences across histologic and TCGA-based molecular subgroups. Am. J. Surg. Pathol. 2020, 44, 174–181. [Google Scholar] [CrossRef]
- Garcia-Diaz, A.; Shin, D.S.; Moreno, B.H.; Saco, J.; Escuin-Ordinas, H.; Rodriguez, G.A.; Zaretsky, J.M.; Sun, L.; Hugo, W.; Wang, X. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017, 19, 1189–1201. [Google Scholar] [CrossRef]
- Xiao, L.; He, Y.; Peng, F.; Yang, J.; Yuan, C. Endometrial cancer cells promote M2-like macrophage polarization by delivering exosomal miRNA-21 under hypoxia condition. J. Immunol. Res. 2020, 2020, 9731049. [Google Scholar] [CrossRef]
- Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.L.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.J.; Dore, G.J. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef]
- Wang, R.; Lee, J.-H.; Kim, J.; Xiong, F.; Hasani, L.A.; Shi, Y.; Simpson, E.N.; Zhu, X.; Chen, Y.-T.; Shivshankar, P. SARS-CoV-2 restructures host chromatin architecture. Nat. Microbiol. 2023, 8, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Rice, G.I.; Thomas, D.A.; Grant, P.J.; Turner, A.J.; Hooper, N.M. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem. J. 2004, 383, 45–51. [Google Scholar] [CrossRef]
- Blume, C.; Jackson, C.L.; Spalluto, C.M.; Legebeke, J.; Nazlamova, L.; Conforti, F.; Perotin, J.-M.; Frank, M.; Butler, J.; Crispin, M. A novel ACE2 isoform is expressed in human respiratory epithelia and is upregulated in response to interferons and RNA respiratory virus infection. Nat. Genet. 2021, 53, 205–214. [Google Scholar] [CrossRef]
- Smith, J.C.; Sausville, E.L.; Girish, V.; Yuan, M.L.; Vasudevan, A.; John, K.M.; Sheltzer, J.M. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract. Dev. Cell 2020, 53, 514–529.e3. [Google Scholar] [CrossRef]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses Methods Protoc. 2015, 1282, 1–23. [Google Scholar]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Koch, J.; Uckeley, Z.M.; Doldan, P.; Stanifer, M.; Boulant, S.; Lozach, P.Y. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J. 2021, 40, e107821. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Gohda, J.; Kobayashi, A.; Tomita, K.; Hirayama, Y.; Koshikawa, N.; Seiki, M.; Semba, K.; Akiyama, T.; Kawaguchi, Y. Metalloproteinase-dependent and TMPRSS2-independent cell surface entry pathway of SARS-CoV-2 requires the furin cleavage site and the S2 domain of spike protein. Mbio 2022, 13, e00519-22. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, S.; Huang, S.; Tu, J.; Chen, X.; Xiao, L.; Liu, B.; Yuan, X. Comprehensive and Integrative Analysis of Two Novel SARS-CoV-2 Entry Associated Proteases CTSB and CTSL in Healthy Individuals and Cancer Patients. Front. Bioeng. Biotechnol. 2022, 10, 780751. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.-R.; Geng, R.; Li, Q.; Chen, Y.; Li, S.-F.; Wang, Q.; Min, J.; Yang, Y.; Li, B.; Jiang, R.-D. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduct. Target. Ther. 2022, 7, 83. [Google Scholar] [CrossRef]
- Lim, S.; Zhang, M.; Chang, T.L. ACE2-Independent Alternative Receptors for SARS-CoV-2. Viruses 2022, 14, 2535. [Google Scholar] [CrossRef]
- Liu, J.; Lu, F.; Chen, Y.; Plow, E.; Qin, J. Integrin mediates cell entry of the SARS-CoV-2 virus independent of cellular receptor ACE2. J. Biol. Chem. 2022, 298, 101710. [Google Scholar] [CrossRef]
- de la Cruz Concepción, B.; Bartolo-García, L.; Tizapa-Méndez, M.; Martínez-Vélez, M.; Valerio-Diego, J.; Illades-Aguiar, B.; Salmerón-Bárcenas, E.; Ortiz-Ortiz, J.; Torres-Rojas, F.; Mendoza-Catalán, M. EMMPRIN is an emerging protein capable of regulating cancer hallmarks. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6700–6724. [Google Scholar]
- Jin, A.; Chen, H.; Wang, C.; Tsang, L.L.; Jiang, X.; Cai, Z.; Chan, H.C.; Zhou, X. Elevated expression of CD147 in patients with endometriosis and its role in regulating apoptosis and migration of human endometrial cells. Fertil. Steril. 2014, 101, 1681–1687.e1. [Google Scholar] [CrossRef]
- Onishi, K.; Zhang, J.; Blanck, J.F.; Singh, B. A systematic review of matrix metalloproteinases as potential biomarkers for uterine fibroids. FS Rev. 2022, 3, 227–241. [Google Scholar] [CrossRef]
- Hoffman, P.J.; Milliken, D.B.; Gregg, L.C.; Davis, R.R.; Gregg, J.P. Molecular characterization of uterine fibroids and its implication for underlying mechanisms of pathogenesis. Fertil. Steril. 2004, 82, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Divine, L.M.; Nguyen, M.R.; Meller, E.; Desai, R.A.; Arif, B.; Rankin, E.B.; Bligard, K.H.; Meyerson, C.; Hagemann, I.S.; Massad, M. AXL modulates extracellular matrix protein expression and is essential for invasion and metastasis in endometrial cancer. Oncotarget 2016, 7, 77291. [Google Scholar] [CrossRef] [PubMed]
- Lazebnik, Y. Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications, and vaccine side effects. Oncotarget 2021, 12, 2476. [Google Scholar] [CrossRef] [PubMed]
- Rajah, M.M.; Bernier, A.; Buchrieser, J.; Schwartz, O. The mechanism and consequences of SARS-CoV-2 spike-mediated fusion and syncytia formation. J. Mol. Biol. 2022, 434, 167280. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Liang, R.; Wang, S.-J.; Ye, Z.-W.; Wang, T.-Y.; Chen, M.; Liu, J.; Na, L.; Yang, Y.-L.; Yang, Y.-B. SARS-CoV-2 hijacks macropinocytosis to facilitate its entry and promote viral spike–mediated cell-to-cell fusion. J. Biol. Chem. 2022, 298, 102511. [Google Scholar] [CrossRef]
- Albitar, L.; Pickett, G.; Morgan, M.; Wilken, J.A.; Maihle, N.J.; Leslie, K.K. EGFR isoforms and gene regulation in human endometrial cancer cells. Mol. Cancer 2010, 9, 166. [Google Scholar] [CrossRef]
- Kirschen, G.W.; AlAshqar, A.; Miyashita-Ishiwata, M.; Reschke, L.; El Sabeh, M.; Borahay, M.A. Vascular biology of uterine fibroids: Connecting fibroids and vascular disorders. Reproduction 2021, 162, R1. [Google Scholar] [CrossRef]
- Gupta, A.; Jayakumar, M.N.; Saleh, M.A.; Kannan, M.; Halwani, R.; Qaisar, R.; Ahmad, F. SARS-CoV-2 infection-induced growth factors play differential roles in COVID-19 pathogenesis. Life Sci. 2022, 304, 120703. [Google Scholar] [CrossRef] [PubMed]
- Biering, S.B.; Gomes de Sousa, F.T.; Tjang, L.V.; Pahmeier, F.; Zhu, C.; Ruan, R.; Blanc, S.F.; Patel, T.S.; Worthington, C.M.; Glasner, D.R. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. Nat. Commun. 2022, 13, 7630. [Google Scholar] [CrossRef]
- Allen, C.N.; Santerre, M.; Arjona, S.P.; Ghaleb, L.J.; Herzi, M.; Llewellyn, M.D.; Shcherbik, N.; Sawaya, B.E. SARS-CoV-2 Causes Lung Inflammation through Metabolic Reprogramming and RAGE. Viruses 2022, 14, 983. [Google Scholar] [CrossRef]
- Ren, X.; Liang, J.; Zhang, Y.; Jiang, N.; Xu, Y.; Qiu, M.; Wang, Y.; Zhao, B.; Chen, X. Single-cell transcriptomic analysis highlights origin and pathological process of human endometrioid endometrial carcinoma. Nat. Commun. 2022, 13, 6300. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Norian, J.; McCarthy-Keith, D.; Britten, J.; Catherino, W.H. Why Leiomyomas Are Called Fibroids: The Central Role of Extracellular Matrix in Symptomatic Women, Seminars in Reproductive Medicine; Thieme Medical Publishers: New York, NY, USA, 2010; pp. 169–179. [Google Scholar]
- Zannotti, A.; Greco, S.; Pellegrino, P.; Giantomassi, F.; Delli Carpini, G.; Goteri, G.; Ciavattini, A.; Ciarmela, P. Macrophages and immune responses in uterine fibroids. Cells 2021, 10, 982. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Ciavattini, A.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Extracellular matrix in uterine leiomyoma pathogenesis: A potential target for future therapeutics. Hum. Reprod. Update 2018, 24, 59–85. [Google Scholar] [CrossRef]
- Breisnes, H.; Leeming, D.; Fazleen, A.; Sand, J. COVID-19 Effects on Lung Extracellular Matrix Remodeling, Wound Healing, and Neutrophil Activity: A Proof-of-Concept Biomarker Study. In B57. Cutting Edge Covid Research; American Thoracic Society: Washington, DC, USA, 2022; p. A3165. [Google Scholar]
- Guizani, I.; Fourti, N.; Zidi, W.; Feki, M.; Allal-Elasmi, M. SARS-CoV-2 and pathological matrix remodeling mediators. Inflamm. Res. 2021, 70, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Østergaard, L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol. Rep. 2021, 9, e14726. [Google Scholar] [CrossRef] [PubMed]
- Boutilier, A.J.; Elsawa, S.F. Macrophage polarization states in the tumor microenvironment. Int. J. Mol. Sci. 2021, 22, 6995. [Google Scholar] [CrossRef]
- Dun, E.C.; Hanley, K.; Wieser, F.; Bohman, S.; Yu, J.; Taylor, R.N. Infiltration of tumor-associated macrophages is increased in the epithelial and stromal compartments of endometrial carcinomas. Int. J. Gynecol. Pathol. 2013, 32, 576–584. [Google Scholar] [CrossRef]
- Jensen, A.L.; Collins, J.; Shipman, E.P.; Wira, C.R.; Guyre, P.M.; Pioli, P.A. A subset of human uterine endometrial macrophages is alternatively activated. Am. J. Reprod. Immunol. 2012, 68, 374–386. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Tsuzuki-Nakao, T.; Kida, N.; Matsuo, Y.; Maruyama, T.; Okada, H.; Hirota, K. Inflammatory Cytokine-Induced HIF-1 Activation Promotes Epithelial–Mesenchymal Transition in Endometrial Epithelial Cells. Biomedicines 2023, 11, 210. [Google Scholar] [CrossRef]
- Lai, Y.-J.; Chao, C.-H.; Liao, C.-C.; Lee, T.-A.; Hsu, J.-M.; Chou, W.-C.; Wang, J.; Huang, H.-C.; Chang, S.-J.; Lin, Y.-L. Epithelial-mesenchymal transition induced by SARS-CoV-2 required transcriptional upregulation of Snail. Am. J. Cancer Res. 2021, 11, 2278. [Google Scholar]
- Nguyen, H.-N.T.; Kawahara, M.; Vuong, C.-K.; Fukushige, M.; Yamashita, T.; Ohneda, O. SARS-CoV-2 M Protein Facilitates Malignant Transformation of Breast Cancer Cells. Front. Oncol. 2022, 12, 923467. [Google Scholar] [CrossRef] [PubMed]
- Saygideger, Y.; Sezan, A.; Candevir, A.; Demir, B.S.; Güzel, E.; Baydar, O.; Derinoz, E.; Komur, S.; Kuscu, F.; Ozyılmaz, E. COVID-19 patients’ sera induce epithelial mesenchymal transition in cancer cells. Cancer Treat. Res. Commun. 2021, 28, 100406. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ilyas, I.; Weng, J. Endothelial dysfunction in COVID-19: An overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol. Sin. 2022, 44, 695–709. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, C.; Zhang, M.; Tong, X.; Xie, Y.; Yan, R.; Wang, X.; Zhang, X.; Liu, D.; Li, S. Single cell meta-analysis of EndMT and EMT state in COVID-19. Front. Immunol. 2022, 13, 976512. [Google Scholar] [CrossRef] [PubMed]
- de Miguel-Gómez, L.; Sebastián-León, P.; Romeu, M.; Pellicer, N.; Faus, A.; Pellicer, A.; Díaz-Gimeno, P.; Cervelló, I. Endometrial gene expression differences in women with coronavirus disease 2019. Fertil. Steril. 2022, 118, 1159–1169. [Google Scholar] [CrossRef]
- Dotan, A.; Kanduc, D.; Muller, S.; Makatsariya, A.; Shoenfeld, Y. Molecular mimicry between SARS-CoV-2 and the female reproductive system. Am. J. Reprod. Immunol. 2021, 86, e13494. [Google Scholar] [CrossRef]
- Cavaliere, A.F.; Perelli, F.; Zaami, S.; Piergentili, R.; Mattei, A.; Vizzielli, G.; Scambia, G.; Straface, G.; Restaino, S.; Signore, F. Towards personalized medicine: Non-coding rnas and endometrial cancer. Healthcare 2021, 9, 965. [Google Scholar] [CrossRef]
- Vallone, C.; Rigon, G.; Gulia, C.; Baffa, A.; Votino, R.; Morosetti, G.; Zaami, S.; Briganti, V.; Catania, F.; Gaffi, M. Non-coding RNAs and endometrial cancer. Genes 2018, 9, 187. [Google Scholar] [CrossRef]
- Falahati, Z.; Mohseni-Dargah, M.; Mirfakhraie, R. Emerging roles of long non-coding RNAs in uterine leiomyoma pathogenesis: A review. Reprod. Sci. 2022, 29, 1086–1101. [Google Scholar] [CrossRef]
- Navarro, A.; Bariani, M.V.; Yang, Q.; Al-Hendy, A. Understanding the impact of uterine fibroids on human endometrium function. Front. Cell Dev. Biol. 2021, 9, 633180. [Google Scholar] [CrossRef]
- Fayyad-Kazan, M.; Makki, R.; Skafi, N.; El Homsi, M.; Hamade, A.; El Majzoub, R.; Hamade, E.; Fayyad-Kazan, H.; Badran, B. Circulating miRNAs: Potential diagnostic role for coronavirus disease 2019 (COVID-19). Infect. Genet. Evol. 2021, 94, 105020. [Google Scholar] [CrossRef] [PubMed]
- Pánico, P.; Ostrosky-Wegman, P.; Salazar, A.M. The potential role of COVID-19 in the induction of DNA damage. Mutat. Res./Rev. Mutat. Res. 2022, 789, 108411. [Google Scholar] [CrossRef] [PubMed]
- Victor, J.; Jordan, T.; Lamkin, E.; Ikeh, K.; March, A.; Frere, J.; Crompton, A.; Allen, L.; Fanning, J.; Lim, W.Y. SARS-CoV-2 hijacks host cell genome instability pathways. Res. Sq. 2022, Preprint. [Google Scholar]
- Gao, R.; Xu, Y.; Zhu, G.; Zhou, S.; Li, H.; Han, G.; Su, W.; Wang, R. Genetic variation associated with COVID-19 is also associated with endometrial cancer. J. Infect. 2022, 84, e85–e86. [Google Scholar] [CrossRef]
- Välimäki, N.; Kuisma, H.; Pasanen, A.; Heikinheimo, O.; Sjöberg, J.; Bützow, R.; Sarvilinna, N.; Heinonen, H.-R.; Tolvanen, J.; Bramante, S. Genetic predisposition to uterine leiomyoma is determined by loci for genitourinary development and genome stability. Elife 2018, 7, e37110. [Google Scholar] [CrossRef]
- McGuire, M.M.; Yatsenko, A.; Hoffner, L.; Jones, M.; Surti, U.; Rajkovic, A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS ONE 2012, 7, e33251. [Google Scholar] [CrossRef]
- Prusinski Fernung, L.E.; Al-Hendy, A.; Yang, Q. A preliminary study: Human fibroid Stro-1+/CD44+ stem cells isolated from uterine fibroids demonstrate decreased DNA repair and genomic integrity compared to adjacent myometrial Stro-1+/CD44+ cells. Reprod. Sci. 2019, 26, 619–638. [Google Scholar] [CrossRef]
- Schneider, W.M.; Luna, J.M.; Hoffmann, H.-H.; Sánchez-Rivera, F.J.; Leal, A.A.; Ashbrook, A.W.; Le Pen, J.; Ricardo-Lax, I.; Michailidis, E.; Peace, A. Genome-scale identification of SARS-CoV-2 and pan-coronavirus host factor networks. Cell 2021, 184, 120–132.e14. [Google Scholar] [CrossRef]
- Kee, J.; Thudium, S.; Renner, D.M.; Glastad, K.; Palozola, K.; Zhang, Z.; Li, Y.; Lan, Y.; Cesare, J.; Poleshko, A. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 2022, 610, 381–388. [Google Scholar] [CrossRef]
- Berta, D.G.; Kuisma, H.; Välimäki, N.; Räisänen, M.; Jäntti, M.; Pasanen, A.; Karhu, A.; Kaukomaa, J.; Taira, A.; Cajuso, T. Deficient H2A. Z deposition is associated with genesis of uterine leiomyoma. Nature 2021, 596, 398–403. [Google Scholar] [CrossRef]
- Xu, Y.; Ayrapetov, M.K.; Xu, C.; Gursoy-Yuzugullu, O.; Hu, Y.; Price, B.D. Histone H2A. Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol. Cell 2012, 48, 723–733. [Google Scholar] [CrossRef] [PubMed]
- García-Sanz, P.; Trivino, J.C.; Mota, A.; Perez Lopez, M.; Colás, E.; Rojo-Sebastián, A.; García, Á.; Gatius, S.; Ruiz, M.; Prat, J. Chromatin remodelling and DNA repair genes are frequently mutated in endometrioid endometrial carcinoma. Int. J. Cancer 2017, 140, 1551–1563. [Google Scholar] [CrossRef] [PubMed]
Microbiome | Changes by COVID-19 |
---|---|
Cytomegalovirus (CMV) and Herpes simplex virus (HSV) | Are reactivated [6] |
Firmicutes | Significant decrease in microbiome [7] |
Bacteroidota | Increase [7,8,9], |
Lactobacillus | Decrease [7], decrease after menopause [8] |
L. crispatus, L. iners, L. gasseri, and L. jensenii | Relative abundance was lower [7] |
Ureaplasma | The amount was higher in women with moderate/severe than with asymptomatic/mild disease [7]; increase [8] |
Marker | COVID-19 | Fibrosis | Cancer |
---|---|---|---|
ACE2 | Level of soluble ACE2-creating complex with COVID-19 increases at the onset of the disease [47,48] | Levels of ACE2 are increased in EC compared to adjacent noncancerous tissue [37] | |
Can be upregulated in response to inflammatory signaling [67] | |||
Levels of the ACE2 receptor on the cellular membrane may decrease due to coronavirus infection [68] | |||
Levels of ACE2 are lowered in diabetic patients, and at the same time, having diabetes in anamnesis is a risk factor for COVID-19 [25] | |||
TMPRSS2 | Priming of SARS-CoV-2 S-protein by TMPRSS2 at the cellular membrane activates it for host-cell-membrane fusion [70] | High in periconceptional human endometrium [33] | Expression level is high in EC cells [36] |
Cathepsin B/L | Are involved in SARS-CoV-2 infection of the target cell [74] | - | - |
EMMPRIN (CD147) | A cell entry receptor [8] | Level is elevated in patients with endometriosis [79] involved in fibrosis including uterine fibroids [80] | Significant in EC [9] |
Receptor tyrosine kinase (AXL) | Potentially involved in ACE2-independent SARS-CoV-2 entry into the host cell [76] | Is downregulated in uterine fibroids compared to normal myometria [81] | Highly expressed in endometria and involved in EC pathogenesis [82] |
Cytomegalovirus (CMV) and herpes simplex virus (HSV) | Are reactivated [6] | May be involved in EC pathogenesis [15,16] | |
Some human endogenous retroviral elements (HERVs) | Induced [12] | The role of HERVs in pulmonary fibrosis has also been suggested [17] | Contribute to development of the hallmarks of cancer [12] |
Level of Syncytin-1 is significantly increased in EC [13] | |||
Play important roles in cancer initiation and progression [14] | |||
IL-6, IL-1β, TNF-α, IFN-γ | COVID-19 causes elevated levels of these cytokines [8,53] | IL-6 and TNF-a can promote EC [55,56] | |
Plasma levels of IL-1β are increased during the acute phase of SARS-CoV-2 infection and in individuals who have recovered from COVID-19 [54] | IL-6 and TNF-a levels are elevated in EC tissue [57] | ||
IL-6 also affects levels of PD-L1 expressed by EC cells [58] | |||
PD-1, PD-L1 | In CD8+ T cells of patients recovered from COVID-19, PD1-targeting regulatory microRNA miR-15-5p was detected, suggesting changes in the PD-1/PD-L1 immune checkpoint axis [54] | In EC PD-L1, tumor-cell expression profiles are different in molecular and histologic subtypes [60] | |
Can be induced by IFNγ [61] | |||
Macrophages | Hypoxia is one of the consequences of being infected, and it may shift polarization of macrophages within EC further toward the tumor-promoting phenotype [97] | Tumor tissue of EC has elevated numbers of macrophages compared to the density of macrophages in the benign endometrium [99] | |
Under hypoxic conditions, EC cells can polarize monocytes to M2-like macrophages [62,100] | |||
ECM components | Have significant impact on ECM remodeling in lung tissue [95,96] | Collagen 1A1, fibronectin, and versican are elevated [93] | Aggrecan, nidogen, collagen type VIII chain α1, and collagen type XI chain α2 are elevated in stage III EC [91] |
Roles in ECM-directed mechanotransduction and the central role of ECM stiffness in the uterine-fibrosis (UF) pathogenesis [94] | |||
RAGE | SARS-CoV-2 can lead to hyperactivity of RAGE in several cell types [90] | Are elevated in EC and predominantly low in healthy tissue [90] | |
TGF-β | Elevated [89] | ||
Genetic factors | SARS-CoV-2 causes DNA damage and overall genome instability [114,115] | ||
Some miRNA affected by COVID-19 can modulate TGF-β pathways in UF and myometrial cells [103,112] | |||
Mediator complex subunit 12 (MED12) | MED12 is both linked to DNA damage repair (DDR) and found in the SARS-CoV-2 protein interactome [120] | UF often carries mutations in the MED12 gene [118] | |
UF stem cells with mutations in MED12 demonstrate increased DNA damage [119] | |||
Chromatin | SARS-CoV-2 disrupts chromatin regulation in infected cells [121] | Is characterized by deficient deposition of H2A.Z histone [122] | Chromatin remodeling and DDR genes are also frequently mutated [124] |
Noncoding RNA | Vital roles in UF pathogenesis [94,111] | Vital roles in EC tumorigenesis [94,111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petersen, E.; Chudakova, D.; Erdyneeva, D.; Zorigt, D.; Shabalina, E.; Gudkov, D.; Karalkin, P.; Reshetov, I.; Mynbaev, O.A. COVID-19—The Shift of Homeostasis into Oncopathology or Chronic Fibrosis in Terms of Female Reproductive System Involvement. Int. J. Mol. Sci. 2023, 24, 8579. https://doi.org/10.3390/ijms24108579
Petersen E, Chudakova D, Erdyneeva D, Zorigt D, Shabalina E, Gudkov D, Karalkin P, Reshetov I, Mynbaev OA. COVID-19—The Shift of Homeostasis into Oncopathology or Chronic Fibrosis in Terms of Female Reproductive System Involvement. International Journal of Molecular Sciences. 2023; 24(10):8579. https://doi.org/10.3390/ijms24108579
Chicago/Turabian StylePetersen, Elena, Daria Chudakova, Daiana Erdyneeva, Dulamsuren Zorigt, Evgeniya Shabalina, Denis Gudkov, Pavel Karalkin, Igor Reshetov, and Ospan A. Mynbaev. 2023. "COVID-19—The Shift of Homeostasis into Oncopathology or Chronic Fibrosis in Terms of Female Reproductive System Involvement" International Journal of Molecular Sciences 24, no. 10: 8579. https://doi.org/10.3390/ijms24108579
APA StylePetersen, E., Chudakova, D., Erdyneeva, D., Zorigt, D., Shabalina, E., Gudkov, D., Karalkin, P., Reshetov, I., & Mynbaev, O. A. (2023). COVID-19—The Shift of Homeostasis into Oncopathology or Chronic Fibrosis in Terms of Female Reproductive System Involvement. International Journal of Molecular Sciences, 24(10), 8579. https://doi.org/10.3390/ijms24108579