Enzymatic and Bioinspired Systems for Hydrogen Production
Abstract
:1. Hydrogen: A Fuel for the Future
2. Natural Hydrogenases
2.1. [FeFe]-Hydrogenases
2.2. [NiFe]-Hydrogenases
2.3. [Fe]-Hydrogenases
3. Hydrogenase-Based Devices for Hydrogen and Energy Production
3.1. Photoelectrochemical Cells
3.2. Biofuel Cells
4. Artificial Electrocatalysts for Hydrogen Production
4.1. Mimicking Hydrogenases with Small-Molecule Complexes
Entry | Catalyst | Solvent (Proton Source) | pH | TON | TOF [a] (min−1) | η [b] (mV) | Duration (h) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | [BzPy]2[Ni(tdas)2] | MeCN (AcOH) | 1286 | 5.36 | 520 | 4 | [119] | |
2 | [BzPy]2[Ni(tdas)2] | H2O | 5 | 2220 | 9.25 | 520 | 4 | [119] |
3 | [Ni(pbdt)] | DMF (TFA) | 760 | [120] | ||||
4 | [Bz-1-MeIm]2[Ni(tdas)2] | DMF (AcOH) | 70.3 | 0.58 | 941.6 | 2 | [121] | |
5 | [Bz-1-MeIm]2[Ni(tdas)2] | H2O | 7 | 1546 | 12.9 | 837.6 | 2 | [121] |
6 | [Ni(2-amnt)(dmnt)] | H2O/DMF (TFA) | 6120 | 1040 | [122] | |||
7 | [Ni(bpy)(mp)] | DMF (Bu4N+PF6−) | 39.2 | 786 | 720 | 3 | [123] | |
8 | [Ni((PPh2)({S}PPh2) C6H4CH3(S2P{O}OCH3)] | MeCN (TFA) | 4.24 × 104 | 610 | 2 | [124] | ||
9 | [Co(DO)(DOH)pn(OH2)2]2+ | H2O | 2.2 | 23 | 260 | 24 | [127] | |
10 | Ni-SAO | H2O | 7 | 1428 | 23.8 | 837.6 | 1 | [129] |
11 | [Co(ppq)(MeCN)(TfO)]+ | DMF (Et3NH+BF4−) | 3.36 × 105 | 600 | [130] | |||
12 | [Co(Fc-tpy)2]2+ | DMF/H2O 95/5 (AcOH) | 4.95 × 104 | 655 | 2 | [131] | ||
13 | [Co(ptim)2]2+ | MeCN (AcOH) | 0.99 | 370 | 12 | [132] | ||
14 | [Co(mtim)2]2+ | MeCN (AcOH) | 0.24 | 300 | 12 | [132] | ||
15 | Cu(phen)(4-CHO-2,6-SePh-PhO)2 | DMF (AcOH) | 19.5 | 610 | [133] | |||
16 | [Co2(spmd)2Py2]+ | DMF (AcOH) | 26.7 | 460 | 5 | [134] | ||
17 | CuTFP | MeCN (BA) | 1518 | [135] | ||||
18 | [Ni(pfsc)]− | MeCN (TFA) | 61.7 | 360 | [136] | |||
19 | F15C-Mn | DMF (TsOH) | 1.42 | 1400 | [137] | |||
20 | F15C-Mn | H2O/MeCN 3/2 | 5.5 | 25.9 | 1027 | 8 | [137] | |
21 | Cu-Cl8 | MeCN (TFA) | 1.47 × 107 | 360 | 6 | [138] | ||
22 | Ni(PPh2NEtOMe′2)2]2+ | MeCN (4-CNAnH+BF4−) | 8 | 30 | 140 | [139] | ||
23 | [Co(PPh2NPh2)(CH3CN)3]2+ | MeCN (Bu4N+BF4−) | 5400 | 285 | [140] | |||
24 | (μ-S2(CH2)2N(2-ethylphenyl)[Fe(CO)3]2 [c] | H2O | 5.5 | 1.0 × 106 | 2406 | 180 | 2.5 | [141] |
25 | Co-corrole-crown-ether | PC/H2O (BA) | 5.93 × 105 | [142] | ||||
26 | [Fe2(bdt)(CO)6] | H2O/SDS | 3 | 52 | 1.56 × 105 | 500 | 1 | [143] |
27 | [Fe4(Zn-L)6] [d] | MeCN (Et3NH+BF4−) | 5.04 × 107 | 640 | [144] | |||
28 | [[Ni(PPh2NDPE2)2]2+ | MeCN/H2O (DMFH+OTf−) | 8.4 × 104 | 330 | [145] | |||
29 | Co-MP11 | H2O | 7 | 2.5 × 104 | 402 | 852 | 0.4 | [146] |
30 | Ht-CoM61A | H2O | 7 | 2.7 × 105 | 830 | 6 | [147] | |
31 | Co-MC6*a | H2O | 6.5 | 2.3 × 105 | 680 | 1.4 | [148] | |
32 | SwMb-[Co(dmgH)2(H2O)2] [e] | H2O | 7 | 3.2 | 200 | [149] | ||
33 | HO-[Co(dmgH)2(H2O)2] | H2O | 7 | 6.3 | 460 | [150] | ||
34 | SA-[Co(BioPy2tacn)(MeCN)]2+ | H2O | 3.5 | 780 | 3 | [151] | ||
35 | NiRd [f] | H2O | 4.5 | 4800 | 540 | [152] | ||
36 | V08D-NiRd | H2O | 4.0 | 3.0 × 105 | 600 | [153] | ||
37 | Ni(II)-NBP | H2O | 5 | 210 | 1 | 560 | 1 | [154] |
4.2. Building Complexity around the Catalytic Center
4.3. Engineering Hydrogenase Activity into Protein Scaffolds
5. Bioinspired Systems for Light-Driven Hydrogen Production
5.1. Light-Harvesting Units in Photocatalytic Hydrogen Production
5.2. Photo-Activated Catalysts for Hydrogen Production
5.2.1. Molecular Catalysts
5.2.2. Peptide- and Protein-Based Catalytic Systems
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2-amnt | 2-aminobenzenethiolate |
2SCC | two-stranded coiled coil |
4-CNAnH+BF4− | 4-cyanoanilinium tetrafluoroborate |
4SCC | four-stranded coiled coil |
(DO)(DOH)pn | (diacetylmonoximeimino)(diacetylmonoximateimino)-1,3-propane |
AcOH | acetic acid |
ADT | 2-aza-propane-(1,3)-dithiolate |
appy | bis-2,2″-bipyridine-6-yl(pyridine-2-yl)methanol |
BA | benzoic acid |
bdt | benezenedithiolate |
BFC | biofuel cell |
Biot | biotin |
BNT | binaphtalenedithiolate |
BO BPEC | bilirubin oxidase bio-photoelectrochemical cells |
bpy | 2,2′-bipyridine |
Bu4N+PF6− | tetrabutylammonium hexafluorophosphate |
Bz | benzyl |
Bz-1-MeIm | benzyl-1-methylimidazolium |
Cl8 | 2,3,7,8,12,13,17,18-octachloro- 5,10,15-tris(pentafluorophenyl)corrole |
COF | covalent organic framework |
Csp1 | copper storage protein |
dmgBF2 | difluoroboryldimethylglyoximato |
dmgH | dimethylglyoximato |
DMF | dimethylformamide |
dmnt | diaminomaleonitrile |
DPE | dipeptide esther |
Et3NH+BF4− | triethylammonium tetrafluoroborate |
F15C | 5,10,15-tris (pentafluorophenyl) corrole |
FC | fuel cell |
Fc-tpy | 4′-ferrocenyl-2,2′:6′,2″-terpyridine |
Fd | Spinacia oleracea ferredoxin |
FFH | [FeFe]-hydrogenase |
FH | [Fe]-hydrogenase |
Fld GO | flavodoxin glucose oxidase |
GP | guanylylpyridinol |
HEC | Hydrogen-evolving catalyst |
HER | hydrogen evolution reaction |
Hmd | H2-forming methylenetetrahydromethanopterin dehydrogenases |
HO | heme oxygenase |
HSF | horse spleen ferritin |
Ht-CoM61A | cobalt-substituted Hydrogenobacter thermophilus cytochrome c552 |
Im | imidazole |
MC6*a | mimochrome VI*a |
MeCN | acetonitrile |
MP11 | microperoxidase 11 |
mtim | 2,6-bis-(1-methoxycarbonylmethyl-1h-1,2,3-triazol-4-yl)isonicotinate methyl ester |
mp | 2-hydroxythiophenol |
NB | nitrobindin |
NBP | nickel-binding protein |
NFH | [NiFe]-hydrogenase |
NFSH | [NiFeSe]-hydrogenase |
NiRd | nickel-substituted Desulfovibrio desulfuricans rubredoxin |
NiSOD | nickel superoxide dismutase |
OEC | oxygen-evolving catalyst |
OVA | ovalbumin |
pbdt | 2,2′-(propane-1,3-diylbis(sulfanediyl))dibenzenethiol) |
PC | polycarbonate |
PCET | proton-coupled electron transfer |
pdt | propanedithiolate |
PEC | photoelectrochemical cell |
pfsc | 5,10,15-tris(pentafluorophenyl)-2,17-bis(sulfonamide)corrole |
phen | 1,10-phenantroline |
PPIX | protoporphyrin IX |
Ppq | 8-(1″,10″-phenanthrol-2″-yl)-2-(pyrid-2′-yl)quinoline |
ppy | 2-phenylpyridine |
P(pyr)3 | tris(N-pyrrolyl)phosphine |
PSI | Photosystem I |
PSII | Photosystem II |
PT | proton transfer |
ptim | 2,6-bis(1-(pyridin-2-yl)-1h-1,2,3-triazol-4-yl)isonicotinate methyl ester |
Py | pyridine |
pyS | pyridine-2-thiolate |
QD | quantum dot |
SA | streptavidin |
SAO | salicylketoxime |
SDS | sodium dodecyl sulfate |
SePh-PhO | phenyl selenoether phenolate |
spmd | bis(salicylidene)-phenylmethanediamine |
SwMb | sperm-whale myoglobin |
tacn | 1,4,7-triazacyclononane |
TBA | tetrabutylamonium |
tdas | 1,2,5-thiadiazole-3,4-dithiolate |
TEA | triethylamine |
TEOA | triethanolamine |
TFA | trifluoroacetic acid |
TFE | 2,2,2-trfifluoroethanol |
TfO− | trifluoromethanesulfonate (triflate) |
TFP | 5,10,15,20-tetrakis(4-fluoro-2,6-dimethylphenyl)porphyrin |
TOF | turnover frequency |
TON | turnover number |
TPPS | meso-tetra-(4-sulfonatophenyl)porphyrin |
tpy | 2,2′:6′,2″-terpyridine |
TsOH | p-toluenesulfonic acid |
ttpy | 4′-p-tolylterpyridine |
References
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, O.; Katakojwala, R.; Mohan, S.V. Low carbon hydrogen production from a waste-based biorefinery system and environmental sustainability assessment. Green Chem. 2021, 23, 561–574. [Google Scholar] [CrossRef]
- Borgschulte, A. The Hydrogen Grand Challenge. Front. Energy Res. 2016, 4, 11. [Google Scholar] [CrossRef]
- Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P.H. Insights into renewable hydrogen energy: Recent advances and prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327. [Google Scholar] [CrossRef]
- Wang, T.; Cao, X.; Jiao, L. PEM water electrolysis for hydrogen production: Fundamentals, advances, and prospects. Carbon Neutrality 2022, 1, 21. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Baeyens, J.; Zhang, H.; Nie, J.; Appels, L.; Dewil, R.; Ansart, R.; Deng, Y. Reviewing the potential of bio-hydrogen production by fermentation. Renew. Sustain. Energy Rev. 2020, 131, 110023. [Google Scholar] [CrossRef]
- Li, S.; Li, F.; Zhu, X.; Liao, Q.; Chang, J.-S.; Ho, S.-H. Biohydrogen production from microalgae for environmental sustainability. Chemosphere 2022, 291, 132717. [Google Scholar] [CrossRef]
- Poladyan, A.; Margaryan, L.; Trchounian, K.; Trchounian, A. Biomass and biohydrogen production during dark fermentation of Escherichia coli using office paper waste and cardboard. Int. J. Hydrog. Energy 2020, 45, 286–293. [Google Scholar] [CrossRef]
- Soares, J.F.; Confortin, T.C.; Todero, I.; Mayer, F.D.; Mazutti, M.A. Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renew. Sustain. Energy Rev. 2020, 117, 109484. [Google Scholar] [CrossRef]
- Arizzi, M.; Morra, S.; Gilardi, G.; Pugliese, M.; Gullino, M.L.; Valetti, F. Improving sustainable hydrogen production from green waste: [FeFe]-hydrogenases quantitative gene expression RT-qPCR analysis in presence of autochthonous consortia. Biotechnol. Biofuels 2021, 14, 182. [Google Scholar] [CrossRef]
- Akkerman, I.; Janssen, M.; Rocha, J.; Wijffels, R.H. Photobiological hydrogen production: Photochemical efficiency and bioreactor design. Int. J. Hydrog. Energy 2002, 27, 1195–1208. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.; Wang, L.; Fan, C.; Liu, H. Advances in Whole-Cell Photobiological Hydrogen Production. Adv. NanoBiomed Res. 2021, 1, 2000051. [Google Scholar] [CrossRef]
- Ghirardi, M.L.; Posewitz, M.C.; Maness, P.-C.; Dubini, A.; Yu, J.; Seibert, M. Hydrogenases and Hydrogen Photoproduction in Oxygenic Photosynthetic Organisms. Annu. Rev. Plant Biol. 2007, 58, 71–91. [Google Scholar] [CrossRef]
- Stripp, S.T.; Happe, T. How algae produce hydrogen—News from the photosynthetic hydrogenase. Dalton Trans. 2009, 45, 9960–9969. [Google Scholar] [CrossRef]
- Caserta, G.; Roy, S.; Atta, M.; Artero, V.; Fontecave, M. Artificial hydrogenases: Biohybrid and supramolecular systems for catalytic hydrogen production or uptake. Curr. Opin. Chem. Biol. 2015, 25, 36–47. [Google Scholar] [CrossRef]
- Holá, K.; Pavliuk, M.V.; Németh, B.; Huang, P.; Zdražil, L.; Land, H.; Berggren, G.; Tian, H. Carbon Dots and [FeFe] Hydrogenase Biohybrid Assemblies for Efficient Light-Driven Hydrogen Evolution. ACS Catal. 2020, 10, 9943–9952. [Google Scholar] [CrossRef]
- Martins, M.; Toste, C.; Pereira, I.A.C. Enhanced Light-Driven Hydrogen Production by Self-Photosensitized Biohybrid Systems. Angew. Chem. Int. Ed. 2021, 60, 9055–9062. [Google Scholar] [CrossRef]
- Lorenzi, M.; Gamache, M.T.; Redman, H.J.; Land, H.; Senger, M.; Berggren, G. Light-Driven [FeFe] Hydrogenase Based H2 Production in E. coli: A Model Reaction for Exploring E. coli Based Semiartificial Photosynthetic Systems. ACS Sustain. Chem. Eng. 2022, 10, 10760–10767. [Google Scholar] [CrossRef]
- Stripp, S.T.; Goldet, G.; Brandmayr, C.; Sanganas, O.; Vincent, K.A.; Haumann, M.; Armstrong, F.A.; Happe, T. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc. Natl. Acad. Sci. USA 2009, 106, 17331–17336. [Google Scholar] [CrossRef]
- Simmons, T.R.; Berggren, G.; Bacchi, M.; Fontecave, M.; Artero, V. Mimicking hydrogenases: From biomimetics to artificial enzymes. Coord. Chem. Rev. 2014, 270–271, 127–150. [Google Scholar] [CrossRef]
- Amaro-Gahete, J.; Pavliuk, M.V.; Tian, H.; Esquivel, D.; Romero-Salguero, F.J.; Ott, S. Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coord. Chem. Rev. 2021, 448, 214172. [Google Scholar] [CrossRef]
- Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148. [Google Scholar] [CrossRef] [PubMed]
- Greening, C.; Cook, G.M. Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr. Opin. Microbiol. 2014, 18, 30–38. [Google Scholar] [CrossRef]
- Lu, Y.; Koo, J. O2 sensitivity and H2 production activity of hydrogenases—A review. Biotechnol. Bioeng. 2019, 116, 3124–3135. [Google Scholar] [CrossRef]
- Morra, S. Fantastic [FeFe]-Hydrogenases and Where to Find Them. Front. Microbiol. 2022, 13, 853626. [Google Scholar] [CrossRef]
- Peters, J.W.; Schut, G.J.; Boyd, E.S.; Mulder, D.W.; Shepard, E.M.; Broderick, J.B.; King, P.W.; Adams, M.W.W. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta BBA Mol. Cell Res. 2015, 1853, 1350–1369. [Google Scholar] [CrossRef]
- Poudel, S.; Tokmina-Lukaszewska, M.; Colman, D.R.; Refai, M.; Schut, G.J.; King, P.W.; Maness, P.-C.; Adams, M.W.W.; Peters, J.W.; Bothner, B.; et al. Unification of [FeFe]-hydrogenases into three structural and functional groups. Biochim. Biophys. Acta BBA Gen. Subj. 2016, 1860, 1910–1921. [Google Scholar] [CrossRef]
- Wittkamp, F.; Senger, M.; Stripp, S.T.; Apfel, U.-P. [FeFe]-Hydrogenases: Recent developments and future perspectives. Chem. Commun. 2018, 54, 5934–5942. [Google Scholar] [CrossRef]
- Beinert, H. Iron-sulfur proteins: Ancient structures, still full of surprises. JBIC J. Biol. Inorg. Chem. 2000, 5, 2–15. [Google Scholar] [CrossRef]
- Stiebritz, M.T.; Reiher, M. Hydrogenases and oxygen. Chem. Sci. 2012, 3, 1739. [Google Scholar] [CrossRef]
- Rodríguez-Maciá, P.; Galle, L.M.; Bjornsson, R.; Lorent, C.; Zebger, I.; Yoda, Y.; Cramer, S.P.; DeBeer, S.; Span, I.; Birrell, J.A. Caught in the Hinact: Crystal Structure and Spectroscopy Reveal a Sulfur Bound to the Active Site of an O2 -stable State of [FeFe] Hydrogenase. Angew. Chem. Int. Ed. 2020, 59, 16786–16794. [Google Scholar] [CrossRef]
- Rodríguez-Maciá, P.; Reijerse, E.J.; van Gastel, M.; DeBeer, S.; Lubitz, W.; Rüdiger, O.; Birrell, J.A. Sulfide Protects [FeFe] Hydrogenases From O2. J. Am. Chem. Soc. 2018, 140, 9346–9350. [Google Scholar] [CrossRef]
- Völler, J.-S. Air-stable [FeFe] hydrogenases. Nat. Catal. 2018, 1, 564. [Google Scholar] [CrossRef]
- Birrell, J.A.; Rodríguez-Maciá, P.; Reijerse, E.J.; Martini, M.A.; Lubitz, W. The catalytic cycle of [FeFe] hydrogenase: A tale of two sites. Coord. Chem. Rev. 2021, 449, 214191. [Google Scholar] [CrossRef]
- Land, H.; Senger, M.; Berggren, G.; Stripp, S.T. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal. 2020, 10, 7069–7086. [Google Scholar] [CrossRef]
- Vignais, P.M.; Billoud, B.; Meyer, J. Classification and phylogeny of hydrogenases1. FEMS Microbiol. Rev. 2001, 25, 455–501. [Google Scholar] [CrossRef]
- Alfano, M.; Cavazza, C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci. 2020, 29, 1071–1089. [Google Scholar] [CrossRef]
- Benoit, S.L.; Maier, R.J.; Sawers, R.G.; Greening, C. Molecular Hydrogen Metabolism: A Widespread Trait of Pathogenic Bacteria and Protists. Microbiol. Mol. Biol. Rev. 2020, 84, e00092-19. [Google Scholar] [CrossRef]
- Greening, C.; Biswas, A.; Carere, C.R.; Jackson, C.J.; Taylor, M.C.; Stott, M.B.; Cook, G.M.; Morales, S.E. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016, 10, 761–777. [Google Scholar] [CrossRef]
- Garcin, E.; Vernede, X.; Hatchikian, E.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 1999, 7, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Wombwell, C.; Caputo, C.A.; Reisner, E. [NiFeSe]-Hydrogenase Chemistry. Acc. Chem. Res. 2015, 48, 2858–2865. [Google Scholar] [CrossRef] [PubMed]
- Radu, V.; Frielingsdorf, S.; Lenz, O.; Jeuken, L.J.C. Reactivation from the Ni–B state in [NiFe] hydrogenase of Ralstonia eutropha is controlled by reduction of the superoxidised proximal cluster. Chem. Commun. 2016, 52, 2632–2635. [Google Scholar] [CrossRef] [PubMed]
- Lukey, M.J.; Roessler, M.M.; Parkin, A.; Evans, R.M.; Davies, R.A.; Lenz, O.; Friedrich, B.; Sargent, F.; Armstrong, F.A. Oxygen-Tolerant [NiFe]-Hydrogenases: The Individual and Collective Importance of Supernumerary Cysteines at the Proximal Fe-S Cluster. J. Am. Chem. Soc. 2011, 133, 16881–16892. [Google Scholar] [CrossRef]
- Ogata, H.; Lubitz, W.; Higuchi, Y. Structure and function of [NiFe] hydrogenases. J. Biochem. 2016, 160, 251–258. [Google Scholar] [CrossRef]
- Evans, R.M.; Brooke, E.J.; Wehlin, S.A.M.; Nomerotskaia, E.; Sargent, F.; Carr, S.B.; Phillips, S.E.V.; Armstrong, F.A. Mechanism of hydrogen activation by [NiFe] hydrogenases. Nat. Chem. Biol. 2016, 12, 46–50. [Google Scholar] [CrossRef]
- Ogata, H.; Lubitz, W.; Higuchi, Y. [NiFe] hydrogenases: Structural and spectroscopic studies of the reaction mechanism. Dalton Trans. 2009, 37, 7577–7587. [Google Scholar] [CrossRef]
- Tai, H.; Hirota, S. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments. ChemBioChem 2020, 21, 1573–1581. [Google Scholar] [CrossRef]
- Siegbahn, P.E.M. A quantum chemical approach for the mechanisms of redox-active metalloenzymes. RSC Adv. 2021, 11, 3495–3508. [Google Scholar] [CrossRef]
- Siegbahn, P.E.M.; Liao, R.-Z. The Energetics of Hydrogen Molecule Oxidation in NiFe-Hydrogenase. ACS Catal. 2020, 10, 5603–5613. [Google Scholar] [CrossRef]
- Wang, C.; Lai, Z.; Huang, G.; Pan, H.-J. Current State of [Fe]-Hydrogenase and Its Biomimetic Models. Chem. Eur. J. 2022, 28, e202201499. [Google Scholar] [CrossRef]
- Huang, G.; Wagner, T.; Wodrich, M.D.; Ataka, K.; Bill, E.; Ermler, U.; Hu, X.; Shima, S. The atomic-resolution crystal structure of activated [Fe]-hydrogenase. Nat. Catal. 2019, 2, 537–543. [Google Scholar] [CrossRef]
- Shima, S.; Lyon, E.J.; Sordel-Klippert, M.; Kauß, M.; Kahnt, J.; Thauer, R.K.; Steinbach, K.; Xie, X.; Verdier, L.; Griesinger, C. The Cofactor of the Iron–Sulfur Cluster Free Hydrogenase Hmd: Structure of the Light-Inactivation Product. Angew. Chem. Int. Ed. 2004, 43, 2547–2551. [Google Scholar] [CrossRef]
- Tamura, H.; Salomone-Stagni, M.; Fujishiro, T.; Warkentin, E.; Meyer-Klaucke, W.; Ermler, U.; Shima, S. Crystal Structures of [Fe]-Hydrogenase in Complex with Inhibitory Isocyanides: Implications for the H2-Activation Site. Angew. Chem. Int. Ed. 2013, 52, 9656–9659. [Google Scholar] [CrossRef]
- Hiromoto, T.; Ataka, K.; Pilak, O.; Vogt, S.; Stagni, M.S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R.K.; Shima, S.; Ermler, U. The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Lett. 2009, 583, 585–590. [Google Scholar] [CrossRef]
- Yang, X.; Hall, M.B. Monoiron Hydrogenase Catalysis: Hydrogen Activation with the Formation of a Dihydrogen, Fe−Hδ−···Hδ+−O, Bond and Methenyl-H4MPT+ Triggered Hydride Transfer. J. Am. Chem. Soc. 2009, 131, 10901–10908. [Google Scholar] [CrossRef]
- Hedegård, E.D.; Kongsted, J.; Ryde, U. Multiscale Modeling of the Active Site of [Fe] Hydrogenase: The H2 Binding Site in Open and Closed Protein Conformations. Angew. Chem. Int. Ed. 2015, 54, 6246–6250. [Google Scholar] [CrossRef]
- Ruth, J.C.; Spormann, A.M. Enzyme Electrochemistry for Industrial Energy Applications—A Perspective on Future Areas of Focus. ACS Catal. 2021, 11, 5951–5967. [Google Scholar] [CrossRef]
- Ruff, A.; Conzuelo, F.; Schuhmann, W. Bioelectrocatalysis as the basis for the design of enzyme-based biofuel cells and semi-artificial biophotoelectrodes. Nat. Catal. 2020, 3, 214–224. [Google Scholar] [CrossRef]
- Liu, X.; Risbakk, S.; Almeida Carvalho, P.; Yang, M.; Hoff Backe, P.; Bjørås, M.; Norby, T.; Chatzitakis, A. Immobilization of FeFe-hydrogenase on black TiO2 nanotubes as biocathodes for the hydrogen evolution reaction. Electrochem. Commun. 2022, 135, 107221. [Google Scholar] [CrossRef]
- Ruff, A.; Szczesny, J.; Vega, M.; Zacarias, S.; Matias, P.M.; Gounel, S.; Mano, N.; Pereira, I.A.C.; Schuhmann, W. Redox-Polymer-Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple-Protected High-Current-Density H2-Oxidation Bioanodes. ChemSusChem 2020, 13, 3627–3635. [Google Scholar] [CrossRef] [PubMed]
- Shiraiwa, S.; So, K.; Sugimoto, Y.; Kitazumi, Y.; Shirai, O.; Nishikawa, K.; Higuchi, Y.; Kano, K. Reactivation of standard [NiFe]-hydrogenase and bioelectrochemical catalysis of proton reduction and hydrogen oxidation in a mediated-electron-transfer system. Bioelectrochemistry 2018, 123, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Oughli, A.A.; Vélez, M.; Birrell, J.A.; Schuhmann, W.; Lubitz, W.; Plumeré, N.; Rüdiger, O. Viologen-modified electrodes for protection of hydrogenases from high potential inactivation while performing H2 oxidation at low overpotential. Dalton Trans. 2018, 47, 10685–10691. [Google Scholar] [CrossRef] [PubMed]
- Olloqui-Sariego, J.L.; Calvente, J.J.; Andreu, R. Immobilizing redox enzymes at mesoporous and nanostructured electrodes. Curr. Opin. Electrochem. 2021, 26, 100658. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef]
- Li, J.; Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Ding, C.; Wang, Z.; Liao, S.; Li, C. Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. Energy Environ. Sci. 2017, 10, 765–771. [Google Scholar] [CrossRef]
- Du, J.; Xin, J.; Liu, M.; Zhang, X.; He, H.; Wu, J.; Xu, X. Preparation of Photo-Bioelectrochemical Cells With the RC-LH Complex From Roseiflexus castenholzii. Front. Microbiol. 2022, 13, 928046. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Hao, S.; Dong, S. A solar-rechargeable bio-photoelectrochemical system based on carbon tracking strategy for enhancement of glucose electrometabolism. Nano Energy 2022, 104, 107940. [Google Scholar] [CrossRef]
- Mukha, D.; Cohen, Y.; Yehezkeli, O. Bismuth Vanadate/Bilirubin Oxidase Photo(bio)electrochemical Cells for Unbiased, Light-Triggered Electrical Power Generation. ChemSusChem 2020, 13, 2684–2692. [Google Scholar] [CrossRef]
- Huang, X.; Ren, L.; Jiang, C.; Han, X.; Yin, X.; Liu, Y.; Yang, W.; Chen, Y. Design of a novel photoelectrochemical enzymatic biofuel cell with high power output under visible light. Chem. Eng. J. 2022, 431, 134037. [Google Scholar] [CrossRef]
- Pinhassi, R.I.; Kallmann, D.; Saper, G.; Dotan, H.; Linkov, A.; Kay, A.; Liveanu, V.; Schuster, G.; Adir, N.; Rothschild, A. Hybrid bio-photo-electro-chemical cells for solar water splitting. Nat. Commun. 2016, 7, 12552. [Google Scholar] [CrossRef]
- Sokol, K.P.; Robinson, W.E.; Warnan, J.; Kornienko, N.; Nowaczyk, M.M.; Ruff, A.; Zhang, J.Z.; Reisner, E. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 2018, 3, 944–951. [Google Scholar] [CrossRef]
- Mersch, D.; Lee, C.-Y.; Zhang, J.Z.; Brinkert, K.; Fontecilla-Camps, J.C.; Rutherford, A.W.; Reisner, E. Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting. J. Am. Chem. Soc. 2015, 137, 8541–8549. [Google Scholar] [CrossRef]
- Yates, N.D.J.; Fascione, M.A.; Parkin, A. Methodologies for “Wiring” Redox Proteins/Enzymes to Electrode Surfaces. Chem. Eur. J. 2018, 24, 12164–12182. [Google Scholar] [CrossRef]
- Waterhouse, G.I.N.; Waterland, M.R. Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron 2007, 26, 356–368. [Google Scholar] [CrossRef]
- Fathi, F.; Monirinasab, H.; Ranjbary, F.; Nejati-Koshki, K. Inverse opal photonic crystals: Recent advances in fabrication methods and biological applications. J. Drug Deliv. Sci. Technol. 2022, 72, 103377. [Google Scholar] [CrossRef]
- Nam, D.H.; Zhang, J.Z.; Andrei, V.; Kornienko, N.; Heidary, N.; Wagner, A.; Nakanishi, K.; Sokol, K.P.; Slater, B.; Zebger, I.; et al. Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angew. Chem. Int. Ed. 2018, 57, 10595–10599. [Google Scholar] [CrossRef]
- Park, N.-G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72. [Google Scholar] [CrossRef]
- Wu, T.; Qin, Z.; Wang, Y.; Wu, Y.; Chen, W.; Zhang, S.; Cai, M.; Dai, S.; Zhang, J.; Liu, J.; et al. The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Lett. 2021, 13, 152. [Google Scholar] [CrossRef]
- Edwardes Moore, E.; Andrei, V.; Zacarias, S.; Pereira, I.A.C.; Reisner, E. Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting. ACS Energy Lett. 2020, 5, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Németh, B.; Berggren, G.; Tian, H. Hydrogen evolution by a photoelectrochemical cell based on a Cu2O-ZnO-[FeFe] hydrogenase electrode. J. Photochem. Photobiol. Chem. 2018, 366, 27–33. [Google Scholar] [CrossRef]
- Mazurenko, I.; Wang, X.; de Poulpiquet, A.; Lojou, E. H2/O2 enzymatic fuel cells: From proof-of-concept to powerful devices. Sustain. Energy Fuels 2017, 1, 1475–1501. [Google Scholar] [CrossRef]
- Gentil, S.; Che Mansor, S.M.; Jamet, H.; Cosnier, S.; Cavazza, C.; Le Goff, A. Oriented Immobilization of [NiFeSe] Hydrogenases on Covalently and Noncovalently Functionalized Carbon Nanotubes for H2/Air Enzymatic Fuel Cells. ACS Catal. 2018, 8, 3957–3964. [Google Scholar] [CrossRef]
- Hardt, S.; Stapf, S.; Filmon, D.T.; Birrell, J.A.; Rüdiger, O.; Fourmond, V.; Léger, C.; Plumeré, N. Reversible H2 oxidation and evolution by hydrogenase embedded in a redox polymer film. Nat. Catal. 2021, 4, 251–258. [Google Scholar] [CrossRef]
- Szczesny, J.; Marković, N.; Conzuelo, F.; Zacarias, S.; Pereira, I.A.C.; Lubitz, W.; Plumeré, N.; Schuhmann, W.; Ruff, A. A gas breathing hydrogen/air biofuel cell comprising a redox polymer/hydrogenase-based bioanode. Nat. Commun. 2018, 9, 4715. [Google Scholar] [CrossRef]
- Szczesny, J.; Birrell, J.A.; Conzuelo, F.; Lubitz, W.; Ruff, A.; Schuhmann, W. Redox-Polymer-Based High-Current-Density Gas-Diffusion H2-Oxidation Bioanode Using [FeFe] Hydrogenase from Desulfovibrio desulfuricans in a Membrane-Free Biofuel Cell. Angew. Chem. Int. Ed. 2020, 59, 16506–16510. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Ma, C.; Kang, Z.; Zhu, Z. A heterologously-expressed thermostable Pyrococcus furiosus cytoplasmic [NiFe]-hydrogenase I used as the catalyst of H2/air biofuel cells. Int. J. Hydrog. Energy 2021, 46, 3035–3044. [Google Scholar] [CrossRef]
- Wu, H.; Feng, C.; Zhang, L.; Zhang, J.; Wilkinson, D.P. Non-Noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochem. Energy Rev. 2021, 4, 473–507. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef]
- Eftekhari, A. Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrog. Energy 2017, 42, 11053–11077. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Nayek, A.; Križan, A.; Coutard, N.; Morozan, A.; Ghosh Dey, S.; Lomoth, R.; Hammarström, L.; Artero, V.; Dey, A. A Bidirectional Bioinspired [FeFe]-Hydrogenase Model. J. Am. Chem. Soc. 2022, 144, 3614–3625. [Google Scholar] [CrossRef]
- Onoda, A.; Kihara, Y.; Fukumoto, K.; Sano, Y.; Hayashi, T. Photoinduced Hydrogen Evolution Catalyzed by a Synthetic Diiron Dithiolate Complex Embedded within a Protein Matrix. ACS Catal. 2014, 4, 2645–2648. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Shao, Y.; Jiang, D.; Duan, Q. Iron carbonyl compounds with aromatic dithiolate bridges as organometallic mimics of [FeFe] hydrogenases. Coord. Chem. Rev. 2020, 402, 213081. [Google Scholar] [CrossRef]
- Marr, A.C.; Spencer, D.J.E.; Schröder, M. Structural mimics for the active site of [NiFe] hydrogenase. Coord. Chem. Rev. 2001, 219–221, 1055–1074. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Dey, A. Recent developments in bioinspired modelling of [NiFe]- and [FeFe]-hydrogenases. Curr. Opin. Electrochem. 2019, 15, 155–164. [Google Scholar] [CrossRef]
- Dey, S.; Das, P.K.; Dey, A. Mononuclear iron hydrogenase. Coord. Chem. Rev. 2013, 257, 42–63. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L.; Li, X.; Sun, L. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics. Dalton Trans. 2011, 40, 12793–12800. [Google Scholar] [CrossRef]
- Gómez-Gallego, M.; Sierra, M.A. Deuteration mechanistic studies of hydrogenase mimics. Inorg. Chem. Front. 2021, 8, 3934–3950. [Google Scholar] [CrossRef]
- Schmidt, M.; Contakes, S.M.; Rauchfuss, T.B. First Generation Analogues of the Binuclear Site in the Fe-Only Hydrogenases: Fe2(μ-SR)2(CO)4(CN)22-. J. Am. Chem. Soc. 1999, 121, 9736–9737. [Google Scholar] [CrossRef]
- Lyon, E.J.; Georgakaki, I.P.; Reibenspies, J.H.; Darensbourg, M.Y. Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase. Angew. Chem. Int. Ed. 1999, 38, 3178–3180. [Google Scholar] [CrossRef]
- Cloirec, A.L.; Davies, S.C.; Evans, D.J.; Hughes, D.L.; Pickett, C.J.; Best, S.P.; Borg, S. A di-iron dithiolate possessing structural elements of the carbonyl/cyanide sub-site of the H-centre of Fe-only hydrogenase. Chem. Commun. 1999, 22, 2285–2286. [Google Scholar] [CrossRef]
- Song, L.-C.; Yang, Z.-Y.; Bian, H.-Z.; Hu, Q.-M. Novel Single and Double Diiron Oxadithiolates as Models for the Active Site of [Fe]-Only Hydrogenases. Organometallics 2004, 23, 3082–3084. [Google Scholar] [CrossRef]
- Lawrence, J.D.; Li, H.; Rauchfuss, T.B.; Bénard, M.; Rohmer, M.-M. Diiron Azadithiolates as Models for the Iron-Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics. Angew. Chem. Int. Ed. 2001, 40, 1768–1771. [Google Scholar] [CrossRef]
- Karnahl, M.; Tschierlei, S.; Erdem, Ö.F.; Pullen, S.; Santoni, M.-P.; Reijerse, E.J.; Lubitz, W.; Ott, S. Mixed-valence [FeIFeII] hydrogenase active site model complexes stabilized by a bidentate carborane bis-phosphine ligand. Dalton Trans. 2012, 41, 12468–12477. [Google Scholar] [CrossRef]
- Kositzki, R.; Mebs, S.; Schuth, N.; Leidel, N.; Schwartz, L.; Karnahl, M.; Wittkamp, F.; Daunke, D.; Grohmann, A.; Apfel, U.-P.; et al. Electronic and molecular structure relations in diiron compounds mimicking the [FeFe]-hydrogenase active site studied by X-ray spectroscopy and quantum chemistry. Dalton Trans. 2017, 46, 12544–12557. [Google Scholar] [CrossRef]
- Arrigoni, F.; Bertini, L.; Breglia, R.; Greco, C.; Gioia, L.D.; Zampella, G. Catalytic H2 evolution/oxidation in [FeFe]-hydrogenase biomimetics: Account from DFT on the interplay of related issues and proposed solutions. New J. Chem. 2020, 44, 17596–17615. [Google Scholar] [CrossRef]
- Natarajan, M.; Kumar, N.; Joshi, M.; Stein, M.; Kaur-Ghumaan, S. Mechanism of Diiron Hydrogenase Complexes Controlled by Nature of Bridging Dithiolate Ligand. ChemistryOpen 2022, 11, e202100238. [Google Scholar] [CrossRef]
- Morvan, D.; Capon, J.-F.; Gloaguen, F.; Le Goff, A.; Marchivie, M.; Michaud, F.; Schollhammer, P.; Talarmin, J.; Yaouanc, J.-J.; Pichon, R.; et al. N-Heterocyclic Carbene Ligands in Nonsymmetric Diiron Models of Hydrogenase Active Sites. Organometallics 2007, 26, 2042–2052. [Google Scholar] [CrossRef]
- Chouffai, D.; Zampella, G.; Capon, J.-F.; Gioia, L.D.; Goff, A.L.; Pétillon, F.Y.; Schollhammer, P.; Talarmin, J. Electrochemical and Theoretical Studies of the Impact of the Chelating Ligand on the Reactivity of [Fe2(CO)4(κ2-LL)(μ-pdt)]+ Complexes with Different Substrates (LL = IMe-CH2-IMe, dppe; IMe = 1-Methylimidazol-2-ylidene). Organometallics 2012, 31, 1082–1091. [Google Scholar] [CrossRef]
- Erdem, Ö.F.; Stein, M.; Kaur-Ghumaan, S.; Reijerse, E.J.; Ott, S.; Lubitz, W. Effect of Cyanide Ligands on the Electronic Structure of [FeFe] Hydrogenase Active-Site Model Complexes with an Azadithiolate Cofactor. Chem. Eur. J. 2013, 19, 14566–14572. [Google Scholar] [CrossRef]
- Schwartz, L.; Singh, P.S.; Eriksson, L.; Lomoth, R.; Ott, S. Tuning the electronic properties of Fe2(μ-arenedithiolate)(CO)6−n(PMe3)n (n = 0, 2) complexes related to the [Fe–Fe]-hydrogenase active site. Comptes Rendus Chim. 2008, 11, 875–889. [Google Scholar] [CrossRef]
- Donovan, E.S.; McCormick, J.J.; Nichol, G.S.; Felton, G.A.N. Cyclic Voltammetric Studies of Chlorine-Substituted Diiron Benzenedithiolato Hexacarbonyl Electrocatalysts Inspired by the [FeFe]-Hydrogenase Active Site. Organometallics 2012, 31, 8067–8070. [Google Scholar] [CrossRef]
- McKone, J.R.; Marinescu, S.C.; Brunschwig, B.S.; Winkler, J.R.; Gray, H.B. Earth-abundant hydrogen evolution electrocatalysts. Chem. Sci. 2014, 5, 865–878. [Google Scholar] [CrossRef]
- Drosou, M.; Kamatsos, F.; Mitsopoulou, C.A. Recent advances in the mechanisms of the hydrogen evolution reaction by non-innocent sulfur-coordinating metal complexes. Inorg. Chem. Front. 2020, 7, 37–71. [Google Scholar] [CrossRef]
- Pitchaimani, J.; Ni, S.-F.; Dang, L. Metal dithiolene complexes in olefin addition and purification, small molecule adsorption, H2 evolution and CO2 reduction. Coord. Chem. Rev. 2020, 420, 213398. [Google Scholar] [CrossRef]
- Singh, B.; Indra, A. Role of redox active and redox non-innocent ligands in water splitting. Inorganica Chim. Acta 2020, 506, 119440. [Google Scholar] [CrossRef]
- Niu, Z.; Yang, L.; Xiao, Y.; Xue, M.; Zhou, J.; Zhang, L.; Zhang, J.; Wilkinson, D.P.; Ni, C. Novel Dithiolene Nickel Complex Catalysts for Electrochemical Hydrogen Evolution Reaction for Hydrogen Production in Nonaqueous and Aqueous Solutions. Electrocatalysis 2022, 13, 230–241. [Google Scholar] [CrossRef]
- Drosou, M.; Zarkadoulas, A.; Bethanis, K.; Mitsopoulou, C.A. Structural modifications on nickel dithiolene complexes lead to increased metal participation in the electrocatalytic hydrogen evolution mechanism. J. Coord. Chem. 2021, 74, 1425–1442. [Google Scholar] [CrossRef]
- Yin, H.-J.; Wang, Z.; Zhao, Z.-Y.; Jiang, X.-Y.; Yu, J.-Y.; Yang, L.-M.; Zhang, Y.-M.; Liu, W.; Ni, C.-L. Synthesis, crystal structure and properties of electro-catalysis for hydrogen production of a molecular nickel catalyst based on bis(1,2,5-thiadiazole-3,4-dithiolate) ligand. J. Mol. Struct. 2023, 1274, 134501. [Google Scholar] [CrossRef]
- Kamatsos, F.; Drosou, M.; Mitsopoulou, C.A. Heteroleptic thiolate diamine nickel complexes: Noble-free-metal catalysts in electrocatalytic and light-driven hydrogen evolution reaction. Int. J. Hydrog. Energy 2021, 46, 19705–19716. [Google Scholar] [CrossRef]
- Kamatsos, F.; Bethanis, K.; Mitsopoulou, C.A. Synthesis of Novel Heteroleptic Oxothiolate Ni(II) Complexes and Evaluation of Their Catalytic Activity for Hydrogen Evolution. Catalysts 2021, 11, 401. [Google Scholar] [CrossRef]
- Chen, L.; Xie, B.; Li, T.; Lai, C.; Cao, J.-X.; Ji, R.-W.; Liu, M.-N.; Li, W.; Zhang, D.-L.; He, J.-Y. Heteroleptic nickel complexes bearing O-methyldithiophosphate and aminodiphosphine monosulfide ligands as robust molecular electrocatalysts for hydrogen evolution. Appl. Organomet. Chem. 2022, 36, e6725. [Google Scholar] [CrossRef]
- Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Splitting Water with Cobalt. Angew. Chem. Int. Ed. 2011, 50, 7238–7266. [Google Scholar] [CrossRef]
- Dolui, D.; Ghorai, S.; Dutta, A. Tuning the reactivity of cobalt-based H2 production electrocatalysts via the incorporation of the peripheral basic functionalities. Coord. Chem. Rev. 2020, 416, 213335. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Uyeda, C.; Peters, J.C. Electrocatalytic hydrogen evolution in acidic water with molecular cobalt tetraazamacrocycles. J. Am. Chem. Soc. 2012, 134, 3164–3170. [Google Scholar] [CrossRef]
- Sun, D.; Karippara Harshan, A.; Pécaut, J.; Hammes-Schiffer, S.; Costentin, C.; Artero, V. Hydrogen Evolution Mediated by Cobalt Diimine-Dioxime Complexes: Insights into the Role of the Ligand Acid/Base Functionalities. ChemElectroChem 2021, 8, 2671–2679. [Google Scholar] [CrossRef]
- Wang, C.-L.; Yang, H.; Du, J.; Zhan, S.-Z. Catalytic performance of a square planar nickel complex for electrochemical- and photochemical-driven hydrogen evolution from water. Inorg. Chem. Commun. 2021, 131, 108780. [Google Scholar] [CrossRef]
- Liu, J.; Liao, R.-Z.; Heinemann, F.W.; Meyer, K.; Thummel, R.P.; Zhang, Y.; Tong, L. Electrocatalytic Hydrogen Evolution by Cobalt Complexes with a Redox Non-Innocent Polypyridine Ligand. Inorg. Chem. 2021, 60, 17976–17985. [Google Scholar] [CrossRef]
- Kumar Padhi, S.; Ahmad, E.; Rai, S.; Panda, B. Kinetics and mechanistic study of electrocatalytic hydrogen evolution by [Co(Fc-tpy)2]2+. Polyhedron 2020, 187, 114677. [Google Scholar] [CrossRef]
- Cui, H.-B.; Li, J.-H.; Zhang, X.; Zhou, M.; Huang, Z.-Z.; Lai, Y.-C.; Qiu, J.-X.; Ren, Y.-J.; Zhang, H.-X. Electrocatalytic hydrogen evolution by Co(II) complexes of bistriazolylpyridines. Int. J. Hydrog. Energy 2022, 48, 10891–10902. [Google Scholar] [CrossRef]
- Upadhyay, A.; Meena, H.; Kumar Jha, R.; Kanika; Kumar, S. Isolation of monomeric copper(ii) phenolate selenoether complexes using chelating ortho -bisphenylselenide-phenolate ligands and their electrocatalytic hydrogen gas evolution activity. Dalton Trans. 2022, 51, 7284–7293. [Google Scholar] [CrossRef]
- To, T.H.; Tran, D.B.; Ha, V.T.T.; Tran, P.D. Electrocatalytic H2 evolution using binuclear cobalt complexes as catalysts. RSC Adv. 2022, 12, 26428–26434. [Google Scholar] [CrossRef]
- Chou, P.; Kim, L.; Marzouk, S.M.; Sun, R.; Hartnett, A.C.; Dogutan, D.K.; Zheng, S.-L.; Nocera, D.G. Synthesis, Characterization, and Hydrogen Evolution Activity of Metallo-meso-(4-fluoro-2,6-dimethylphenyl)porphyrin Derivatives. ACS Omega 2022, 7, 8988–8994. [Google Scholar] [CrossRef]
- Chen, Q.-C.; Fite, S.; Fridman, N.; Tumanskii, B.; Mahammed, A.; Gross, Z. Hydrogen Evolution Catalyzed by Corrole-Chelated Nickel Complexes, Characterized in All Catalysis-Relevant Oxidation States. ACS Catal. 2022, 12, 4310–4317. [Google Scholar] [CrossRef]
- Wan, B.; Cheng, F.; Lan, J.; Zhao, Y.; Yang, G.; Sun, Y.-M.; Si, L.-P.; Liu, H.-Y. Electrocatalytic hydrogen evolution of manganese corrole. Int. J. Hydrog. Energy 2022, 48, 5506–5517. [Google Scholar] [CrossRef]
- Sudhakar, K.; Panda, P.K. Tuning Proton Reduction Efficiencies of Copper Corrole in Electrocatalysis via Multiple β-Chloro Substitution. ACS Appl. Energy Mater. 2022, 5, 13492–13500. [Google Scholar] [CrossRef]
- Smith, S.E.; Yang, J.Y.; DuBois, D.L.; Bullock, R.M. Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic. Angew. Chem. Int. Ed. 2012, 51, 3152–3155. [Google Scholar] [CrossRef]
- Jacobsen, G.M.; Yang, J.Y.; Twamley, B.; Wilson, A.D.; Bullock, R.M.; DuBois, M.R.; DuBois, D.L. Hydrogen production using cobalt-based molecular catalysts containing a proton relay in the second coordination sphere. Energy Environ. Sci. 2008, 1, 167–174. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Dey, S.; Darensbourg, M.Y.; Dey, A. Oxygen-Tolerant H2 Production by [FeFe]-H2ase Active Site Mimics Aided by Second Sphere Proton Shuttle. J. Am. Chem. Soc. 2018, 140, 12457–12468. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lv, B.; Zhang, X.-P.; Jin, X.; Guo, K.; Zhou, D.; Bian, H.; Zhang, W.; Apfel, U.-P.; Cao, R. Introducing Water-Network-Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew. Chem. Int. Ed. 2022, 61, e202114310. [Google Scholar] [CrossRef]
- Quentel, F.; Passard, G.; Gloaguen, F. Electrochemical hydrogen production in aqueous micellar solution by a diiron benzenedithiolate complex relevant to [FeFe] hydrogenases. Energy Environ. Sci. 2012, 5, 7757–7761. [Google Scholar] [CrossRef]
- Nurttila, S.S.; Zaffaroni, R.; Mathew, S.; Reek, J.N.H. Control of the overpotential of a [FeFe] hydrogenase mimic by a synthetic second coordination sphere. Chem. Commun. 2019, 55, 3081–3084. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Lense, S.; Linehan, J.C.; Raugei, S.; Cho, H.; DuBois, D.L.; Shaw, W.J. Incorporating Peptides in the Outer-Coordination Sphere of Bioinspired Electrocatalysts for Hydrogen Production. Inorg. Chem. 2011, 50, 4073–4085. [Google Scholar] [CrossRef]
- Kleingardner, J.G.; Kandemir, B.; Bren, K.L. Hydrogen Evolution from Neutral Water under Aerobic Conditions Catalyzed by Cobalt Microperoxidase-11. J. Am. Chem. Soc. 2014, 136, 4–7. [Google Scholar] [CrossRef]
- Kandemir, B.; Chakraborty, S.; Guo, Y.; Bren, K.L. Semisynthetic and Biomolecular Hydrogen Evolution Catalysts. Inorg. Chem. 2016, 55, 467–477. [Google Scholar] [CrossRef]
- Firpo, V.; Le, J.M.; Pavone, V.; Lombardi, A.; Bren, K.L. Hydrogen evolution from water catalyzed by cobalt-mimochrome VI*a, a synthetic mini-protein. Chem. Sci. 2018, 9, 8582–8589. [Google Scholar] [CrossRef]
- Bacchi, M.; Berggren, G.; Niklas, J.; Veinberg, E.; Mara, M.W.; Shelby, M.L.; Poluektov, O.G.; Chen, L.X.; Tiede, D.M.; Cavazza, C.; et al. Cobaloxime-Based Artificial Hydrogenases. Inorg. Chem. 2014, 53, 8071–8082. [Google Scholar] [CrossRef]
- Bacchi, M.; Veinberg, E.; Field, M.J.; Niklas, J.; Matsui, T.; Tiede, D.M.; Poluektov, O.G.; Ikeda-Saito, M.; Fontecave, M.; Artero, V. Artificial Hydrogenases Based on Cobaloximes and Heme Oxygenase. ChemPlusChem 2016, 81, 1083–1089. [Google Scholar] [CrossRef]
- Call, A.; Casadevall, C.; Romero-Rivera, A.; Martin-Diaconescu, V.; Sommer, D.J.; Osuna, S.; Ghirlanda, G.; Lloret-Fillol, J. Improved Electro- and Photocatalytic Water Reduction by Confined Cobalt Catalysts in Streptavidin. ACS Catal. 2019, 9, 5837–5846. [Google Scholar] [CrossRef]
- Slater, J.W.; Shafaat, H.S. Nickel-Substituted Rubredoxin As a Minimal Enzyme Model for Hydrogenase. J. Phys. Chem. Lett. 2015, 6, 3731–3736. [Google Scholar] [CrossRef]
- Slater, J.W.; Marguet, S.C.; Gray, M.E.; Monaco, H.A.; Sotomayor, M.; Shafaat, H.S. Power of the Secondary Sphere: Modulating Hydrogenase Activity in Nickel-Substituted Rubredoxin. ACS Catal. 2019, 9, 8928–8942. [Google Scholar] [CrossRef]
- Selvan, D.; Prasad, P.; Farquhar, E.R.; Shi, Y.; Crane, S.; Zhang, Y.; Chakraborty, S. Redesign of a Copper Storage Protein into an Artificial Hydrogenase. ACS Catal. 2019, 9, 5847–5859. [Google Scholar] [CrossRef]
- Drosou, M.; Kamatsos, F.; Ioannidis, G.; Zarkadoulas, A.; Mitsopoulou, C.A.; Papatriantafyllopoulou, C.; Tzeli, D. Reactivity and Mechanism of Photo- and Electrocatalytic Hydrogen Evolution by a Diimine Copper(I) Complex. Catalysts 2020, 10, 1302. [Google Scholar] [CrossRef]
- Tong, L.; Duan, L.; Zhou, A.; Thummel, R.P. First-row transition metal polypyridine complexes that catalyze proton to hydrogen reduction. Coord. Chem. Rev. 2020, 402, 213079. [Google Scholar] [CrossRef]
- Droghetti, F.; Lucarini, F.; Molinari, A.; Ruggi, A.; Natali, M. Recent findings and future directions in photosynthetic hydrogen evolution using polypyridine cobalt complexes. Dalton Trans. 2022, 51, 10658–10673. [Google Scholar] [CrossRef]
- Agarwal, T.; Kaur-Ghumaan, S. HER catalysed by iron complexes without a Fe2S2 core: A review. Coord. Chem. Rev. 2019, 397, 188–219. [Google Scholar] [CrossRef]
- Beyene, B.B.; Hung, C.-H. Recent progress on metalloporphyrin-based hydrogen evolution catalysis. Coord. Chem. Rev. 2020, 410, 213234. [Google Scholar] [CrossRef]
- Li, X.; Lei, H.; Xie, L.; Wang, N.; Zhang, W.; Cao, R. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Acc. Chem. Res. 2022, 55, 878–892. [Google Scholar] [CrossRef]
- O’Neill, J.S.; Kearney, L.; Brandon, M.P.; Pryce, M.T. Design components of porphyrin-based photocatalytic hydrogen evolution systems: A review. Coord. Chem. Rev. 2022, 467, 214599. [Google Scholar] [CrossRef]
- Castro-Cruz, H.M.; Macías-Ruvalcaba, N.A. Porphyrin-catalyzed electrochemical hydrogen evolution reaction. Metal-centered and ligand-centered mechanisms. Coord. Chem. Rev. 2022, 458, 214430. [Google Scholar] [CrossRef]
- Liang, Y.-Y.; Li, M.-Y.; Shi, L.; Lin, D.-Z.; Zhan, S.-Z.; Liu, H.-Y. Electrocatalytic hydrogen evolution by cobalt triaryl corroles with appended ester and carboxyl on the 10-phenyl group. J. Coord. Chem. 2021, 74, 1414–1424. [Google Scholar] [CrossRef]
- Artero, V.; Fontecave, M. Some general principles for designing electrocatalysts with hydrogenase activity. Coord. Chem. Rev. 2005, 249, 1518–1535. [Google Scholar] [CrossRef]
- Collman, J.P.; Ha, Y.; Wagenknecht, P.S.; Lopez, M.A.; Guilard, R. Cofacial bisorganometallic diporphyrins: Synthetic control in proton reduction catalysis. J. Am. Chem. Soc. 1993, 115, 9080–9088. [Google Scholar] [CrossRef]
- Rauchfuss, T.B. Diiron Azadithiolates As Models for the [FeFe]-Hydrogenase Active Site and Paradigm for the Role of the Second Coordination Sphere. Acc. Chem. Res. 2015, 48, 2107–2116. [Google Scholar] [CrossRef]
- Thammavongsy, Z.; Mercer, I.P.; Yang, J.Y. Promoting proton coupled electron transfer in redox catalysts through molecular design. Chem. Commun. 2019, 55, 10342–10358. [Google Scholar] [CrossRef]
- Tyburski, R.; Liu, T.; Glover, S.D.; Hammarström, L. Proton-Coupled Electron Transfer Guidelines, Fair and Square. J. Am. Chem. Soc. 2021, 143, 560–576. [Google Scholar] [CrossRef]
- DuBois, M.R.; DuBois, D.L. The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem. Soc. Rev. 2008, 38, 62–72. [Google Scholar] [CrossRef]
- Wiedner, E.S.; Appel, A.M.; Raugei, S.; Shaw, W.J.; Bullock, R.M. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chem. Rev. 2022, 122, 12427–12474. [Google Scholar] [CrossRef]
- Raugei, S.; Chen, S.; Ho, M.-H.; Ginovska-Pangovska, B.; Rousseau, R.J.; Dupuis, M.; DuBois, D.L.; Bullock, R.M. The Role of Pendant Amines in the Breaking and Forming of Molecular Hydrogen Catalyzed by Nickel Complexes. Chem. Eur. J. 2012, 18, 6493–6506. [Google Scholar] [CrossRef]
- Wilson, A.D.; Newell, R.H.; McNevin, M.J.; Muckerman, J.T.; Rakowski DuBois, M.; DuBois, D.L. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays. J. Am. Chem. Soc. 2006, 128, 358–366. [Google Scholar] [CrossRef]
- Franz, J.A.; O’Hagan, M.; Ho, M.-H.; Liu, T.; Helm, M.L.; Lense, S.; DuBois, D.L.; Shaw, W.J.; Appel, A.M.; Raugei, S.; et al. Conformational Dynamics and Proton Relay Positioning in Nickel Catalysts for Hydrogen Production and Oxidation. Organometallics 2013, 32, 7034–7042. [Google Scholar] [CrossRef]
- Camara, J.M.; Rauchfuss, T.B. Combining acid–base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase. Nat. Chem. 2012, 4, 26–30. [Google Scholar] [CrossRef]
- Lee, C.H.; Dogutan, D.K.; Nocera, D.G. Hydrogen Generation by Hangman Metalloporphyrins. J. Am. Chem. Soc. 2011, 133, 8775–8777. [Google Scholar] [CrossRef]
- Bediako, D.K.; Solis, B.H.; Dogutan, D.K.; Roubelakis, M.M.; Maher, A.G.; Lee, C.H.; Chambers, M.B.; Hammes-Schiffer, S.; Nocera, D.G. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins. Proc. Natl. Acad. Sci. USA 2014, 111, 15001–15006. [Google Scholar] [CrossRef]
- Bhunia, S.; Rana, A.; Hematian, S.; Karlin, K.D.; Dey, A. Proton Relay in Iron Porphyrins for Hydrogen Evolution Reaction. Inorg. Chem. 2021, 60, 13876–13887. [Google Scholar] [CrossRef]
- Solis, B.H.; Maher, A.G.; Honda, T.; Powers, D.C.; Nocera, D.G.; Hammes-Schiffer, S. Theoretical Analysis of Cobalt Hangman Porphyrins: Ligand Dearomatization and Mechanistic Implications for Hydrogen Evolution. ACS Catal. 2014, 4, 4516–4526. [Google Scholar] [CrossRef]
- Kasemthaveechok, S.; Fabre, B.; Loget, G.; Gramage-Doria, R. Remote ion-pair interactions in Fe-porphyrin-based molecular catalysts for the hydrogen evolution reaction. Catal. Sci. Technol. 2019, 9, 1301–1308. [Google Scholar] [CrossRef]
- Fang, J.-J.; Lan, J.; Yang, G.; Yuan, G.-Q.; Liu, H.-Y.; Si, L.-P. Synthesis of cobalt A2B triaryl corroles bearing aldehyde and amide pyridyl groups and their performance in electrocatalytic hydrogen evolution. New J. Chem. 2021, 45, 5127–5136. [Google Scholar] [CrossRef]
- Zhu, Z.-M.; Peng, W.-Y.; Yang, W.; Ling, C.; Zhang, H.; Si, L.-P.; Liu, H.-Y. Synthesis of cobalt A2B triaryl corroles bearing methoxy or hydroxyl groups and their activity in electrocatalytic hydrogen evolution. Appl. Organomet. Chem. 2022, 37, e6932. [Google Scholar] [CrossRef]
- Roubelakis, M.M.; Bediako, D.K.; Dogutan, D.K.; Nocera, D.G. Influence of the proton relay spacer on hydrogen electrocatalysis by cobalt hangman porphyrins. J. Porphyr. Phthalocyanines 2021, 25, 714–723. [Google Scholar] [CrossRef]
- Zhou, H.; Groves, J.T. Host-guest interactions of cyclodextrins and metalloporphyrins: Supramolecular building blocks toward artificial heme proteins. J. Porphyr. Phthalocyanines 2004, 08, 125–140. [Google Scholar] [CrossRef]
- Singleton, M.L.; Crouthers, D.J.; Duttweiler, R.P.I.; Reibenspies, J.H.; Darensbourg, M.Y. Sulfonated Diiron Complexes as Water-Soluble Models of the [Fe–Fe]-Hydrogenase Enzyme Active Site. Inorg. Chem. 2011, 50, 5015–5026. [Google Scholar] [CrossRef] [PubMed]
- Zaffaroni, R.; Orth, N.; Ivanović-Burmazović, I.; Reek, J.N.H. Hydrogenase Mimics in M12L24 Nanospheres to Control Overpotential and Activity in Proton-Reduction Catalysis. Angew. Chem. 2020, 132, 18643–18647. [Google Scholar] [CrossRef]
- Jones, A.K.; Lichtenstein, B.R.; Dutta, A.; Gordon, G.; Dutton, P.L. Synthetic Hydrogenases: Incorporation of an Iron Carbonyl Thiolate into a Designed Peptide. J. Am. Chem. Soc. 2007, 129, 14844–14845. [Google Scholar] [CrossRef]
- Apfel, U.-P.; Rudolph, M.; Apfel, C.; Robl, C.; Langenegger, D.; Hoyer, D.; Jaun, B.; Ebert, M.-O.; Alpermann, T.; Seebach, D.; et al. Reaction of Fe3(CO)12 with octreotide—Chemical, electrochemical and biological investigations. Dalton Trans. 2010, 39, 3065–3071. [Google Scholar] [CrossRef]
- Roy, S.; Shinde, S.; Hamilton, G.A.; Hartnett, H.E.; Jones, A.K. Artificial [FeFe]-Hydrogenase: On Resin Modification of an Amino Acid to Anchor a Hexacarbonyldiiron Cluster in a Peptide Framework. Eur. J. Inorg. Chem. 2011, 2011, 1050–1055. [Google Scholar] [CrossRef]
- Sano, Y.; Onoda, A.; Hayashi, T. Photocatalytic hydrogen evolution by a diiron hydrogenase model based on a peptide fragment of cytochrome c556 with an attached diiron carbonyl cluster and an attached ruthenium photosensitizer. J. Inorg. Biochem. 2012, 108, 159–162. [Google Scholar] [CrossRef]
- Roy, S.; Nguyen, T.-A.D.; Gan, L.; Jones, A.K. Biomimetic peptide-based models of [FeFe]-hydrogenases: Utilization of phosphine-containing peptides. Dalton Trans. 2015, 44, 14865–14876. [Google Scholar] [CrossRef]
- Gloaguen, F.; Lawrence, J.D.; Rauchfuss, T.B. Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate. J. Am. Chem. Soc. 2001, 123, 9476–9477. [Google Scholar] [CrossRef]
- Dutta, A.; Lense, S.; Hou, J.; Engelhard, M.H.; Roberts, J.A.S.; Shaw, W.J. Minimal Proton Channel Enables H2 Oxidation and Production with a Water-Soluble Nickel-Based Catalyst. J. Am. Chem. Soc. 2013, 135, 18490–18496. [Google Scholar] [CrossRef]
- Dutta, A.; Roberts, J.A.S.; Shaw, W.J. Arginine-containing ligands enhance H₂ oxidation catalyst performance. Angew. Chem. Int. Ed. Engl. 2014, 53, 6487–6491. [Google Scholar] [CrossRef]
- Brazzolotto, D.; Gennari, M.; Queyriaux, N.; Simmons, T.R.; Pécaut, J.; Demeshko, S.; Meyer, F.; Orio, M.; Artero, V.; Duboc, C. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nat. Chem. 2016, 8, 1054–1060. [Google Scholar] [CrossRef]
- Tang, H.; Hall, M.B. Biomimetics of [NiFe]-Hydrogenase: Nickel- or Iron-Centered Proton Reduction Catalysis? J. Am. Chem. Soc. 2017, 139, 18065–18070. [Google Scholar] [CrossRef]
- Dutta, A.; Hamilton, G.A.; Hartnett, H.E.; Jones, A.K. Construction of Heterometallic Clusters in a Small Peptide Scaffold As [NiFe]-Hydrogenase Models: Development of a Synthetic Methodology. Inorg. Chem. 2012, 51, 9580–9588. [Google Scholar] [CrossRef]
- Le, J.M.; Alachouzos, G.; Chino, M.; Frontier, A.J.; Lombardi, A.; Bren, K.L. Tuning Mechanism through Buffer Dependence of Hydrogen Evolution Catalyzed by a Cobalt Mini-Enzyme. Biochemistry 2020, 59, 1289–1297. [Google Scholar] [CrossRef]
- Chino, M.; Leone, L.; Zambrano, G.; Pirro, F.; D’Alonzo, D.; Firpo, V.; Aref, D.; Lista, L.; Maglio, O.; Nastri, F.; et al. Oxidation catalysis by iron and manganese porphyrins within enzyme-like cages. Biopolymers 2018, 109, e23107. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, Y.-M.; Kong, X.-J.; Gao, S.-Q.; Lang, J.-J.; Du, K.-J.; Lin, Y.-W. Rational design of an artificial hydrolytic nuclease by introduction of a sodium copper chlorophyllin in L29E myoglobin. J. Inorg. Biochem. 2022, 235, 111943. [Google Scholar] [CrossRef]
- Marchi-Delapierre, C.; Rondot, L.; Cavazza, C.; Ménage, S. Oxidation Catalysis by Rationally Designed Artificial Metalloenzymes. Isr. J. Chem. 2015, 55, 61–75. [Google Scholar] [CrossRef]
- Edwards, E.H.; Bren, K.L. Light-driven catalysis with engineered enzymes and biomimetic systems. Biotechnol. Appl. Biochem. 2020, 67, 463–483. [Google Scholar] [CrossRef] [PubMed]
- Pal, U.; Ghosh, S.; Chatterjee, D. Effect of sacrificial electron donors on hydrogen generation over visible light—Irradiated nonmetal-doped TiO2 photocatalysts. Transit. Met. Chem. 2012, 37, 93–96. [Google Scholar] [CrossRef]
- Pellegrin, Y.; Odobel, F. Sacrificial electron donor reagents for solar fuel production. Comptes Rendus Chim. 2017, 20, 283–295. [Google Scholar] [CrossRef]
- Ge, P.; Olaya, A.J.; Scanlon, M.D.; Hatay Patir, I.; Vrubel, H.; Girault, H.H. Photoinduced Biphasic Hydrogen Evolution: Decamethylosmocene As a Light-Driven Electron Donor. ChemPhysChem 2013, 14, 2308–2316. [Google Scholar] [CrossRef] [PubMed]
- Ge, P.; Hojeij, M.; Scanlon, M.D.; Girault, H.H. Photo-Recycling the Sacrificial Electron Donor: Towards Sustainable Hydrogen Evolution in a Biphasic System. ChemPhysChem 2020, 21, 2630–2633. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Zhu, L.; Ong, W.L.; Wang, J.; Ho, G.W. Structural design of TiO2-based photocatalyst for H2 production and degradation applications. Catal. Sci. Technol. 2015, 5, 4703–4726. [Google Scholar] [CrossRef]
- Xu, F.; Shen, Y.; Sun, L.; Zeng, H.; Lu, Y. Enhanced photocatalytic activity of hierarchical ZnO nanoplate-nanowire architecture as environmentally safe and facilely recyclable photocatalyst. Nanoscale 2011, 3, 5020–5025. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Q.; Lei, W.; Zhang, T.; Qi, X.; Liu, G.; Deng, K.; Yu, J. Origin of Tunable Photocatalytic Selectivity of Well-Defined α-Fe2O3 Nanocrystals. Small 2014, 10, 674–679. [Google Scholar] [CrossRef]
- Shang, L.; Tong, B.; Yu, H.; Waterhouse, G.I.N.; Zhou, C.; Zhao, Y.; Tahir, M.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. CdS Nanoparticle-Decorated Cd Nanosheets for Efficient Visible Light-Driven Photocatalytic Hydrogen Evolution. Adv. Energy Mater. 2016, 6, 1501241. [Google Scholar] [CrossRef]
- Jayakumar, J.; Chou, H.-H. Recent Advances in Visible-Light-Driven Hydrogen Evolution from Water Using Polymer Photocatalysts. ChemCatChem 2020, 12, 689–704. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Banerjee, T.; Gottschling, K.; Savasci, G.; Ochsenfeld, C.; Lotsch, B.V. H2 Evolution with Covalent Organic Framework Photocatalysts. ACS Energy Lett. 2018, 3, 400–409. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Li, H.; Wu, K.; Wang, J.; Yang, Q. Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 2357. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, Y.; Wang, C.; Zhang, S.; Song, J.; Li, Y.; Ma, S.; Cheng, P.; Zhang, Z.; Chen, Y. Fabrication of Robust Covalent Organic Frameworks for Enhanced Visible-Light-Driven H2 Evolution. ACS Catal. 2021, 11, 2098–2107. [Google Scholar] [CrossRef]
- Ghosh, S.; Nakada, A.; Springer, M.A.; Kawaguchi, T.; Suzuki, K.; Kaji, H.; Baburin, I.; Kuc, A.; Heine, T.; Suzuki, H.; et al. Identification of Prime Factors to Maximize the Photocatalytic Hydrogen Evolution of Covalent Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 9752–9762. [Google Scholar] [CrossRef]
- Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387–399. [Google Scholar] [CrossRef]
- Partho, A.T.; Tahir, M.; Tahir, B. Recent advances in covalent organic framework (COF) nanotextures with band engineering for stimulating solar hydrogen production: A comprehensive review. Int. J. Hydrog. Energy 2022, 47, 34323–34375. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, M.; Na, Y.; Li, X.; Jiang, Y.; Sun, L. Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans. 2010, 39, 1204–1206. [Google Scholar] [CrossRef]
- Streich, D.; Astuti, Y.; Orlandi, M.; Schwartz, L.; Lomoth, R.; Hammarström, L.; Ott, S. High-Turnover Photochemical Hydrogen Production Catalyzed by a Model Complex of the [FeFe]-Hydrogenase Active Site. Chem. Eur. J. 2010, 16, 60–63. [Google Scholar] [CrossRef]
- Wang, X.-B.; Zheng, H.-Q.; Rao, H.; Yao, H.-C.; Fan, Y.-T.; Hou, H.-W. Synthesis of a new iron—Sulfur cluster compound and its photocatalytic H2 evolution activity through visible light irradiation. Appl. Organomet. Chem. 2016, 30, 638–644. [Google Scholar] [CrossRef]
- Jian, J.-X.; Ye, C.; Wang, X.-Z.; Wen, M.; Li, Z.-J.; Li, X.-B.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Comparison of H2 photogeneration by [FeFe]-hydrogenase mimics with CdSe QDs and Ru(bpy)3Cl2 in aqueous solution. Energy Environ. Sci. 2016, 9, 2083–2089. [Google Scholar] [CrossRef]
- Goy, R.; Bertini, L.; Rudolph, T.; Lin, S.; Schulz, M.; Zampella, G.; Dietzek, B.; Schacher, F.H.; De Gioia, L.; Sakai, K.; et al. Photocatalytic Hydrogen Evolution Driven by [FeFe] Hydrogenase Models Tethered to Fluorene and Silafluorene Sensitizers. Chem. Eur. J. 2017, 23, 334–345. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.P.; McCormick, T.M.; Eisenberg, R.; Holland, P.L. A stable molecular nickel catalyst for the homogeneous photogeneration of hydrogen in aqueous solution. Chem. Commun. 2011, 47, 7989–7991. [Google Scholar] [CrossRef]
- Han, Z.; Shen, L.; Brennessel, W.W.; Holland, P.L.; Eisenberg, R. Nickel Pyridinethiolate Complexes as Catalysts for the Light-Driven Production of Hydrogen from Aqueous Solutions in Noble-Metal-Free Systems. J. Am. Chem. Soc. 2013, 135, 14659–14669. [Google Scholar] [CrossRef] [PubMed]
- Fihri, A.; Artero, V.; Pereira, A.; Fontecave, M. Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Trans. 2008, 41, 5567–5569. [Google Scholar] [CrossRef]
- Probst, B.; Rodenberg, A.; Guttentag, M.; Hamm, P.; Alberto, R. A Highly Stable Rhenium—Cobalt System for Photocatalytic H2 Production: Unraveling the Performance-Limiting Steps. Inorg. Chem. 2010, 49, 6453–6460. [Google Scholar] [CrossRef]
- Du, P.; Schneider, J.; Luo, G.; Brennessel, W.W.; Eisenberg, R. Visible Light-Driven Hydrogen Production from Aqueous Protons Catalyzed by Molecular Cobaloxime Catalysts. Inorg. Chem. 2009, 48, 4952–4962. [Google Scholar] [CrossRef]
- Natali, M.; Luisa, A.; Iengo, E.; Scandola, F. Efficient photocatalytic hydrogen generation from water by a cationic cobalt(II) porphyrin. Chem. Commun. 2014, 50, 1842–1844. [Google Scholar] [CrossRef]
- Beyene, B.B.; Hung, C.-H. Photocatalytic hydrogen evolution from neutral aqueous solution by a water-soluble cobalt(II) porphyrin. Sustain. Energy Fuels 2018, 2, 2036–2043. [Google Scholar] [CrossRef]
- Chen, W.; Li, S.; Li, X.; Zhang, C.; Hu, X.; Zhu, F.; Shen, G.; Feng, F. Iron sulfur clusters in protein nanocages for photocatalytic hydrogen generation in acidic aqueous solutions. Chem. Sci. 2019, 10, 2179–2185. [Google Scholar] [CrossRef]
- Li, S.; Chen, W.; Hu, X.; Feng, F. Self-Assembly of Albumin and [FeFe]-Hydrogenase Mimics for Photocatalytic Hydrogen Evolution. ACS Appl. Bio Mater. 2020, 3, 2482–2488. [Google Scholar] [CrossRef]
- Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231. [Google Scholar] [CrossRef]
- Roy, A.; Vaughn, M.D.; Tomlin, J.; Booher, G.J.; Kodis, G.; Simmons, C.R.; Allen, J.P.; Ghirlanda, G. Enhanced Photocatalytic Hydrogen Production by Hybrid Streptavidin-Diiron Catalysts. Chem. Eur. J. 2020, 26, 6240–6246. [Google Scholar] [CrossRef]
- Keller, S.G.; Probst, B.; Heinisch, T.; Alberto, R.; Ward, T.R. Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology. Helv. Chim. Acta 2018, 101, e1800036. [Google Scholar] [CrossRef]
- Sommer, D.J.; Vaughn, M.D.; Ghirlanda, G. Protein secondary-shell interactions enhance the photoinduced hydrogen production of cobalt protoporphyrin IX. Chem. Commun. 2014, 50, 15852–15855. [Google Scholar] [CrossRef]
- Sommer, D.J.; Vaughn, M.D.; Clark, B.C.; Tomlin, J.; Roy, A.; Ghirlanda, G. Reengineering cyt b562 for hydrogen production: A facile route to artificial hydrogenases. Biochim. Biophys. Acta BBA Bioenerg. 2016, 1857, 598–603. [Google Scholar] [CrossRef]
- Udry, G.A.O.; Tiessler-Sala, L.; Pugliese, E.; Urvoas, A.; Halime, Z.; Maréchal, J.-D.; Mahy, J.-P.; Ricoux, R. Photocatalytic Hydrogen Production and Carbon Dioxide Reduction Catalyzed by an Artificial Cobalt Hemoprotein. Int. J. Mol. Sci. 2022, 23, 14640. [Google Scholar] [CrossRef]
- Edwards, E.H.; Jelušić, J.; Chakraborty, S.; Bren, K.L. Photochemical hydrogen evolution from cobalt microperoxidase-11. J. Inorg. Biochem. 2021, 217, 111384. [Google Scholar] [CrossRef]
- Edwards, E.H.; Le, J.M.; Salamatian, A.A.; Peluso, N.L.; Leone, L.; Lombardi, A.; Bren, K.L. A cobalt mimochrome for photochemical hydrogen evolution from neutral water. J. Inorg. Biochem. 2022, 230, 111753. [Google Scholar] [CrossRef]
- Utschig, L.M.; Silver, S.C.; Mulfort, K.L.; Tiede, D.M. Nature-Driven Photochemistry for Catalytic Solar Hydrogen Production: A Photosystem I—Transition Metal Catalyst Hybrid. J. Am. Chem. Soc. 2011, 133, 16334–16337. [Google Scholar] [CrossRef]
- Silver, S.C.; Niklas, J.; Du, P.; Poluektov, O.G.; Tiede, D.M.; Utschig, L.M. Protein Delivery of a Ni Catalyst to Photosystem I for Light-Driven Hydrogen Production. J. Am. Chem. Soc. 2013, 135, 13246–13249. [Google Scholar] [CrossRef] [PubMed]
- Soltau, S.R.; Niklas, J.; Dahlberg, P.D.; Poluektov, O.G.; Tiede, D.M.; Mulfort, K.L.; Utschig, L.M. Aqueous light driven hydrogen production by a Ru–ferredoxin–Co biohybrid. Chem. Commun. 2015, 51, 10628–10631. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, M.J.; Marguet, S.C.; Schneider, C.R.; Shafaat, H.S. Light-Driven Hydrogen Evolution by Nickel-Substituted Rubredoxin. ChemSusChem 2017, 10, 4424–4429. [Google Scholar] [CrossRef] [PubMed]
- Malayam Parambath, S.; Williams, A.E.; Hunt, L.A.; Selvan, D.; Hammer, N.I.; Chakraborty, S. A De Novo-Designed Artificial Metallopeptide Hydrogenase: Insights into Photochemical Processes and the Role of Protonated Cys. ChemSusChem 2021, 14, 2237–2246. [Google Scholar] [CrossRef]
- Prasad, P.; Hunt, L.A.; Pall, A.E.; Ranasinghe, M.; Williams, A.E.; Stemmler, T.L.; Demeler, B.; Hammer, N.I.; Chakraborty, S. Photocatalytic Hydrogen Evolution by a De Novo Designed Metalloprotein that Undergoes Ni-Mediated Oligomerization Shift. Chem. Eur. J. 2023, 29, e202202902. [Google Scholar] [CrossRef]
- Deponti, E.; Natali, M. Photocatalytic hydrogen evolution with ruthenium polypyridine sensitizers: Unveiling the key factors to improve efficiencies. Dalton Trans. 2016, 45, 9136–9147. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Zhao, Y.; Yang, T.; Liu, X.; Xie, J.; Li, G.; Zhu, D.; Tan, H.; Su, Z. Photosensitizers based on Ir(III) complexes for highly efficient photocatalytic hydrogen generation. Dyes Pigments 2019, 170, 107547. [Google Scholar] [CrossRef]
- Mou, Z.; Dong, Y.; Li, S.; Du, Y.; Wang, X.; Yang, P.; Wang, S. Eosin Y functionalized graphene for photocatalytic hydrogen production from water. Int. J. Hydrog. Energy 2011, 36, 8885–8893. [Google Scholar] [CrossRef]
- Majek, M.; Filace, F.; von Wangelin, A.J. On the mechanism of photocatalytic reactions with eosin Y. Beilstein J. Org. Chem. 2014, 10, 981–989. [Google Scholar] [CrossRef]
- Gimbert-Suriñach, C.; Albero, J.; Stoll, T.; Fortage, J.; Collomb, M.-N.; Deronzier, A.; Palomares, E.; Llobet, A. Efficient and Limiting Reactions in Aqueous Light-Induced Hydrogen Evolution Systems using Molecular Catalysts and Quantum Dots. J. Am. Chem. Soc. 2014, 136, 7655–7661. [Google Scholar] [CrossRef]
- Fan, X.-B.; Yu, S.; Hou, B.; Kim, J.M. Quantum Dots Based Photocatalytic Hydrogen Evolution. Isr. J. Chem. 2019, 59, 762–773. [Google Scholar] [CrossRef]
- Nozik, A.J.; Beard, M.C.; Luther, J.M.; Law, M.; Ellingson, R.J.; Johnson, J.C. Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells. Chem. Rev. 2010, 110, 6873–6890. [Google Scholar] [CrossRef]
- Harris, R.D.; Bettis Homan, S.; Kodaimati, M.; He, C.; Nepomnyashchii, A.B.; Swenson, N.K.; Lian, S.; Calzada, R.; Weiss, E.A. Electronic Processes within Quantum Dot-Molecule Complexes. Chem. Rev. 2016, 116, 12865–12919. [Google Scholar] [CrossRef]
- Zhao, J.; Holmes, M.A.; Osterloh, F.E. Quantum Confinement Controls Photocatalysis: A Free Energy Analysis for Photocatalytic Proton Reduction at CdSe Nanocrystals. ACS Nano 2013, 7, 4316–4325. [Google Scholar] [CrossRef]
- Eren, G.O.; Sadeghi, S.; Bahmani Jalali, H.; Ritter, M.; Han, M.; Baylam, I.; Melikov, R.; Onal, A.; Oz, F.; Sahin, M.; et al. Cadmium-Free and Efficient Type-II InP/ZnO/ZnS Quantum Dots and Their Application for LEDs. ACS Appl. Mater. Interfaces 2021, 13, 32022–32030. [Google Scholar] [CrossRef]
- Xu, G.; Zeng, S.; Zhang, B.; Swihart, M.T.; Yong, K.-T.; Prasad, P.N. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chem. Rev. 2016, 116, 12234–12327. [Google Scholar] [CrossRef]
- Prasad, P.; Selvan, D.; Chakraborty, S. Biosynthetic Approaches towards the Design of Artificial Hydrogen-Evolution Catalysts. Chem. Eur. J. 2020, 26, 12494–12509. [Google Scholar] [CrossRef]
- Utschig, L.M.; Soltau, S.R.; Tiede, D.M. Light-driven hydrogen production from Photosystem I-catalyst hybrids. Curr. Opin. Chem. Biol. 2015, 25, 1–8. [Google Scholar] [CrossRef]
- Lubner, C.E.; Grimme, R.; Bryant, D.A.; Golbeck, J.H. Wiring Photosystem I for Direct Solar Hydrogen Production. Biochemistry 2010, 49, 404–414. [Google Scholar] [CrossRef]
- Cao, W.-N.; Wang, F.; Wang, H.-Y.; Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z. Photocatalytic hydrogen production from a simple water-soluble [FeFe]-hydrogenase model system. Chem. Commun. 2012, 48, 8081–8083. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Chen, L.; Wang, X.; Dong, J.; Sun, L. Photocatalytic Water Reduction and Study of the Formation of FeIFe0 Species in Diiron Catalyst Sytems. ChemSusChem 2012, 5, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Li, X.-B.; Jian, J.-X.; Wang, X.-Z.; Wu, H.-L.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water. Sci. Rep. 2016, 6, 29851. [Google Scholar] [CrossRef] [PubMed]
- Corredor, J.; Harankahage, D.; Gloaguen, F.; Rivero, M.J.; Zamkov, M.; Ortiz, I. Influence of QD photosensitizers in the photocatalytic production of hydrogen with biomimetic [FeFe]-hydrogenase. Comparative performance of CdSe and CdTe. Chemosphere 2021, 278, 130485. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-M.; Li, J.-R.; Mu, C.; Li, A.; Liu, X.-F.; Zhao, P.-H.; Li, Y.-L.; Jiang, Z.-Q.; Wu, H.-K. Synthesis, characterization, and electrochemistry of monophosphine-containing diiron propane-1,2-dithiolate complexes related to the active site of [FeFe]-hydrogenases. Appl. Organomet. Chem. 2019, 33, e5196. [Google Scholar] [CrossRef]
- Kumar, N.; Kaur-Ghumaan, S. Synthesis, Characterization and Electrochemical Studies of Bis(Monothiolato) FeFe Complexes [Fe2(μ-SC6H4-OMe-m)2(CO)5L] (L=CO, PCy3, PPh3). ChemistrySelect 2022, 7, e202203392. [Google Scholar] [CrossRef]
- Pandey, I.K.; Natarajan, M.; Kaur-Ghumaan, S. Hydrogen generation: Aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. J. Inorg. Biochem. 2015, 143, 88–110. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, W.-Y.; Duan, Q.; Liang, Q.-C.; Jiang, D.-Y.; Zhao, J.-X.; Hou, J.-H. An artificial [FeFe]-hydrogenase mimic with organic chromophore-linked thiolate bridges for the photochemical production of hydrogen. Chem. Pap. 2017, 71, 617–625. [Google Scholar] [CrossRef]
- Song, L.-C.; Wang, L.-X.; Tang, M.-Y.; Li, C.-G.; Song, H.-B.; Hu, Q.-M. Synthesis, Structure, and Photoinduced Catalysis of [FeFe]-Hydrogenase Active Site Models Covalently Linked to a Porphyrin or Metalloporphyrin Moiety. Organometallics 2009, 28, 3834–3841. [Google Scholar] [CrossRef]
- Samuel, A.P.S.; Co, D.T.; Stern, C.L.; Wasielewski, M.R. Ultrafast Photodriven Intramolecular Electron Transfer from a Zinc Porphyrin to a Readily Reduced Diiron Hydrogenase Model Complex. J. Am. Chem. Soc. 2010, 132, 8813–8815. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, W. Photoinduced hydrogen evolution in supramolecular devices with a rhenium photosensitizer linked to FeFe-hydrogenase model complexes. Dalton Trans. 2012, 41, 9700–9707. [Google Scholar] [CrossRef]
- Cui, H.; Hu, M.; Wen, H.; Chai, G.; Ma, C.; Chen, H.; Chen, C. Efficient [FeFe] hydrogenase mimic dyads covalently linking to iridium photosensitizer for photocatalytic hydrogen evolution. Dalton Trans. 2012, 41, 13899–13907. [Google Scholar] [CrossRef]
- Goy, R.; Apfel, U.-P.; Elleouet, C.; Escudero, D.; Elstner, M.; Görls, H.; Talarmin, J.; Schollhammer, P.; González, L.; Weigand, W. A Silicon-Heteroaromatic System as Photosensitizer for Light-Driven Hydrogen Production by Hydrogenase Mimics. Eur. J. Inorg. Chem. 2013, 2013, 4466–4472. [Google Scholar] [CrossRef]
- Dempsey, J.L.; Brunschwig, B.S.; Winkler, J.R.; Gray, H.B. Hydrogen Evolution Catalyzed by Cobaloximes. Acc. Chem. Res. 2009, 42, 1995–2004. [Google Scholar] [CrossRef]
- Baffert, C.; Artero, V.; Fontecave, M. Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. Inorg. Chem. 2007, 46, 1817–1824. [Google Scholar] [CrossRef]
- Lazarides, T.; McCormick, T.; Du, P.; Luo, G.; Lindley, B.; Eisenberg, R. Making Hydrogen from Water Using a Homogeneous System Without Noble Metals. J. Am. Chem. Soc. 2009, 131, 9192–9194. [Google Scholar] [CrossRef]
- Caserta, G.; Chino, M.; Firpo, V.; Zambrano, G.; Leone, L.; D’Alonzo, D.; Nastri, F.; Maglio, O.; Pavone, V.; Lombardi, A. Enhancement of Peroxidase Activity in Artificial Mimochrome VI Catalysts through Rational Design. ChemBioChem 2018, 19, 1823–1826. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Egorova, K.S.; Ananikov, V.P. Toxicity of Metal Compounds: Knowledge and Myths. Organometallics 2017, 36, 4071–4090. [Google Scholar] [CrossRef]
Entry | Catalyst | Photosensitizer—Electron Donor | Solvent | pH | TON [a] | TOF [b] (min−1) | Duration (h) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | [{(μSCH2)2NCH2C6H5}{Fe(CO)3} {Fe(CO)2P(Pyr)3}] | [Ir(ppy)2(bpy)]+—TEA | Acetone/H2O 9/1 | 466 (660) | 8 | [218] | ||
2 | [Fe2(μ-Cl2-bdt)(CO)6] | Ru(bpy)32+—AscOH | H2O/DMF | 5.5 | 200 | 3.5 | [219] | |
3 | [(μ-BDT)Fe2(CO)6] | Eosin Y—TEA | H2O/MeCN 1/1 | 10 | 404 (224) | 4 | [220] | |
4 | Fe2S2-2SO3Na | Ru(bpy)32+—AscOH | H2O | 4.0 | 178 | 3.0 | 6 | [221] |
5 | Fe2S2-SO3Na | Ru(bpy)32+—AscOH | H2O | 4.0 | 114 | 1.2 | 6 | [221] |
6 | Fe2S2-2SO3Na | CdSe QDs—AscOH | H2O | 4.0 | 2.65 × 104 | 208 | 12 | [221] |
7 | Fe2S2- SO3Na | CdSe QDs—AscOH | H2O | 4.0 | 1.88 × 104 | 127 | 12 | [221] |
8 | {(μSCH2)2-silafluorene}{Fe2(CO)6} | 1-silafluorene—TEA | MeCN | 539 | 1.3 | 7 | [222] | |
9 | [Ni(P2PhN2Ph)2]2+ | Ru(bpy)32+—AscOH | MeCN | 2.25 | 2700 | 0.3 | 150 | [223] |
10 | Ni(4,4′-OCH3-2,2′-bpy)(pyS)2 | Fluorescein—TEA | H2O/EtOH 1/1 | 11.6 | 7300 | 5.2 | 30 | [224] |
11 | [Ni(bpy)(mp)] | CdTe QDs—AscOH | H2O/DMF 2/1 | 4.5 | 6781 | 0.94 | 120 | [123] |
12 | [Co(dmgBF2)2(OH2)2] | Ir(ppy)2(phen)]+—TEA | Acetone | 165 | 0.88 | 15 | [225] | |
13 | [Co(dmgBF2)2(OH2)2] | [ReBr(CO)3(phen)]—TEA | Acetone | 273 | 0.83 | 15 | [225] | |
14 | [Co(dmgH)2] | [Re(NCS)(bpy)(CO)3]—TEOA | DMF | 1000 (6000) | 0.93 | 16 | [226] | |
15 | [Co(dmgH)2pyCl] | [Pt(ttpy)(C≡CPh)]+—TEOA | MeCN/H2O 24/1 | 8.5 | 2150 | 10 | [227] | |
16 | CoP | Ru(bpy)32+—AscO− | H2O | 7 | 725 | 8.8 | 4.5 | [228] |
17 | CoTPPS | Ru(bpy)32+—AscO− | H2O | 6.8 | 6410 | 120.8 | 1.5 | [229] |
18 | [FeFe]-HSF | Ru(bpy)32+—AscO− | H2O | 7.4 | 8300 [c] | 3 | [230] | |
19 | [FeFe]-OVA | Ru(bpy)32+—AscOH | H2O | 5.3 | 35.6 | 3 | [231] | |
20 | [FeFe]-Cyt c | Ru(bpy)32+—AscOH | H2O | 4.7 | 82 | 2 | [232] | |
21 | [FeFe][Ru]-Pep18 | Ru(bpy)(tpy)]2+—AscO− | H2O | 8.5 | 9 | 2 | [189] | |
22 | [FeFe]-NB | Ru(bpy)32+—AscOH | H2O | 4.0 | 130 | 2.3 | 6 | [94] |
23 | [FeFe]biot-SA | Ru(bpy)32+—AscOH | H2O | 4.5 | 47 | 1 | [233] | |
24 | [CoBr(appy)-Biot]-SA WT | Ru(bpy)32+—AscOH | H2O | 5 | 820 | 6 | [234] | |
25 | [CoBr(appy)-Biot]-SA S112K | Ru(bpy)32+—AscOH | H2O | 5 | 1070 | 6 | [234] | |
26 | Co-Mb | Ru(bpy)32+—AscO− | H2O | 7 | 518 | 1.47 | 8 | [235] |
27 | Co-cyt b562 WT | Ru(bpy)32+—AscO− | H2O | 7 | 120 | 8 | [236] | |
28 | Co-cyt b562 M7D | Ru(bpy)32+—AscO− | H2O | 7 | 275 | 8 | [236] | |
29 | Co-cyt b562 M7A | Ru(bpy)32+—AscO− | H2O | 7 | 310 | 8 | [236] | |
30 | Co-αRep | Ru(bpy)32+—AscO− | H2O | 7 | 163 | 25 | [237] | |
31 | Co-MP11 | Ru(bpy)32+—TEOA | H2O | 7.3 | 2390 | 7.0 | 20 | [238] |
32 | Co-MC6*a | Ru(bpy)32+—AscO− | H2O | 6.5 | 10.4 × 104 | 2.7 | 40 | [239] |
33 | Cobaloxime-PSI | PSI—AscO− | H2O | 6.3 | 5200 | 170 | 1.5 | [240] |
34 | [Ni(P2PhN2Ph)2]-PSI | PSI—AscO− | H2O | 6.3 | 1870 | 44 | 3 | [241] |
35 | Ni-ApoFld-PSI | PSI—AscO− | H2O | 6.3 | 2825 | 75 | 4 | [241] |
36 | Ru-Fd-Co | Ru(bpy)32+—AscO− | H2O | 6.3 | 320 | 1 | 6 | [242] |
37 | RuNiRd | [Ru(bpy)2(5,6-epoxi-phen)]2+—AscO− | H2O | 6.5 | 3.5 | 1.3 | [243] | |
38 | Ni-2SCC | Ru(bpy)32+—AscOH | H2O | 5.6 | 44 | 0.53 | 2 | [244] |
39 | Ni-4SCC | Ru(bpy)32+—AscOH | H2O | 5.5 | 0.14 | 2 | [245] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, L.; Sgueglia, G.; La Gatta, S.; Chino, M.; Nastri, F.; Lombardi, A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int. J. Mol. Sci. 2023, 24, 8605. https://doi.org/10.3390/ijms24108605
Leone L, Sgueglia G, La Gatta S, Chino M, Nastri F, Lombardi A. Enzymatic and Bioinspired Systems for Hydrogen Production. International Journal of Molecular Sciences. 2023; 24(10):8605. https://doi.org/10.3390/ijms24108605
Chicago/Turabian StyleLeone, Linda, Gianmattia Sgueglia, Salvatore La Gatta, Marco Chino, Flavia Nastri, and Angela Lombardi. 2023. "Enzymatic and Bioinspired Systems for Hydrogen Production" International Journal of Molecular Sciences 24, no. 10: 8605. https://doi.org/10.3390/ijms24108605
APA StyleLeone, L., Sgueglia, G., La Gatta, S., Chino, M., Nastri, F., & Lombardi, A. (2023). Enzymatic and Bioinspired Systems for Hydrogen Production. International Journal of Molecular Sciences, 24(10), 8605. https://doi.org/10.3390/ijms24108605