Potential Role of the mTORC1-PGC1α-PPARα Axis under Type-II Diabetes and Hypertension in the Human Heart
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Cardiomyopathy Population
2.2. Cardiac Proteomics Patterns after HTN and HTN-T2DM
2.3. Alteration of Factors in HTN-T2DM and HTN Hearts
2.4. Activation of Molecular Pathways in HTN-T2DM and HTN Hearts
2.5. The Excess of Lipids as a Major Activator of mTORC1 in Cardiomyocytes
2.6. Activation of mTORC1 and Regulation of PGC1α-PPARα Signaling after Excessive Fatty Acid Stimulation
2.7. Downregulation of PGC1α Signaling and ATP Formation after Excessive Fatty Acid Stimulation
3. Discussion
4. Materials and Methods
4.1. Population Study
4.2. Proteomics Approach
4.2.1. Sample Preparation
4.2.2. Mass Spectrometry Analysis
4.2.3. Protein Identification and Quantification
4.2.4. Bioinformatic Predictive Analysis
4.3. In Vitro Approach
4.3.1. Cultured Cardiomyocytes and Cell Stimuli
4.3.2. Gene Silencing
4.3.3. Protein Determination
4.3.4. Quantitative Gene Expression
4.3.5. ATP Quantification
4.3.6. Mitochondrial Bioenergetic Response
4.4. Statistical Analysis
5. Study Limitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owan, T.E.; Hodge, D.O.; Herges, R.M.; Jacobsen, S.J.; Roger, V.L.; Redfield, M.M. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med. 2006, 355, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Iglay, K.; Hannachi, H.; Joseph Howie, P.; Xu, J.; Li, X.; Engel, S.S.; Moore, L.M.; Rajpathak, S. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr. Med. Res. Opin. 2016, 32, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Homan, E.A.; Reyes, M.V.; Hickey, K.T.; Morrow, J.P. Clinical Overview of Obesity and Diabetes Mellitus as Risk Factors for Atrial Fibrillation and Sudden Cardiac Death. Front. Physiol. 2018, 9, 1847. [Google Scholar] [CrossRef]
- Yap, J.; Tay, W.T.; Teng, T.K.; Anand, I.; Richards, A.M.; Ling, L.H.; MacDonald, M.R.; Chandramouli, C.; Tromp, J.; Siswanto, B.B.; et al. Association of Diabetes Mellitus on Cardiac Remodeling, Quality of Life, and Clinical Outcomes in Heart Failure With Reduced and Preserved Ejection Fraction. J. Am. Heart Assoc. 2019, 8, e013114. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, F.; Dubois, M.J.; Marette, A. Regulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle. Front. Biosci. 2003, 8, d1072–d1084. [Google Scholar] [CrossRef] [PubMed]
- Poornima, I.G.; Parikh, P.; Shannon, R.P. Diabetic cardiomyopathy: The search for a unifying hypothesis. Circ. Res. 2006, 98, 596–605. [Google Scholar] [CrossRef]
- Kolwicz, S.C., Jr.; Purohit, S.; Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 2013, 113, 603–616. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac Energy Metabolism in Heart Failure. Circ. Res. 2021, 128, 1487–1513. [Google Scholar] [CrossRef]
- Lorenzo, O.; Ramirez, E.; Picatoste, B.; Egido, J.; Tunon, J. Alteration of energy substrates and ROS production in diabetic cardiomyopathy. Mediat. Inflamm. 2013, 2013, 461967. [Google Scholar] [CrossRef]
- Anderson, E.J.; Kypson, A.P.; Rodriguez, E.; Anderson, C.A.; Lehr, E.J.; Neufer, P.D. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J. Am. Coll. Cardiol. 2009, 54, 1891–1898. [Google Scholar] [CrossRef]
- Anderson, E.J.; Rodriguez, E.; Anderson, C.A.; Thayne, K.; Chitwood, W.R.; Kypson, A.P. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H118–H124. [Google Scholar] [CrossRef] [PubMed]
- Horita, S.; Seki, G.; Yamada, H.; Suzuki, M.; Koike, K.; Fujita, T. Insulin resistance, obesity, hypertension, and renal sodium transport. Int. J. Hypertens. 2011, 2011, 391762. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, D.I.; Paschou, S.A.; Anagnostis, P.; Spartalis, M.; Spartalis, E.; Vryonidou, A.; Tentolouris, N.; Siasos, G. Hypertension in patients with type 2 diabetes mellitus: Targets and management. Maturitas 2018, 112, 71–77. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef]
- Zhao, Z.; Hou, C.; Ye, X.; Cheng, J. Echocardiographic Changes in Newly Diagnosed Type 2 Diabetes Mellitus Patients with and without Hypertension. Med. Sci. Monit. 2020, 26, e918972. [Google Scholar] [CrossRef] [PubMed]
- Lamming, D.W. Inhibition of the Mechanistic Target of Rapamycin (mTOR)-Rapamycin and Beyond. Cold Spring Harb. Perspect. Med. 2016, 6, a025924. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, H.; Niu, Y.; Niu, W.; Fu, L. The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice. Biochim. Biophys. Acta 2012, 1822, 1716–1726. [Google Scholar] [CrossRef]
- Gwinn, D.M.; Shackelford, D.B.; Egan, D.F.; Mihaylova, M.M.; Mery, A.; Vasquez, D.S.; Turk, B.E.; Shaw, R.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30, 214–226. [Google Scholar] [CrossRef]
- Krakauer, T. Inflammasome, mTORC1 activation, and metabolic derangement contribute to the susceptibility of diabetics to infections. Med. Hypotheses 2015, 85, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Rius-Perez, S.; Torres-Cuevas, I.; Millan, I.; Ortega, A.L.; Perez, S. PGC-1alpha, Inflammation, and Oxidative Stress: An Integrative View in Metabolism. Oxid. Med. Cell. Longev. 2020, 2020, 1452696. [Google Scholar] [CrossRef] [PubMed]
- Botta, A.; Laher, I.; Beam, J.; Decoffe, D.; Brown, K.; Halder, S.; Devlin, A.; Gibson, D.L.; Ghosh, S. Short term exercise induces PGC-1alpha, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts. PLoS ONE 2013, 8, e70248. [Google Scholar] [CrossRef] [PubMed]
- Di, W.; Lv, J.; Jiang, S.; Lu, C.; Yang, Z.; Ma, Z.; Hu, W.; Yang, Y.; Xu, B. PGC-1: The Energetic Regulator in Cardiac Metabolism. Curr. Issues Mol. Biol. 2018, 28, 29–46. [Google Scholar] [CrossRef]
- Vega, R.B.; Huss, J.M.; Kelly, D.P. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 2000, 20, 1868–1876. [Google Scholar] [CrossRef]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstrale, M.; Laurila, E.; et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef]
- Fontaine, E. Metformin-Induced Mitochondrial Complex I Inhibition: Facts, Uncertainties, and Consequences. Front. Endocrinol. 2018, 9, 753. [Google Scholar] [CrossRef]
- Yamazaki, D.; Hitomi, H.; Nishiyama, A. Hypertension with diabetes mellitus complications. Hypertens. Res. 2018, 41, 147–156. [Google Scholar] [CrossRef]
- Jia, G.; Sowers, J.R. Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease. Hypertension 2021, 78, 1197–1205. [Google Scholar] [CrossRef]
- Chen, G.; McAlister, F.A.; Walker, R.L.; Hemmelgarn, B.R.; Campbell, N.R. Cardiovascular outcomes in framingham participants with diabetes: The importance of blood pressure. Hypertension 2011, 57, 891–897. [Google Scholar] [CrossRef]
- Seravalle, G.; Grassi, G. Obesity and hypertension. Pharm. Res. 2017, 122, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Oeing, C.U.; Nakamura, T.; Pan, S.; Mishra, S.; Dunkerly-Eyring, B.L.; Kokkonen-Simon, K.M.; Lin, B.L.; Chen, A.; Zhu, G.; Bedja, D.; et al. PKG1alpha Cysteine-42 Redox State Controls mTORC1 Activation in Pathological Cardiac Hypertrophy. Circ. Res. 2020, 127, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Oeing, C.U.; Jun, S.; Mishra, S.; Dunkerly-Eyring, B.L.; Chen, A.; Grajeda, M.I.; Tahir, U.A.; Gerszten, R.E.; Paolocci, N.; Ranek, M.J.; et al. MTORC1-Regulated Metabolism Controlled by TSC2 Limits Cardiac Reperfusion Injury. Circ. Res. 2021, 128, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Jhanwar-Uniyal, M.; Wainwright, J.V.; Mohan, A.L.; Tobias, M.E.; Murali, R.; Gandhi, C.D.; Schmidt, M.H. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv. Biol. Regul. 2019, 72, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Volkers, M.; Konstandin, M.H.; Doroudgar, S.; Toko, H.; Quijada, P.; Din, S.; Joyo, A.; Ornelas, L.; Samse, K.; Thuerauf, D.J.; et al. Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage. Circulation 2013, 128, 2132–2144. [Google Scholar] [CrossRef]
- Volkers, M.; Doroudgar, S.; Nguyen, N.; Konstandin, M.H.; Quijada, P.; Din, S.; Ornelas, L.; Thuerauf, D.J.; Gude, N.; Friedrich, K.; et al. PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Mol. Med. 2014, 6, 57–65. [Google Scholar] [CrossRef]
- Liu, M.; Bai, J.; He, S.; Villarreal, R.; Hu, D.; Zhang, C.; Yang, X.; Liang, H.; Slaga, T.J.; Yu, Y.; et al. Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab. 2014, 19, 967–980. [Google Scholar] [CrossRef]
- Nakazawa, H.; Ikeda, K.; Shinozaki, S.; Kobayashi, M.; Ikegami, Y.; Fu, M.; Nakamura, T.; Yasuhara, S.; Yu, Y.M.; Martyn, J.A.J.; et al. Burn-induced muscle metabolic derangements and mitochondrial dysfunction are associated with activation of HIF-1alpha and mTORC1: Role of protein farnesylation. Sci. Rep. 2017, 7, 6618. [Google Scholar] [CrossRef]
- Oaks, Z.; Winans, T.; Caza, T.; Fernandez, D.; Liu, Y.; Landas, S.K.; Banki, K.; Perl, A. Mitochondrial Dysfunction in the Liver and Antiphospholipid Antibody Production Precede Disease Onset and Respond to Rapamycin in Lupus-Prone Mice. Arthritis Rheumatol. 2016, 68, 2728–2739. [Google Scholar] [CrossRef]
- Quarles, E.; Basisty, N.; Chiao, Y.A.; Merrihew, G.; Gu, H.; Sweetwyne, M.T.; Fredrickson, J.; Nguyen, N.H.; Razumova, M.; Kooiker, K.; et al. Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment. Aging Cell 2020, 19, e13086. [Google Scholar] [CrossRef]
- Rosario, F.J.; Gupta, M.B.; Myatt, L.; Powell, T.L.; Glenn, J.P.; Cox, L.; Jansson, T. Mechanistic Target of Rapamycin Complex 1 Promotes the Expression of Genes Encoding Electron Transport Chain Proteins and Stimulates Oxidative Phosphorylation in Primary Human Trophoblast Cells by Regulating Mitochondrial Biogenesis. Sci. Rep. 2019, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.; Querfurth, H.W. Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: Reversal by oleate is similar to metformin. Biochimie 2015, 118, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Karwi, Q.G.; Uddin, G.M.; Ho, K.L.; Lopaschuk, G.D. Loss of Metabolic Flexibility in the Failing Heart. Front. Cardiovasc. Med. 2018, 5, 68. [Google Scholar] [CrossRef] [PubMed]
- Hahn, V.S.; Petucci, C.; Kim, M.S.; Bedi, K.C., Jr.; Wang, H.; Mishra, S.; Koleini, N.; Yoo, E.J.; Margulies, K.B.; Arany, Z.; et al. Myocardial Metabolomics of Human Heart Failure With Preserved Ejection Fraction. Circulation 2023, 147, 1147–1161. [Google Scholar] [CrossRef]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Ramirez, E.; Picatoste, B.; Gonzalez-Bris, A.; Oteo, M.; Cruz, F.; Caro-Vadillo, A.; Egido, J.; Tunon, J.; Morcillo, M.A.; Lorenzo, O. Sitagliptin improved glucose assimilation in detriment of fatty-acid utilization in experimental type-II diabetes: Role of GLP-1 isoforms in Glut4 receptor trafficking. Cardiovasc. Diabetol. 2018, 17, 12. [Google Scholar] [CrossRef]
- Sharabi, K.; Lin, H.; Tavares, C.D.J.; Dominy, J.E.; Camporez, J.P.; Perry, R.J.; Schilling, R.; Rines, A.K.; Lee, J.; Hickey, M.; et al. Selective Chemical Inhibition of PGC-1alpha Gluconeogenic Activity Ameliorates Type 2 Diabetes. Cell 2017, 169, 148–160.e15. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, C.F.; Zhang, T.N.; Wen, R.; Song, W.L. Overexpression of Peroxisome Proliferator-Activated Receptor gamma Coactivator 1-alpha Protects Cardiomyocytes from Lipopolysaccharide-Induced Mitochondrial Damage and Apoptosis. Inflammation 2020, 43, 1806–1820. [Google Scholar] [CrossRef]
- Ramirez, E.; Klett-Mingo, M.; Ares-Carrasco, S.; Picatoste, B.; Ferrarini, A.; Ruperez, F.J.; Caro-Vadillo, A.; Barbas, C.; Egido, J.; Tunon, J.; et al. Eplerenone attenuated cardiac steatosis, apoptosis and diastolic dysfunction in experimental type-II diabetes. Cardiovasc. Diabetol. 2013, 12, 172. [Google Scholar] [CrossRef]
- Bai, J.; Xie, N.; Hou, Y.; Chen, X.; Hu, Y.; Zhang, Y.; Meng, X.; Wang, X.; Tang, C. The enhanced mitochondrial dysfunction by cantleyoside confines inflammatory response and promotes apoptosis of human HFLS-RA cell line via AMPK/Sirt 1/NF-kappaB pathway activation. Biomed. Pharm. 2022, 149, 112847. [Google Scholar] [CrossRef] [PubMed]
(A) | ||||
Control (Mean ± SD or %) n = 5 | HTN (Mean ± SD or %) n = 7 | HTN-T2DM (Mean ± SD or %) n = 7 | Non-Pathological Ranges | |
Cardiac injury | Aortic/mitral valvopathy | AMI (ST/non-ST-elevation) | AMI (ST/non-ST-elevation) | - |
Cardiac surgery | Valve repl./CABG | CABG | CABG | |
LVEF (%) | 57.0 ± 6.7 | 56.9 ± 5.1 | 59.1 ± 5.7 | 52–72 (male) 54–74 (female) |
Presence of LVH (%) | 40.0 | 14.2 | 28.5 | - |
LVDD (mm) | 45.6 ± 9.9 | 42.1 ± 4.5 | 44.0 ± 3.2 | 42–58 (male) 38–52 (female) |
(B) | ||||
Control (Mean ± SD or %) n = 5 | HTN (Mean ± SD or %) n = 7 | HTN-T2DM (Mean ± SD or %) n = 7 | Non-Pathological Ranges | |
Age (years-old) | 71.2 ± 8.4 | 64.7 ± 7.7 | 72.5 ± 8.8 | - |
Male sex (%) | 40.0 | 85.7 | 85.7 | - |
BMI (kg/m2) | 29.5 ± 4.8 | 29.4 ± 6.6 | 32.8 ± 5.3 | ≤30 kg/m2 |
Controlled HTN (%) | 100 | 71.4 | 22.2 | - |
HbA1c (%) | <5.7 | 5.8 ± 0.1 | 6.9 ± 1.0 * | <7 |
Lipid Profile | ||||
LDL-c (mg/dL) | 77.4 ± 29.4 | 83.1 ± 12.2 | 94.4 ± 30.3 | ≤100 or ≤55 † |
HDL-c (mg/dL) | 52.6 ± 16.3 | 37.4 ± 5.13 | 38.8 ± 7.2 | >40 |
TG (mg/dL) | 94.4 ± 8.8 | 145.6 ± 56.1 | 172.0 ± 60.9 * | <150 |
TC (mg/dL) | 148 ± 28.6 | 149.3 ± 20.7 | 176.5 ± 25.7 | <155 |
(C) | ||||
Control (%) n = 5 | HTN (%) n = 7 | HTN-T2DM (%) n = 7 | ||
HTN | ||||
ACEi | 60.0 | 57.1 | 57.1 | |
ARB | 20.0 | 14.3 | 14.3 | |
MRA | 40.0 | 28.60 | 14.3 | |
β-blocker | 80.0 | 100.00 | 57.1 | |
T2DM | ||||
Insulin | 0.0 | 0.00 | 57.1 | |
Metformin | 0.0 | 0.00 | 71.4 *# | |
Hyperlipidemia | ||||
Simvastatin | 40.0 | 0.00 | 57.1 | |
Atorvastatin | 0.0 | 100.0 * | 42.9 | |
Thrombosis | ||||
Aspirin | 0.0 | 57.1 | 71.4 * | |
DAPT | 20.0 | 42.9 | 28.6 | |
Sintrom | 80.0 | 0.0 * | 0.0 * |
Candidate Pathways (IPA®) | HTN vs. Ctrl. (z-Score) | HTN-T2DM vs. Ctrl. (z-Score) | |||
---|---|---|---|---|---|
Sirtuin Signaling Pathway | — | 3.371 | |||
Acute Phase Response Signaling | — | 2.683 | |||
Ketogenesis | — | −2 | |||
Fatty Acid α-oxidation | — | −2 | |||
Ketolysis | — | −2.236 | |||
Acetyl-CoA Biosynthesis I (PDH Complex) | — | −2.236 | |||
AMPK Signaling | — | −2.887 | |||
Glycolysis | — | −3.317 | |||
Gluconeogenesis | — | −3.317 | z-score ≥ 5 | ||
eIF2 Signaling | −2.449 | −3.153 | 2 ≤ z-score < 5 | ||
Fatty Acid β-oxidation | — | −3.742 | −5 < z-score ≤ −2 | ||
TCA Cycle | — | −4.123 | z-score ≤ −5 | ||
Oxidative Phosphorylation | — | −8.062 | — | −2 < z-score < 2; p > 0.05 |
Upstream Regulators (IPA®) | HTN vs. Ctrl. (z-Score) | HTN-T2DM vs. Ctrl. (z-Score) | Main Cellular Function | |||
---|---|---|---|---|---|---|
RICTOR | 3 | 8.752 | Subunit of mTORC2. Regulation of cellular processes | |||
MAP4K4 | — | 6.164 | Anti-oxidation | |||
CD 437 | 2 | 5.425 | Pro-apoptosis | |||
NUPR1 | 2 | — | Anti-oxidation | |||
PPARγ | — | −3.168 | Regulation of lipid metabolism | |||
CD28 | −2 | −3.965 | Anti-inflammation | |||
NFE2L2 | — | −4.201 | Anti-oxidation | |||
PPARα | — | −4.423 | Regulation of lipid metabolism | |||
CD3 | −2 | −4.876 | Anti-inflammation | z-score ≥ 5 | ||
MYCN | −2.985 | −5.565 | Cardiomyocyte proliferation | 2 ≤ z-score < 5 | ||
PGC1α | — | −6.069 | Mitochondrial biogenesis metabolism | −5 < z-score ≤ −2 | ||
INSR | — | −6.215 | Regulation of glucose lipid metabolism | z-score ≤ −5 | ||
MYC | −2.701 | −6.216 | Regulation of glucose metabolism mitochondrial biogenesis | — | −2 < z-score < 2; p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hang, T.; Lumpuy-Castillo, J.; Goikoetxea-Usandizaga, N.; Azkargorta, M.; Aldámiz, G.; Martínez-Milla, J.; Forteza, A.; Cortina, J.M.; Egido, J.; Elortza, F.; et al. Potential Role of the mTORC1-PGC1α-PPARα Axis under Type-II Diabetes and Hypertension in the Human Heart. Int. J. Mol. Sci. 2023, 24, 8629. https://doi.org/10.3390/ijms24108629
Hang T, Lumpuy-Castillo J, Goikoetxea-Usandizaga N, Azkargorta M, Aldámiz G, Martínez-Milla J, Forteza A, Cortina JM, Egido J, Elortza F, et al. Potential Role of the mTORC1-PGC1α-PPARα Axis under Type-II Diabetes and Hypertension in the Human Heart. International Journal of Molecular Sciences. 2023; 24(10):8629. https://doi.org/10.3390/ijms24108629
Chicago/Turabian StyleHang, Tianyu, Jairo Lumpuy-Castillo, Naroa Goikoetxea-Usandizaga, Mikel Azkargorta, Gonzalo Aldámiz, Juan Martínez-Milla, Alberto Forteza, José M. Cortina, Jesús Egido, Félix Elortza, and et al. 2023. "Potential Role of the mTORC1-PGC1α-PPARα Axis under Type-II Diabetes and Hypertension in the Human Heart" International Journal of Molecular Sciences 24, no. 10: 8629. https://doi.org/10.3390/ijms24108629
APA StyleHang, T., Lumpuy-Castillo, J., Goikoetxea-Usandizaga, N., Azkargorta, M., Aldámiz, G., Martínez-Milla, J., Forteza, A., Cortina, J. M., Egido, J., Elortza, F., Martínez-Chantar, M., Tuñón, J., & Lorenzo, Ó. (2023). Potential Role of the mTORC1-PGC1α-PPARα Axis under Type-II Diabetes and Hypertension in the Human Heart. International Journal of Molecular Sciences, 24(10), 8629. https://doi.org/10.3390/ijms24108629